Antibody response to SARS-CoV-2 infection in humans: A systematic review

Nathan Post, Danielle Eddy, Catherine Huntley, May C I van Schalkwyk, Madhumita Shrotri, David Leeman, Samuel Rigby, Sarah V Williams, William H Bermingham, Paul Kellam, John Maher, Adrian M Shields, Gayatri Amirthalingam, Sharon J Peacock, Sharif A Ismail, Nathan Post, Danielle Eddy, Catherine Huntley, May C I van Schalkwyk, Madhumita Shrotri, David Leeman, Samuel Rigby, Sarah V Williams, William H Bermingham, Paul Kellam, John Maher, Adrian M Shields, Gayatri Amirthalingam, Sharon J Peacock, Sharif A Ismail

Abstract

Background: Progress in characterising the humoral immune response to Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) has been rapid but areas of uncertainty persist. Assessment of the full range of evidence generated to date to understand the characteristics of the antibody response, its dynamics over time, its determinants and the immunity it confers will have a range of clinical and policy implications for this novel pathogen. This review comprehensively evaluated evidence describing the antibody response to SARS-CoV-2 published from 01/01/2020-26/06/2020.

Methods: Systematic review. Keyword-structured searches were carried out in MEDLINE, Embase and COVID-19 Primer. Articles were independently screened on title, abstract and full text by two researchers, with arbitration of disagreements. Data were double-extracted into a pre-designed template, and studies critically appraised using a modified version of the Public Health Ontario Meta-tool for Quality Appraisal of Public Health Evidence (MetaQAT) tool, with resolution of disagreements by consensus. Findings were narratively synthesised.

Results: 150 papers were included. Most studies (113 or 75%) were observational in design, were based wholly or primarily on data from hospitalised patients (108, 72%) and had important methodological limitations. Few considered mild or asymptomatic infection. Antibody dynamics were well described in the acute phase, up to around three months from disease onset, but the picture regarding correlates of the antibody response was inconsistent. IgM was consistently detected before IgG in included studies, peaking at weeks two to five and declining over a further three to five weeks post-symptom onset depending on the patient group; IgG peaked around weeks three to seven post-symptom onset then plateaued, generally persisting for at least eight weeks. Neutralising antibodies were detectable within seven to 15 days following disease onset, with levels increasing until days 14-22 before levelling and then decreasing, but titres were lower in those with asymptomatic or clinically mild disease. Specific and potent neutralising antibodies have been isolated from convalescent plasma. Cross-reactivity but limited cross-neutralisation with other human coronaviridae was reported. Evidence for protective immunity in vivo was limited to small, short-term animal studies, showing promising initial results in the immediate recovery phase.

Conclusions: Literature on antibody responses to SARS-CoV-2 is of variable quality with considerable heterogeneity of methods, study participants, outcomes measured and assays used. Although acute phase antibody dynamics are well described, longer-term patterns are much less well evidenced. Comprehensive assessment of the role of demographic characteristics and disease severity on antibody responses is needed. Initial findings of low neutralising antibody titres and possible waning of titres over time may have implications for sero-surveillance and disease control policy, although further evidence is needed. The detection of potent neutralising antibodies in convalescent plasma is important in the context of development of therapeutics and vaccines. Due to limitations with the existing evidence base, large, cross-national cohort studies using appropriate statistical analysis and standardised serological assays and clinical classifications should be prioritised.

Conflict of interest statement

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; JM is chief scientific officer, shareholder and scientific founder of Leucid Bio, a spinout company focused on development of cellular therapeutic agents; no other relationships or activities that could appear to have influenced the submitted work. This does not alter our adherence to PLoS ONE policies on sharing data and materials.

Figures

Fig 1. PRISMA flowchart describing the process…
Fig 1. PRISMA flowchart describing the process of screening and selection of included studies.
Fig 2. Forest plot of median time…
Fig 2. Forest plot of median time to seroconversion by severity across included studies.
Central points in the forest plot represent the median reported by each study overall. Included studies reported the distribution of times to seroconversion around the median in different ways: lines with whiskers represent ranges (from maximum to minimum around the median); lines without whiskers represent interquartile ranges around the median; for a small number of studies only point estimates were provided.
Fig 3. Schematic showing the scale of…
Fig 3. Schematic showing the scale of IgG/IgM/IgA/Neutralising Ab response over time from disease onset.
Note that the y-axis is illustrative only and therefore no scale is given: this figure gives an indicative overview of findings from all included studies with relative peaks and decline indicated.

References

    1. WHO. WHO Coronavirus Disease (COVID-19) Dashboard. 2020.
    1. Ferguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. Imperial College London [Preprint]. 2020.
    1. Davies NG, Kucharski AJ, Eggo RM, Gimma A, Group CC-19 W, Edmunds WJ. The effect of non-pharmaceutical interventions on COVID-19 cases, deaths and demand for hospital services in the UK: a modelling study. medRxiv [Preprint]. 2020;2020.04.01.20049908. 10.1016/S2468-2667(20)30133-X
    1. WHO. “Immunity passports” in the context of COVID-19. WHO—Sci Br. 2020;
    1. Tiberghien P, de Lambalerie X, Morel P, Gallian P, Lacombe K, Yazdanpanah Y. Collecting and evaluating convalescent plasma for COVID-19 treatment: why and how. Vox Sang. 2020;02:2.
    1. Theel ES, Slev P, Wheeler S, Couturier MR, Wong SJ, Kadkhoda K. The Role of Antibody Testing for SARS-CoV-2: Is There One? J Clin Microbiol. 2020; 10.1128/jcm.00797-20
    1. Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick L, Rattigan SM, et al. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv [Preprint]. 2020;2020.04.14.20065771. Available from:
    1. Anderson DE, Tan CW, Chia WN, Young BE, Linster M, Low JH, et al. Lack of cross-neutralization by SARS patient sera towards SARS-CoV-2. Emerg Microbes Infect. 2020;9(1):900–2. 10.1080/22221751.2020.1761267
    1. Kellam P, Barclay W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J Gen Virol. 2020;101(8):791–7. 10.1099/jgv.0.001439
    1. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–74. 10.1038/s41577-020-0311-8
    1. Shrotri M, van Schalkwyk MCI, Post N, Eddy D, Huntley C, Leeman D, et al. Cellular immune response to SARS-CoV-2 infection in humans: a systematic review. medRxiv [Preprint]. 2020;2020.08.24.20180679. Available from:
    1. De Brun C, Farrow E, Gledhill R, Mahon B, Muscat R, Pearce-Smith N, et al. Covid-19 Daily Digest Endnote Library. Public Health England; 2020.
    1. WHO. Clinical management of COVID-19: interim guidance. Geneva; 2020.
    1. Rosella L, Bowman C, Pach B, Morgan S, Fitzpatrick T, Goel V. The development and validation of a meta-tool for quality appraisal of public health evidence: Meta Quality Appraisal Tool (MetaQAT). Public Health. 2016; 1;136:57–65 10.1016/j.puhe.2015.10.027
    1. Lou B, Li T-D, Zheng S-F, Su Y-Y, Li Z-Y, Liu W, et al. Serology characteristics of SARS-CoV-2 infection since exposure and post symptom onset. Eur Respir J. 2020; 10.1183/13993003.00763-2020
    1. Kohmer N, Westhaus S, Rühl C, Ciesek S, Rabenau HF. Clinical performance of different SARS-CoV-2 IgG antibody tests. J Med Virol. 2020; 10.1002/jmv.26145
    1. Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, et al. Immunology of COVID-19: current state of the science. Immunity. 2020; 10.1016/j.immuni.2020.05.002
    1. Grzelak L, Temmam S, Planchais C, Demeret C, Huon C, Guivel F, et al. SARS-CoV-2 serological analysis of COVID-19 hospitalized patients, pauci-symptomatic individuals and blood donors. medRxiv [Preprint]. 2020;2020.04.21.20068858.
    1. den Hartog G, Schepp RM, Kuijer M, GeurtsvanKessel C, van Beek J, Rots N, et al. SARS-CoV-2-specific antibody detection for sero-epidemiology: a multiplex analysis approach accounting for accurate seroprevalence. medRxiv [Preprint]. 2020; Available from:
    1. Edouard S, Colson P, Melenotte C, De Pinto F, Thomas L, Scola B, et al. Evaluating the serological status of COVID-19 patients using an indirect immunofluorescent assay, France. medRxiv [Preprint]. 2020; Available from:
    1. Buntinx F, Claes P, Gulikers M, Verbakel JY, De Lepeleire J, Van der Elst M, et al. Early experiences with antibody testing in a Flemish nursing home during an acute COVID-19 outbreak a retrospective cohort study. medRxiv [Preprint]. 2020; Available from:
    1. Borremans B, Gamble A, Prager K, Helman S, McClain A, Cox C, et al. Quantifying antibody kinetics and RNA shedding during early-phase SARS-CoV-2 infection. medRxiv [Preprint] 2020;1–20. Available from:
    1. Ma H, Zeng W, He H, Zhao D, Jiang D, Zhou P, et al. Serum IgA, IgM, and IgG responses in COVID-19. Cellular and Molecular Immunology. 2020; 17, 773–775. 10.1038/s41423-020-0474-z
    1. Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. 2020;28 10.1093/cid/ciaa344
    1. Wang B, Wang L, Kong X, Geng J, Xiao D, Ma C, et al. Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients. J Med Virol. 2020; 10.1002/jmv.25946
    1. Qu J, Wu C, Li X, Zhang G, Jiang Z, Li X, et al. Profile of IgG and IgM antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020; 71(16):2255–8 10.1093/cid/ciaa489
    1. Agarwal V, Venkatakrishnan AJ, Puranik A, Lopez-Marquez A, Challener DW, O Horo JC, et al. Quantifying the prevalence of SARS-CoV-2 long-term shedding among non-hospitalized COVID-19 patients. medRxiv [Preprint]: 2020.06.02.20120774v1. 2020. Available from:
    1. Fung M, Chiu CY, DeVoe C, Doernberg SB, Schwartz BS, Langelier C, et al. Clinical Outcomes and Serologic Response in Solid Organ Transplant Recipients with COVID-19: A Case Series from the United States. Am J Transplant. 2020; 10.1111/ajt.16079
    1. Gniffke EP, Harrington WE, Dambrauskas N, Jiang Y, Trakhimets O, Vigdorovich V, et al. Plasma from recovered COVID19 subjects inhibits spike protein binding to ACE2 in a microsphere-based inhibition assay. medRxiv [Preprint]. 2020; 2020.06.09.20127050v1. Available from:
    1. Zhang B, Zhou X, Zhu C, Feng F, Qiu Y, Feng J, et al. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv [Preprint] 2020;2020.03.12.20035048. Available from:
    1. Lee YL, Liao CH, Liu PY, Cheng CY, Chung MY, Liu CE, et al. Dynamics of anti-SARS-Cov-2 IgM and IgG antibodies among COVID-19 patients. J Infect 2020; 10.1016/j.jinf.2020.04.019
    1. Xiang F, Wang X, He X, Peng Z, Yang B, Zhang J, et al. Antibody Detection and Dynamic Characteristics in Patients with COVID-19. Clin Infect Dis. 2020;19:19.7
    1. Zhang L, Pang R, Xue X, Bao J, Ye S, Dai Y, et al. Anti-SARS-CoV-2 virus antibody levels in convalescent plasma of six donors who have recovered from COVID-19. Aging. 2020;12:22 10.18632/aging.103102
    1. Ou J, Tan M, He H, Tan H, Mai J, Long Y, et al. Study on the expression levels of antibodies against SARS-CoV-2 at different period of disease and its related factors in 192 cases of COVID-19 patients. medRxiv [Preprint]. 2020; 2020.05.22.20102525v1. Available from:
    1. Jääskeläinen AJ, Kekäläinen E, Kallio-Kokko H, Mannonen L, Kortela E, Vapalahti O, et al. Evaluation of commercial and automated SARS-CoV-2 IgG and IgA ELISAs using coronavirus disease (COVID-19) patient samples. Eurosurveillance. 2020;25(18):2000603 10.2807/1560-7917.ES.2020.25.18.2000603
    1. Herroelen PH, Martens GA, De Smet D, Swaerts K, Decavele A-S. Kinetics of the humoral immune response to SARS-CoV-2: comparative analytical performance of seven commercial serology tests. medRxiv [Preprint]. 2020; 2020.06.09.20124719v2. Available from:
    1. Solbach W, Schiffner J, Backhaus I, Burger D, Staiger R, Tiemer B, et al. Antibody profiling of COVID-19 patients in an urban low-incidence region in Northern Germany. medRxiv [Preprint]. 2020; 2020.05.30.20111393v1. Available from:
    1. Huang J, Mao T, Li S, Wu L, Xu X, Li H, et al. Long period dynamics of viral load and antibodies for SARS-CoV-2 infection: an observational cohort study. medRxiv [Preprint]. 2020; 2020.04.22.20071258v1. Available from:
    1. Lynch KL, Whitman JD, Lacanienta NP, Beckerdite EW, Kastner SA, Shy BR, et al. Magnitude and kinetics of anti-SARS-CoV-2 antibody responses and their relationship to disease severity. medRxiv. 2020; 2020.06.03.20121525v1. Available from:
    1. Xiao AT, Gao C, Zhang S. Profile of specific antibodies to SARS-CoV-2: The first report. Journal of Infection. 2020; 10.1016/j.jinf.2020.03.012
    1. Hartman AL, Nambulli S, McMillen CM, White AG, Tilston-Lunel N, Albe JR, et al. SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and prolonged shedding of infectious virus from both respiratory and gastrointestinal tracts. bioRxiv [Preprint]. 2020; 2020.06.20.137687v1. Available from:
    1. Tan W, Lu Y, Zhang J, Wang J, Dan Y, Tan Z, et al. Viral Kinetics and Antibody Responses in Patients with COVID-19. medRxiv [Preprint]. 2020;2020.03.24.20042382. Available from:
    1. Li K, Wu M, Huang B, Zhong A, Li L, Cai Y, et al. The Dynamic Changes of Antibodies against SARS-CoV-2 during the Infection and Recovery of COVID-19. medRxiv [Preprint]. 2020; 2020.05.18.20105155v1. Available from:
    1. Sun B, Feng Y, Mo X, Zheng P, Wang Q, Li P, et al. Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients. Emerg Microbes Infect. 2020; 9: 940–94 10.1080/22221751.2020.1762515
    1. Wang Z, Li H, Li J, Yang C, Guo X, Hu Z, et al. Elevated Serum IgM Levels Indicate Poor Outcome in Patients with Coronavirus Disease 2019 Pneumonia: A Retrospective Case-Control Study. SSRN Electron J. 2020. Available from:
    1. Jin Y, Wang M, Zuo Z, Fan C, Ye F, Cai Z, et al. Diagnostic value and dynamic variance of serum antibody in coronavirus disease 2019. Int J Infect Dis. 2020;94:49–52. 10.1016/j.ijid.2020.03.065
    1. Du Z, Zhu F, Guo F, Yang B, Wang T. Detection of antibodies against SARS-CoV-2 in patients with COVID-19. J Med Virol. 2020; 10.1002/jmv.25820
    1. Zhang Y, Xu J, Jia R, Yi C, Gu W, Liu P, et al. Protective humoral immunity in SARS-CoV-2 infected pediatric patients. Cellular and Molecular Immunology. 2020; 17, pages768–770. 10.1038/s41423-020-0438-3
    1. Zhang J, Qu X. Cross-reactivity of neutralizing antibody and its correlation with circulating T follicular cells in recovered COVID-19 individuals. medRxiv [Preprint]. 2020; 2020.06.12.20129460v1. Available from:
    1. He J, Hu P, Gao Y, Zheng S, Xu C, Liu R, et al. Comparison and Application of Different Immunoassay Methods for the Detection of SARS-CoV-2. J Med Virol. 2020; 92(11):2777–84 10.1002/jmv.26187
    1. Prévost J, Gasser R, Beaudoin-Bussières G, Richard J, Duerr R, Laumaea A, et al. Cross-sectional evaluation of humoral responses against SARS-CoV-2 Spike. bioRxiv [Preprint] 2020; 2020.06.08.140244v2. Available from:
    1. Minervina AA, Komech EA, Titov A, Koraichi MB, Rosati E, Mamedov IZ, et al. Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection. bioRxiv [Preprint]. 2020; Available from:
    1. Hou H, Wang T, Zhang B, Luo Y, Mao L, Wang F, et al. Detection of IgM and IgG antibodies in patients with coronavirus disease 2019. Clin Transl Immunol. 2020; 10.1002/cti2.1136
    1. Vogelzang EH, Loeff FC, Derksen NIL, Kruithof S, Ooijevaar-de Heer P, van Mierlo G, et al. Development of a SARS-CoV-2 total antibody assay and the dynamics of antibody response over time in hospitalized and non-hospitalized patients with COVID-19. medRxiv [Preprint]. 2020; 2020.06.17.20133793v1 Available from:
    1. Jin CC, Zhu L, Gao C, Zhang S. Correlation between viral RNA shedding and serum antibodies in individuals with coronavirus disease 2019. Clin Microbiol Infect. 2020; 10.1016/j.cmi.2020.05.022
    1. Benotmane I, Gautier-Vargas G, Wendling M-J, Perrin P, Velay A, Bassand X, et al. In-depth virological assessment of kidney transplant recipients with COVID-19. medRxiv. 2020; 2020.06.17.20132076v1. Available from:
    1. De Vriese AS, Reynders M. IgG Antibody Response to SARS-CoV-2 Infection and Viral RNA Persistence in Patients on Maintenance Hemodialysis. American Journal of Kidney Diseases. 2020; 10.1053/j.ajkd.2020.05.009
    1. Adams ER, Anand R, Andersson MI, Auckland K, Baillie JK, Barnes E, et al. Evaluation of antibody testing for SARS-Cov-2 using ELISA and lateral flow immunoassays. medRxiv [Preprint]. 2020. Available from:
    1. Yang HS, Racine-Brzostek SE, Lee WT, Hunt D, Yee J, Chen Z, et al. SARS-CoV-2 antibody characterization in emergency department, hospitalized and convalescent patients by two semi-quantitative immunoassays. Clin Chim Acta. 2020; 10.1016/j.cca.2020.06.004
    1. Padoan A, Sciacovelli L, Basso D, Negrini D, Zuin S, Cosma C, et al. IgA-Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: A longitudinal study. Clin Chim acta; Int J Clin Chem. 2020; 10.1016/j.cca.2020.04.026
    1. Zhang G, Nie S, Zhang Z, Zhang Z. Longitudinal Change of SARS-Cov2 Antibodies in Patients with COVID-19. J Infect Dis. 2020; 10.1093/infdis/jiaa229
    1. Xie J, Ding C, Li J, Wang Y, Guo H, Lu Z, et al. Characteristics of Patients with Coronavirus Disease (COVID-19) Confirmed using an IgM-IgG Antibody Test. J Med Virol. 2020; 10.1002/jmv.25930
    1. Hu Q, Cui X, Liu X, Peng B, Jiang J, Wang X, et al. The production of antibodies for SARS-CoV-2 and its clinical implication. medRxiv [Preprint]. 2020;2020.04.20.20065953. Available from:
    1. Yongchen Z, Shen H, Wang X, Shi X, Li Y, Yan J, et al. Different longitudinal patterns of nucleic acid and serology testing results based on disease severity of COVID-19 patients. Emerg Microbes Infect. 2020;1–14. 10.1080/22221751.2020.1756699
    1. Liu Z-L, Liu Y, Wan L-G, Xiang T-X, Le A-P, Liu P, et al. Antibody Profiles in Mild and Severe Cases of COVID-19. Clin Chem. 2020; 66(8):1102–4 10.1093/clinchem/hvaa137
    1. Ozturk T, Howell C, Benameur K, Ramonell RP, Cashman K, Pirmohammed S, et al. Cross-sectional IgM and IgG profiles in SARS-CoV-2 infection. medRxiv [Preprint] 2020;2020.05.10.20097535. Available from:
    1. Okba NMA, Muller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease 2019 Patients. Emerg Infect Dis. 2020;26(7).
    1. Candel González FJ, Viñuela-Prieto JM, Del Castillo JG, García PB, Saavedra MF, Píriz AH, et al. Utility of lateral flow tests in SARS-CoV-2 infection monitorization. Rev Esp Quimioter. 2020; 33(4):258 10.37201/req/052.2020
    1. Carsetti R, Zaffina S, Mortari EP, Terreri S, Corrente F, Capponi C, et al. Spectrum of innate and adaptive immune response to SARS CoV 2 infection across asymptomatic, mild and severe cases; a longitudinal cohort study. medRxiv [Preprint]. 2020; 2020.06.22.20137141v1. Available from:
    1. Shen L, Wang C, Zhao J, Tang X, Shen Y, Lu M, et al. Delayed specific IgM antibody responses observed among COVID-19 patients with severe progression. Emerg Microbes Infect. 2020; 9(1):1096–101 10.1080/22221751.2020.1766382
    1. Dahlke C, Heidepriem J, Kobbe R, Santer R, Koch T, Fathi A, et al. Distinct early IgA profile may determine severity of COVID-19 symptoms: an immunological case series. medRxiv [Preprint]. 2020;2020.04.14.20059733. Available from:
    1. Marcos-Jimenez A, Sanchez-Alonso S, Alcaraz-Serna A, Esparcia L, Lopez-Sanz C, Sampedro-Nunez M, et al. Deregulated cellular circuits driving immunoglobulins and complement consumption associate with the severity of COVID-19. medRxiv [Preprint]. 2020; 2020.06.15.20131706v1. Available from: .
    1. Zhang Z, Xiao T, Wang Y, Yuan J, Ye H, Wei L, et al. Early viral clearance and antibody kinetics of COVID-19 among asymptomatic carriers. medRxiv [Preprint]. 2020;2020.04.28.20083139. Available from:
    1. Dobi A, Frumence E, Rakoto ML, Lebeau G, Vagner D, Seteyen A-LS, et al. Serological surveys in Reunion Island of the first hospitalized patients revealed that long-lived immunoglobulin G antibodies specific against SARS-CoV2 virus are rapidly vanishing in severe cases. medrxiv. 2020; 2020.05.25.20112623v1. Available from: .
    1. Duan L, Zhang S, Guo M, Zhou E, Fan J, Wang X, et al. Epidemiological and clinical characteristics in patients with SARS-CoV-2 antibody negative probable COVID-19 in Wuhan. medRxiv [Preprint]. 2020; 2020.06.18.20134619v1. Available from:
    1. Perera RAPM, Mok CKP, Tsang OTY, Lv H, Ko RLW, Wu NC, et al. Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020. Eurosurveillance. 2020;25(16):2000421 10.2807/1560-7917.ES.2020.25.16.2000421
    1. Rijkers G, Murk J-L, Wintermans B, van Looy B, van den Berge M, Veenemans J, et al. Differences in antibody kinetics and functionality between severe and mild SARS-CoV-2 infections. medRxiv [Preprint]. 2020; 2020.06.09.20122036v1. Available from:
    1. Cervia C, Nilsson J, Zurbuchen Y, Valaperti A, Schreiner J, Wolfensberger A, et al. Systemic and mucosal antibody secretion specific to SARS-CoV-2 during mild versus severe COVID-19. bioRxiv [Preprint]. 2020; 2020.05.21.108308v1. Available from:
    1. Reifer J, Hayum N, Heszkel B, Klagsbald I, Streva VA. SARS-CoV-2 IgG Antibody Responses in New York City. medRxiv [Preprint]. 2020; 2020.05.23.20111427v2. Available from:
    1. He R, Lu Z, Zhang L, Fan T, Xiong R, Shen X, et al. The clinical course and its correlated immune status in COVID-19 pneumonia. J Clin Virol. 2020;127:104361 10.1016/j.jcv.2020.104361
    1. Laing AG, Lorenc A, Del Barrio IDM, Das A, Fish M, Monin L, et al. A consensus Covid-19 immune signature combines immuno-protection with discrete sepsis-like traits associated with poor prognosis. medRxiv. 2020; 2020.06.08.20125112v1. Available from:
    1. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;12 10.1093/cid/ciaa248
    1. Bao J, Li C, Zhang K, Kang H, Chen W, Gu B. Comparative analysis of laboratory indexes of severe and non-severe patients infected with COVID-19. Clin Chim Acta. 2020; 10.1016/j.cca.2020.06.009
    1. Staines HM, Kirwan DE, Clark DJ, Adams ER, Augustin Y, Byrne RL, et al. Dynamics of IgG seroconversion and pathophysiology of COVID-19 infections. medRxiv [Preprint]. 2020; 2020.06.07.20124636v2. Available from:
    1. Burbelo PD, Riedo FX, Morishima C, Rawlings S, Smith D, Das S, et al. Detection of Nucleocapsid Antibody to SARS-CoV-2 is More Sensitive than Antibody to Spike Protein in COVID-19 Patients. medRxiv [Preprint] 2020; 2020.04.20.20071423v1. Available from:
    1. Solodky ML, Galvez C, Russias B, Detourbet P, N’Guyen-Bonin V, Herr A-L, et al. Lower detection rates of SARS-COV2 antibodies in cancer patients vs healthcare workers after symptomatic COVID-19. Ann Oncol. 2020;19–21.
    1. Brotons C, Serrano J, Fernandez D, Garcia-Ramos C, Ichazo B, Lemaire J, et al. Seroprevalence against COVID-19 and follow-up of suspected cases in primary health care in Spain. medRxiv [Preprint]. 2020; 2020.06.13.20130575v1. Available from:
    1. Favara DM, Cooke A, Doffinger R, Houghton S, Budriunaite I, Bossingham S, et al. First results from the UK COVID-19 Serology in Oncology Staff Study (CSOS). medRxiv [Preprint]. 2020; 2020.06.22.20136838v1. Available from:
    1. Rudberg A-S, Havervall S, Manberg A, Falk AJ, Aguilera K, Ng H, et al. SARS-CoV-2 exposure, symptoms and seroprevalence in health care workers. medRxiv [Preprint]. 2020; 2020.06.22.20137646v1. Available from:
    1. Long QX, Tang XJ, Shi QL, Li Q, Deng HJ, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020; 26(8):1200–4 10.1038/s41591-020-0965-6
    1. Madariaga MLL, Guthmiller J, Schrantz S, Jansen M, Christenson C, Kumar M, et al. Clinical predictors of donor antibody titer and correlation with recipient antibody response in a COVID-19 convalescent plasma clinical trial. medRxiv [Preprint]. 2020; 2020.06.21.20132944v1. Available from:
    1. Houlihan C, Vora N, Byrne T, Lewer D, Heaney J, Moore DA, et al. SARS-CoV-2 virus and antibodies in front-line Health Care Workers in an acute hospital in London: preliminary results from a longitudinal study. medRxiv [Preprint]. 2020; 2020.06.08.20120584v1. Available from:
    1. Schmidt SB, Grüter L, Boltzmann M, Rollnik JD. Prevalence of serum IgG antibodies against SARS-CoV-2 among clinic staff. PLoS One. 2020; 15(6):e0235417 10.1371/journal.pone.0235417
    1. Garcia-Basteiro AL, Moncunill G, Tortajada M, Vidal M, Guinovart C, Jimenez A, et al. Seroprevalence of antibodies against SARS-CoV-2 among health care workers in a large Spanish reference hospital. medRxiv [Preprint]. 2020;2020.04.27.20082289. Available from:
    1. Sandri MT, Azzolini E, Torri V, Carloni S, Tedeschi M, Castoldi M, et al. IgG serology in health care and administrative staff populations from 7 hospital representative of different exposures to SARS-CoV-2 in Lombardy, Italy. medRxiv [Preprint]. 2020; 2020.05.24.20111245v1. Available from:
    1. Zeng F, Dai C, Cai P, Wang J, Xu L, Li J, et al. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: A possible reason underlying different outcome between sex. J Med Virol. 2020; 10.1002/jmv.25989
    1. Giagulli VA, Guastamacchia E, Magrone T, Jirillo E, Lisco G, De Pergola G, et al. Worse progression of COVID-19 in men: Is testosterone a key factor? Andrology. 2020; 10.1111/andr.12836
    1. Chen J, Zhang ZZ, Chen YK, Long QX, Tian WG, Deng HJ, et al. The clinical and immunological features of pediatric COVID-19 patients in China. Genes Dis 2020; 10.1016/j.gendis.2020.03.008
    1. Cohen R, Jung C, Ouldali N, Sellam A, Batard C, Cahn-Sellem F, et al. Assessment of spread of SARS-CoV-2 by RT-PCR and concomitant serology in children in a region heavily affected by COVID-19 pandemic. medRxiv [Preprint]. 2020; 2020.06.12.20129221v2. Available from:
    1. Dingens AS, Crawford KH, Adler A, Steele SL, Lacombe K, Eguia R, et al. Seroprevalence of SARS-CoV-2 among children visiting a hospital during the initial Seattle outbreak. medRxiv [Preprint] 2020; 2020.05.26.20114124v2. Available from:
    1. Du W, Yu J, Wang H, Zhang X, Zhang S, Li Q, et al. Clinical characteristics of COVID-19 in children compared with adults in Shandong Province, China. Infection 2020;16:16 10.1007/s15010-020-01427-2
    1. Li Y, Deng W, Xiong H, Li H, Chen Z, Nie Y, et al. Immune-related factors associated with pneumonia in 127 children with coronavirus disease 2019 in Wuhan. Pediatr Pulmonol. 2020; 55(9):2354–60 10.1002/ppul.24907
    1. Zeng H, Xu C, Fan J, Tang Y, Deng Q, Zhang W, et al. Antibodies in Infants Born to Mothers with COVID-19 Pneumonia. JAMA—J Am Med Assoc. 2020;E1–2. 10.1001/jama.2020.4861
    1. Bwire GM, Njiro BJ. A systematic review on the levels of antibodies in COVID-19 virus exposed but negative newborns: a possible vertical transmission of IgG/ IgM. medRxiv. [Preprint] 2020; 2020.06.09.20127118v1. Available from:
    1. Fox A, Marino J, Amanat F, Krammer F, Hahn-Holbrook J, Zolla-Pazner S, et al. Evidence of a significant secretory-IgA-dominant SARS-CoV-2 immune response in human milk following recovery from COVID-19. medRxiv [Preprint]. 2020; 2020.05.04.20089995v1. Available from:
    1. Danh K, Karp DG, Robinson PV, Seftel D, Stone M, Simmons G, et al. Detection of SARS-CoV-2 neutralizing antibodies with a cell-free PCR assay. medRxiv [Preprint]. 2020; 2020.05.28.20105692v1. Available from:
    1. Payne DC, Smith-Jeffcoat SE, Nowak G, Chukwuma U, Geibe JR, Hawkins RJ, et al. SARS-CoV-2 Infections and Serologic Responses from a Sample of U.S. Navy Service Members—USS Theodore Roosevelt, April 2020. MMWR. Morbidity and Mortality Weekly Report. 2020; 69(23):714.
    1. Fafi-Kremer S, Bruel T, Madec Y, Grant R, Tondeur L, Grzelak L, et al. Serologic responses to SARS-CoV-2 infection among hospital staff with mild disease in eastern France. medRxiv. 2020; 2020.05.19.20101832v2. Available from:
    1. Harvala H, Robb M, Watkins N, Ijaz S, Dicks S, Patel M, et al. Convalescent plasma therapy for the treatment of patients with COVID-19: Assessment of methods available for antibody detection and their correlation with neutralising antibody levels. medRxiv [Preprint]. 2020; 2020.05.20.20091694v1. Available from:
    1. Luchsinger LL, Ransegnola B, Jin D, Muecksch F, Weisblum Y, Bao W, et al. Serological Analysis of New York City COVID19 Convalescent Plasma Donors. medRxiv [Preprint]. 2020; 2020.06.08.20124792v1. Available from:
    1. Ng D, Goldgof G, Shy B, Levine A, Balcerek J, Bapat SP, et al. SARS-CoV-2 seroprevalence and neutralizing activity in donor and patient blood from the San Francisco Bay Area. medRxiv [Preprint]. 2020; 2020.05.19.20107482v2. Available from:
    1. Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020; 10.1126/science.abc5902
    1. Hu J, He CL, Gao Q, Zhang GJ, Cao XX, Long QX, et al. The D614G mutation of SARS-CoV-2 spike protein enhances viral infectivity and decreases neutralization sensitivity to individual convalescent sera. bioRxiv [Preprint]. 2020; 2020.06.20.161323v1. Available from:
    1. Juno JA, Tan H-X, Lee WS, Reynaldi A, Kelly HG, Wragg K, et al. Immunogenic profile of SARS-CoV-2 spike in individuals recovered from COVID-19. medRxiv [Preprint]. 2020; 2020.05.17.20104869v1. Available from:
    1. Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 2020; 369(6504):650–5 10.1126/science.abc6952
    1. Suthar MS, Zimmerman MG, Kauffman RC, Mantus G. Rapid generation of neutralizing antibody responses in COVID-19 patients. medRxiv [Preprint]. 2020; 2020.05.03.20084442v1. Available from:
    1. Choe PG, Kang CK, Suh HJ, Jung J, Kang E, Lee SY, et al. Antibody Responses to SARS-CoV-2 at 8 Weeks Postinfection in Asymptomatic Patients. Emerg Infect Dis. 2020; 26(10):2484 10.3201/eid2610.202211
    1. Klimstra WB, Tilston-Lunel NL, Nambulli S, Boslett J, McMillen CM, Gilliland T, et al. SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected, hospitalized COVID-19 patients. bioRxiv [Preprint]. 2020; 2020.06.19.154930v1. Available from:
    1. Liu P, Cai J, Jia R, Xia S, Wang X, Cao L, et al. Dynamic surveillance of SARS-CoV-2 shedding and neutralizing antibody in children with COVID-19. Emerging Microbes and Infections. 2020; 9(1):1254–8. 10.1080/22221751.2020.1772677
    1. Lou Y, Zhao W, Wei H, Chu M, Chao R, Yao H, et al. Cross-neutralization antibodies against SARS-CoV-2 and RBD mutations from convalescent patient antibody libraries. bioRxiv [Preprint]. 2020; 2020.06.06.137513v1. Available from:
    1. Lu J, Peng J, Xiong Q, Liu Z, Lin H, Tan X, et al. Clinical immunological and virological characterization of COVID-19 patients that test re-positive for SARS-CoV-2 by RT-PCR. medrxiv [Preprint]. 2020; 2020.06.15.20131748v1. Available from:
    1. Mueller L, Ostermann PN, Walker A, Wienemann T, Mertens A, Adams O, et al. Sensitivity of commercial Anti-SARS-CoV-2 serological assays in a high-prevalence setting. medRxiv [Preprint]. 2020; 2020.06.11.20128686v2. Available from:
    1. Siracusano G, Pastori C, Lopalco L. Humoral Immune Responses in COVID-19 Patients: A Window on the State of the Art. Frontiers in Immunology. 2020; 10.3389/fimmu.2020.01049
    1. Chen Y, Tong X, Wang J, Huang W, Yin S, Huang R, et al. High SARS-CoV-2 antibody prevalence among healthcare workers exposed to COVID-19 patients. J Infect. 2020; 10.1016/j.jinf.2020.05.067
    1. Premkumar L, Segovia-Chumbez B, Jadi R, Martinez DR, Raut R, Markmann A, et al. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol. 2020; 11;5(48) 10.1126/sciimmunol.abc8413
    1. Brochot E, Demey B, Touze A, Belouzard S, Dubuisson J, Schmit J-L, et al. Anti-Spike anti-Nucleocapsid and neutralizing antibodies in SARS-CoV-2 hospitalized patients and asymptomatic carriers. medRxiv [Preprint]. 2020; 2020.05.12.20098236v2. Available from:
    1. Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020; 584:437–442 10.1038/s41586-020-2456-9
    1. Chandrashekar A, Liu J, Martinot AJ, McMahan K, Mercado NB, Peter L, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020; 10.1126/science.abc4776
    1. Ryan KA, Bewley KR, Fotheringham SA, Brown P, Hall Y, Marriott AC, et al. Dose-dependent response to infection with SARS-CoV-2 in the ferret model: evidence of protection to re-challenge. bioRxiv [Preprint]. 2020;2020.05.29.123810v1 Available from:
    1. Bao L, Deng W, Gao H, Xiao C, Liu J, Xue J, et al. Lack of reinfection in rhesus macaques infected with SARS-CoV-2. bioRxiv [Preprint]. 2020; 2020.03.13.990226v2. Available from:
    1. Imai M, Iwatsuki-Horimoto K, Hatta M, Loeber S, Halfmann PJ, Nakajima N, et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci 2020; 117(28):16587–95 10.1073/pnas.2009799117
    1. Espejo AP, Akgun Y, Al Mana AF, Tjendra Y, Millan NC, Gomez-Fernandez C, et al. Review of Current Advances in Serologic Testing for COVID-19. Am J Clin Pathol. 2020; 154(3):293–304 10.1093/ajcp/aqaa112
    1. Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv [Preprint]. 2020;2020.03.30.20047365. Available from:
    1. Wang X, Guo X, Xin Q, Pan Y, Li J, Chu Y, et al. Neutralizing Antibodies Responses to SARS-CoV-2 in COVID-19 Inpatients and Convalescent Patients. medRxiv [Preprint]. 2020;2020.04.15.20065623. Available from:
    1. Jungbauer C, Weseslindtner L, Weidner L, Gaensdorfer S, Farcet MR, Gschaider-Reichhart E, et al. Characterization of 100 sequential SARS-CoV-2 convalescent plasma donations. bioRxiv [Preprint]. 2020; 2020.06.21.163444v1. Available from:
    1. Percivalle E, Cambiè G, Cassaniti I, Nepita EV, Maserati R, Ferrari A, et al. Prevalence of SARS-CoV-2 specific neutralising antibodies in blood donors from the Lodi Red Zone in Lombardy, Italy, as at 06 April 2020. Euro Surveill. 2020; 25(24):2001031 10.2807/1560-7917.ES.2020.25.24.2001031
    1. Wang P, Liu L, Nair MS, Yin MT, Luo Y, Wang Q, et al. SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease. bioRxiv [Preprint]. 2020; 2020.06.13.150250v1. Available from:
    1. Varnaitė R, García M, Glans H, Maleki KT, Sandberg JT, Tynell J, et al. Expansion of SARS-CoV-2-specific Antibody-secreting Cells and Generation of Neutralizing Antibodies in Hospitalized COVID-19 Patients. bioRxiv [Preprint]. 2020; 2020.05.28.118729v1. Available from:
    1. Ni L, Ye F, Cheng ML, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immun 2020; 10.1016/j.immuni.2020.04.023
    1. Thompson C, Grayson N, Paton R, Lourenço J, Penman B, Lee LN, et al. Neutralising antibodies to SARS coronavirus 2 in Scottish blood donors—a pilot study of the value of serology to determine population exposure. medRxiv [Preprint]. 2020;2020.04.13.20060467. Available from:
    1. Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He W, et al. Rapid isolation of potent SARS-CoV-2 neutralizing antibodies and protection in a small animal model. BioRxiv [Preprint]. 2020; 2020.05.11.088674v2. Available from:
    1. Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He W, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020; 369(6506):956–63 10.1126/science.abc7520
    1. Cao Y, Su B, Guo X, Sun W, Deng Y, Bao L, et al. Potent Neutralizing Antibodies against SARS-CoV-2 Identified by High-Throughput Single-Cell Sequencing of Convalescent Patients’ B Cells. Cell. 2020; 10.1016/j.cell.2020.05.025
    1. Chen X, Li R, Pan Z, Qian C, Yang Y, You R, et al. Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cellular and Molecular Immunology. 2020; 17: 647–649. 10.1038/s41423-020-0426-7
    1. Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020; 584(7819):115–9. 10.1038/s41586-020-2380-z
    1. Kreer C, Zehner M, Weber T, Rohde C, Halwe S, Ercanoglu MS, et al. Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients. bioRxiv [Preprint]. 2020; 2020.06.12.146290v1. Available from:
    1. Wu Y, Wang F, Shen C, Peng W, Li D, Zhao C, et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science (80-). 2020; 368(6496):1274–8 10.1126/science.abc2241
    1. Wec AZ, Wrapp D, Herbert AS, Maurer DP, Haslwanter D, Sakharkar M, et al. Broad sarbecovirus neutralizing antibodies define a key site of vulnerability on the SARS-CoV-2 spike protein. bioRxiv [Preprint]. 2020;2020.05.15.096511. Available from:
    1. Hansen J, Baum A, Pascal KE, Russo V, Giordano S, Wloga E, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science. 2020; 369(6506):1010–4 10.1126/science.abd0827
    1. Hurlburt NK, Wan Y-H, Stuart AB, Feng J, McGuire AT, Stamatatos L, et al. Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation. bioRxiv [Preprint] 2020; 2020.06.12.148692v1. Available from:
    1. Wang H, Hou X, Wu X, Liang T, Zhang X, Wang D, et al. SARS-CoV-2 proteome microarray for mapping COVID-19 antibody interactions at amino acid resolution. bioRxiv [Preprint]. 2020;2020.03.26.994756. Available from:
    1. Ejemel M, Li Q, Hou S, Schiller ZA, Wallace AL, Amcheslavsky A, et al. IgA MAb blocks SARS-CoV-2 Spike-ACE2 interaction providing mucosal immunity. bioRxiv [Preprint] 2020; 2020.05.15.096719v1. Available from:
    1. Farrera L, Daguer J-P, Barluenga S, Cohen PR, Pagano S, Yerly S, et al. Identification of immunodominant linear epitopes from SARS-CoV-2 patient plasma. medRxiv [Preprint]. 2020; 2020.06.15.20131391v1. Available from:
    1. Galson JD, Schaetzle S, Bashford-Rogers RJM, Raybould MIJ, Kovaltsuk A, Kilpatrick GJ, et al. Deep sequencing of B cell receptor repertoires from COVID-19 patients reveals strong convergent immune signatures. bioRxiv [Preprint]. 2020; 2020.05.20.106294v1. Available from:
    1. Bryan A, Fink SL, Gattuso MA, Pepper G, Chaudhary A, Wener M, et al. Anti-SARS-CoV-2 IgG antibodies are associated with reduced viral load. medRxiv [Preprint]. 2020; 2020.05.22.20110551v1. Available from:
    1. To KKW, Tsang OTY, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis. 2020; 10.1016/S1473-3099(20)30196-1
    1. Brocato RL, Principe LM, Kim RK, Zeng X, Williams JA, Liu Y, et al. Disruption of Adaptive Immunity Enhances Disease in SARS-CoV-2 Infected Syrian Hamsters. bioRxiv [Preprint]. 2020; 2020.06.19.161612v1. Available from:
    1. Lv H, Wu NC, Tsang OTY, Yuan M, Perera RAPM, Leung WS, et al. Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections. Cell Rep. 2020; 10.1016/j.celrep.2020.107725
    1. Ng K, Faulkner N, Cornish G, Rosa A, Earl C, Benton D, et al. Pre-existing and de novo humoral immunity to SARS-CoV-2 in humans. bioRxiv [Preprint]. 2020; 2020.05.14.095414v1. Available from:
    1. Selva KJ, van de Sandt CE, Lemke MM, Lee CY, Shoffner SK, Chua BY, et al. Distinct systems serology features in children, elderly and COVID patients. medRxiv [Preprint]. 2020; 2020.05.11.20098459v1. Available from:
    1. Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B, Wang JH, et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Sci Immunol. 2020;5(52).
    1. Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H, Eythorsson E, et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N Engl J Med. 2020;383(18):1724–34. 10.1056/NEJMoa2026116
    1. Seow J, Graham C, Merrick B, Acors S, Pickering S, Steel KJA, et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol. 2020;5(12):1598–607. 10.1038/s41564-020-00813-8
    1. Ripperger TJ, Uhrlaub JL, Watanabe M, Wong R, Castaneda Y, Pizzato HA, et al. Orthogonal SARS-CoV-2 Serological Assays Enable Surveillance of Low-Prevalence Communities and Reveal Durable Humoral Immunity. Immunity. 2020;53(5):925–933.e4. 10.1016/j.immuni.2020.10.004
    1. Jiang S, Hillyer C, Du L. Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses. Trends Immunol 2020; 10.1016/j.it.2020.03.007
    1. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet. 2020; 396(10249):467–78 10.1016/S0140-6736(20)31604-4
    1. Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, et al. An mRNA Vaccine against SARS-CoV-2—Preliminary Report. N Engl J Med. 2020; 383(20):1920–31 10.1056/NEJMoa2022483
    1. Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Baum A, et al. Concurrent human antibody and TH1 type T-cell responses elicited by a COVID-19 RNA vaccine. medRxiv [Preprint]. 2020; 2020.07.17.20140533v1. Available from:
    1. Shields AM, Jossi S, Allen JD, Al-Taei S, Associate R, Backhouse C, et al. Serological responses to SARS-CoV-2 following non-hospitalised infection: clinical and ethnodemographic features associated with the magnitude of the antibody response. medRxiv [Preprint]. 2020;2020.11.12.20230763. Available from: .
    1. Klein SL, Morgan R. The impact of sex and gender on immunotherapy outcomes. Biol Sex Differ. 2020;11(1):1–13.
    1. Takahashi T, Ellingson MK, Wong P, Israelow B, Lucas C, Klein J, et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature. 2020; 588:315–320. 10.1038/s41586-020-2700-3
    1. Weisberg SP, Connors TJ, Zhu Y, Baldwin MR, Lin W-H, Wontakal S, et al. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat Immunol. 2020; 10.1038/s41590-020-00826-9
    1. Lumley SF, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, et al. Antibodies to SARS-CoV-2 are associated with protection against reinfection. medRxiv. [Preprint] 2020;2020.11.18.20234369. Available from:
    1. Bermingham WH, Wilding T, Beck S, Huissoon A. SARS-CoV-2 serology: Test, test, test, but interpret with caution! Clin Med. 2020; 10.7861/clinmed.2020-0170
    1. Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Spijker R, Taylor-Phillips S, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane database Syst Rev. 2020;6:CD013652 10.1002/14651858.CD013652
    1. Flower B, Brown JC, Simmons B, Moshe M, Frise R, Penn R, et al. Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19 seroprevalence survey. Thorax. 2020; 75(12):1082–8 10.1136/thoraxjnl-2020-215732
    1. Ward H, Atchison C, Whitaker M, Kec A, Elliott J, Okell L, et al. Antibody prevalence for SARS CoV-2 following the peak of the pandemic in England: REACT2 study in 100,000 adults. medRxiv [Preprint]. 2020; 2020.08.12.20173690v2. Available from:
    1. Office for National Statistics. Coronavirus (COVID-19) Infection Survey pilot: England and Wales, 14 August 2020.
    1. Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, et al. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell. 2020. September;182(5):1284–1294.e9. 10.1016/j.cell.2020.07.012

Source: PubMed

3
Subscribe