The Effects of Extracorporeal Shock Wave Therapy on Spastic Muscle of the Wrist Joint in Stroke Survivors: Evidence From Neuromechanical Analysis

Yan Leng, Wai Leung Ambrose Lo, Chengpeng Hu, Ruihao Bian, Zhiqin Xu, Xiyao Shan, Dongfeng Huang, Le Li, Yan Leng, Wai Leung Ambrose Lo, Chengpeng Hu, Ruihao Bian, Zhiqin Xu, Xiyao Shan, Dongfeng Huang, Le Li

Abstract

Background: This study combined neuromechanical modeling analysis, muscle tone measurement from mechanical indentation and electrical impedance myography to assess the neural and peripheral contribution to spasticity post stroke at wrist joint. It also investigated the training effects and explored the underlying mechanism of radial extracorporeal shock wave (rESW) on spasticity. Methods: People with first occurrence of stroke were randomly allocated to rESW intervention or control group. The intervention group received one session of rESW therapy, followed by routine therapy which was the same frequency and intensity as the control group. Outcome measures were: (1) NeuroFlexor method measured neural component (NC), elastic component (EC) and viscosity component (VC), and (2) myotonometer measured muscle tone (F) and stiffness (S), (3) electrical impedance myography measured resistance (R), reactance (X) and phase angle (θ); (4) modified Asworth scale; (5) Fugl Meyer Upper limb scale. All outcome measures were recorded at baseline, immediately post rESW and at 1-week follow-up. The differences between the paretic and non-paretic side were assessed by t-test. The effectiveness of rESW treatment were analyzed by repeated-measures one-way analysis of variance (ANOVA) at different time points. Results: Twenty-seven participants completed the study. NC, EC, and VC of the Neuroflexor method, F and S from myotonometer were all significantly higher on the paretic side than those from the non-paretic side. R, X, and θ from electrical impedance were significantly lower on the paretic side than the non-paretic side. Immediately after rESW intervention, VC, F, and S were significantly reduced, and X was significantly increased. The clinical scores showed improvements immediate post rESW and at 1-week follow-up. Conclusions: The observed changes in upper limb muscle properties adds further support to the theory that both the neural and peripheral components play a role in muscle spasticity. ESW intervention may be more effective in addressing the peripheral component of spasticity in terms of muscle mechanical properties changes. The clinical management of post stroke spasticity should take into consideration of both the neural and non-neural factors in order to identify optimal intervention regime.

Keywords: extracorporeal shock ware therapy; muscle mechanical properties; neurorehabilitation; spasticity; stroke; upper extremities.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Leng, Lo, Hu, Bian, Xu, Shan, Huang and Li.

Figures

Figure 1
Figure 1
CONSORT flow diagram.
Figure 2
Figure 2
The apparatus for measurement and therapy adopted in the study. (A) NeuroFlexor; (B) Myotonometer; (C) Electrical impedance myography; (D) Extracorporeal shock wave therapy.
Figure 3
Figure 3
The comparisons of bilateral parameters for each measuring techniques. (A) NF components of wrist flexors (n = 27). (B) Parameter of flexor carpi radialis measured by Myotonometer (n = 27). (C) Parameter of flexor carpi radialis measured by EIM (n = 27). NF, NeuroFlexor; NC, Neural Component; EC, Elasticity Component; VC, Viscosity Component; S, Stiffness; F, Frequency; EIM, Electrical impedance myography; X, Reactance; R, Resistance. *P < 0.05; ** P < 0.001.
Figure 4
Figure 4
Correlation analyses between outcome measures. (A) Correlation between MAS and NC (n = 27). (B) Correlation between MAS and S (n = 27). (C) Correlation between MAS and muscle tone (n = 27). (D) Correlation between EC and F (n = 27). (E) Correlation between NC and X (n = 27). (F) Correlation between VC and phase angle θ (n = 27). NF, NeuroFlexor; NC, Neural Component; EC, Elasticity Component; VC, Viscosity Component; S, Stiffness; F, Frequency; EIM, Electrical impedance myography; X, Reactance; R, Resistance.
Figure 5
Figure 5
The typical resistant force trend curve in each measurement situation recorded by Neuroflexor in one stroke patient. Red trace represents the angle of wrist movement (from flexion to extension). Black dashed trace represents resistant force of paretic side, Blue trace represents resistant force of non-paretic side, pink trace represents resistant force immediately after ESW intervention of paretic side and green trace represents resistant force at 1 week later of paretic side.
Figure 6
Figure 6
Comparisons of each outcome measures before and after extracorporeal shock wave therapy. (A) MAS assessment. (B) Fugl-Meyer assessment. (C) Muscle stiffness measured by Myotonometer. (D) Muscle tone measured by Myotonometer. (E) VC measured by NF. (F) X measured by EIM. NF, NeuroFlexor; NC, Neural Component; EC, Elasticity Component; VC, Viscosity Component; S, Stiffness; F, Frequency; EIM, Electrical impedance myography; X, Reactance; R, Resistance. *P < 0.05; **P < 0.001.

References

    1. Aaron R., Esper G. J., Shiffman C. A., Bradonjic K., Lee K. S., Rutkove S. B. (2006). Effects of age on muscle as measured by electrical impedance myography. Physiol. Meas. 27, 953–959. 10.1088/0967-3334/27/10/002
    1. Amelio E., Manganotti P. (2010). Effect of shock wave stimulation on hypertonic plantar flexor muscles in patients with cerebral palsy: a placebo-controlled study. J. Rehabil. Med. 42, 339–343. 10.2340/16501977-0522
    1. Bae H., Lee J. M., Lee K. H. (2010). The effects of extracorporeal shock wave therapy on spasticity in chronic stroke patients. J. Korean Acad. Rehabil. Med. 34, 663–669.
    1. Bohannon R. W., Smith M. B. (1987). Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 67, 206–207. 10.1093/ptj/67.2.206
    1. Chuang L. L., Wu C. Y., Lin K. C. (2012). Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch. Phys. Med. Rehabil. 93, 532–540. 10.1016/j.apmr.2011.09.014
    1. Daliri S. S., Forogh B., Emami Razavi S. Z., Ahadi T., Madjlesi F., Ansari N. N. (2015). A single blind, clinical trial to investigate the effects of a single session extracorporeal shock wave therapy on wrist flexor spasticity after stroke. Neurorehabilitation 36, 67–72. 10.3233/NRE-141193
    1. De Bruin M., Van De Giessen M., Vroemen J. C., Veeger H. E., Maas M., Strackee S. D., et al. . (2014). Geometrical adaptation in ulna and radius of cerebral palsy patients: measures and consequences. Clin. Biomech. 29, 451–457. 10.1016/j.clinbiomech.2014.01.003
    1. Dietz V., Sinkjaer T. (2007). Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol. 6, 725–733. 10.1016/S1474-4422(07)70193-X
    1. Dymarek R., Halski T., Ptaszkowski K., Slupska L., Rosinczuk J., Taradaj J. (2014). Extracorporeal shock wave therapy as an adjunct wound treatment: a systematic review of the literature. Ostomy Wound Manage 60, 26–39.
    1. Dymarek R., Ptaszkowski K., Ptaszkowska L., Kowal M., Sopel M., Taradaj J., et al. . (2020). Shock waves as a treatment modality for spasticity reduction and recovery improvement in post-stroke adults - current evidence and qualitative systematic review. Clin. Interv. Aging 15, 9–28. 10.2147/CIA.S221032
    1. Dymarek R., Taradaj J., Rosińczuk J. (2016a). The effect of radial extracorporeal shock wave stimulation on upper limb spasticity in chronic stroke patients: a single-blind, randomized, placebo-controlled study. Ultrasound Med. Biol. 42, 1862–1875. 10.1016/j.ultrasmedbio.2016.03.006
    1. Dymarek R., Taradaj J., Rosińczuk J. (2016b). Extracorporeal shock wave stimulation as alternative treatment modality for wrist and fingers spasticity in poststroke patients: a prospective, open-label, preliminary clinical trial. Evid. Based Complement. Alternat. Med. 2016:4648101. 10.1155/2016/4648101
    1. Esper G. J., Shiffman C. A., Aaron R., Lee K. S., Rutkove S. B. (2006). Assessing neuromuscular disease with multifrequency electrical impedance myography. Muscle Nerve 34, 595–602. 10.1002/mus.20626
    1. Fleuren J. F., Voerman G. E., Erren-Wolters C. V., Snoek G. J., Rietman J. S., Hermens H. J., et al. . (2010). Stop using the Ashworth Scale for the assessment of spasticity. J. Neurol. Neurosurg. Psychiatry 81, 46–52. 10.1136/jnnp.2009.177071
    1. Gapeyeva H., Vain A. (2008). Methodological Guide: Principles of Applying Myoton in Physical Medicine and Rehabilitation. Tartu: Muomeetria Ltd.
    1. Garten H. (2013). M. flexor carpi radialis, in The Muscle Test Handbook, ed Garten H. (Munich: Churchill Livingstone; ), 72–73. 10.1016/B978-0-7020-3739-9.00036-5
    1. Gäverth J., Eliasson A. C., Kullander K., Borg J., Lindberg P. G., Forssberg H. (2014). Sensitivity of the NeuroFlexor method to measure change in spasticity after treatment with botulinum toxin A in wrist and finger muscles. J. Rehabil. Med. 46, 629–634. 10.2340/16501977-1824
    1. Gäverth J., Sandgren M., Lindberg P. G., Forssberg H., Eliasson A. C. (2013). Test-retest and inter-rater reliability of a method to measure wrist and finger spasticity. J. Rehabil. Med. 45, 630–636. 10.2340/16501977-1160
    1. Goertz O., Lauer H., Hirsch T., Ring A., Lehnhardt M., Langer S., et al. . (2012). Extracorporeal shock waves improve angiogenesis after full thickness burn. Burns 38, 1010–1018. 10.1016/j.burns.2012.02.018
    1. Guo J., Qian S., Wang Y., Xu A. (2019). Clinical study of combined mirror and extracorporeal shock wave therapy on upper limb spasticity in poststroke patients. Int. J. Rehabil. Res. 42, 31–35. 10.1097/MRR.0000000000000316
    1. Jia G., Ma J., Wang S., Wu D., Tan B., Yin Y., et al. . (2020). Long-term effects of extracorporeal shock wave therapy on poststroke spasticity: a meta-analysis of randomized controlled trials. J. Stroke Cerebrovasc. Dis. 29:104591. 10.1016/j.jstrokecerebrovasdis.2019.104591
    1. Kachmar O., Voloshyn T., Hordiyevych M. (2016). Changes in muscle spasticity in patients with cerebral palsy after spinal manipulation: case series. J. Chiropr. Med. 15, 299–304. 10.1016/j.jcm.2016.07.003
    1. Katoozian L., Tahan N., Zoghi M., Bakhshayesh B. (2018). The onset and frequency of spasticity after first ever stroke. J. Natl. Med. Assoc. 110, 547–552. 10.1016/j.jnma.2018.01.008
    1. Lee J. H., Kim S. G. (2015). Effects of extracorporeal shock wave therapy on functional recovery and neurotrophin-3 expression in the spinal cord after crushed sciatic nerve injury in rats. Ultrasound Med. Biol. 41, 790–796. 10.1016/j.ultrasmedbio.2014.10.015
    1. Leng Y., Wang Z., Bian R., Lo W. L. A., Xie X., Wang R., et al. . (2019). Alterations of elastic property of spastic muscle with its joint resistance evaluated from shear wave elastography and biomechanical model. Front. Neurol. 10:736. 10.3389/fneur.2019.00736
    1. Leonard C. T., Stephens J. U., Stroppel S. L. (2001). Assessing the spastic condition of individuals with upper motoneuron involvement: validity of the myotonometer. Arch. Phys. Med. Rehabil. 82, 1416–1420. 10.1053/apmr.2001.26070
    1. Leone J. A., Kukulka C. G. (1988). Effects of tendon pressure on alpha motoneuron excitability in patients with stroke. Phys. Ther. 68, 475–80. 10.1093/ptj/68.4.475
    1. Li J., Geisbush T. R., Rosen G. D., Lachey J., Mulivor A., Rutkove S. B. (2014). Electrical impedance myography for the in vivo and ex vivo assessment of muscular dystrophy (MDX) mouse muscle. Muscle Nerve 49, 829–35. 10.1002/mus.24086
    1. Li L., Tong K. Y., Hu X. (2007). The effect of poststroke impairments on brachialis muscle architecture as measured by ultrasound. Arch. Phys. Med. Rehabil. 88, 243–50. 10.1016/j.apmr.2006.11.013
    1. Li S., Francisco G. E. (2015). New insights into the pathophysiology of post-stroke spasticity. Front. Hum. Neurosci. 9:192. 10.3389/fnhum.2015.00192
    1. Li T. Y., Chang C. Y., Chou Y. C., Chen L. C., Chu H. Y., Chiang S. L., et al. . (2016). Effect of radial shock wave therapy on spasticity of the upper limb in patients with chronic stroke: a prospective, randomized, single blind, controlled trial. Medicine 95:e3544. 10.1097/MD.0000000000003544
    1. Li X., Li L., Shin H., Li S., Zhou P. (2017). Electrical impedance myography for evaluating paretic muscle changes after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 2113–2121. 10.1109/TNSRE.2017.2707403
    1. Lieber R. L., Runesson E., Einarsson F., Frid N. J. (2003). Inferior mechanical properties of spastic muscle bundles due to hypertrophic but compromised extracellular matrix material. Muscle Nerve 28, 464–471. 10.1002/mus.10446
    1. Lieber R. L., Steinman S., Barash I. A., Chambers H. (2004). Structural and functional changes in spastic skeletal muscle. Muscle Nerve 29, 615–627. 10.1002/mus.20059
    1. Lieber R. L., Ward S. R. (2013). Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. Am. J. Physiol. Cell Physiol. 305, C241–C252. 10.1152/ajpcell.00173.2013
    1. Lindberg P. G., Gäverth J., Islam M., Fagergren A., Borg J., Forssberg H. (2011). Validation of a new biomechanical model to measure muscle tone in spastic muscles. Neurorehabil. Neural Repair 25, 617–25. 10.1177/1545968311403494
    1. Link K. A., Koenig J. B., Silveira A., Plattner B. L., Lillie B. N. (2013). Effect of unfocused extracorporeal shock wave therapy on growth factor gene expression in wounds and intact skin of horses. Am. J. Vet. Res. 74, 324–32. 10.2460/ajvr.74.2.324
    1. Lo W. L. A., Li L. (2020). Chapter 12: Quantitative evaluation, in Intelligent Biomechatronics in Neurorehabilitation, ed Hu X. (London: Academic Press; ), 72–73. 10.1016/B978-0-12-814942-3.00012-X
    1. Lo W. L. A., Yu Q., Mao Y., Li W., Hu C., Li L. (2019). Lumbar muscles biomechanical characteristics in young people with chronic spinal pain. BMC Musculoskelet. Disord. 20:559. 10.1186/s12891-019-2935-z
    1. Lo W. L. A., Zhao J. L., Li L., Mao Y. R., Huang D. F. (2017). Relative and absolute interrater reliabilities of a hand-held myotonometer to quantify mechanical muscle properties in patients with acute stroke in an inpatient ward. Biomed. Res. Int. 2017:4294028. 10.1155/2017/4294028
    1. Lohse-Busch H., Marlinghaus E., Reime U. M., Wis U. (2014). Focused low-energy extracorporeal shock waves with distally symmetric polyneuropathy (DSPNP): a pilot study. Neurorehabilitation 35, 227–33. 10.3233/NRE-141116
    1. Luo Z., Lo W. L. A., Bian R., Wong S., Li L. (2019). Advanced quantitative estimation methods for spasticity: a literature review. J. Int. Med. Res. 48:300060519888425. 10.1177/0300060519888425
    1. Malhotra S., Pandyan A. D., Day C. R., Jones P. W., Hermens H. (2009). Spasticity, an impairment that is poorly defined and poorly measured. Clin. Rehabil. 23, 651–8. 10.1177/0269215508101747
    1. Malhotra S., Pandyan A. D., Rosewilliam S., Roffe C., Hermens H. (2011). Spasticity and contractures at the wrist after stroke: time course of development and their association with functional recovery of the upper limb. Clin. Rehabil. 25, 184–91. 10.1177/0269215510381620
    1. Manganotti P., Amelio E. (2005). Long-term effect of shock wave therapy on upper limb hypertonia in patients affected by stroke. Stroke 36, 1967–1971. 10.1161/01.STR.0000177880.06663.5c
    1. Manganotti P., Amelio E., Guerra C. (2012). Shock wave over hand muscles: a neurophysiological study on peripheral conduction nerves in normal subjects. Muscles Ligaments Tendons J. 2, 104–7.
    1. Marinelli L., Mori L., Solaro C., Uccelli A., Pelosin E., Curr A., et al. . (2015). Effect of radial shock wave therapy on pain and muscle hypertonia: a double-blind study in patients with multiple sclerosis. Mult. Scler. J. 21, 622–9. 10.1177/1352458514549566
    1. Metoki N., Sato Y., Satoh K., Okumura K., Iwamoto J. (2003). Muscular atrophy in the hemiplegic thigh in patients after stroke. Am. J. Phys. Med. Rehabil. 82, 862–5. 10.1097/01.PHM.0000091988.20916.EF
    1. Moon S. W., Kim J. H., Jung M. J., Son S., Lee J. H., Shin H., et al. . (2013). The effect of extracorporeal shock wave therapy on lower limb spasticity in subacute stroke patients. Ann. Rehabil. Med. 37, 461–70. 10.5535/arm.2013.37.4.461
    1. Notarnicola A., Covelli I., Maccagnano G., Marvulli R., Mastromauro L., Ianieri G., et al. . (2018). Extracorporeal shockwave therapy on muscle tissue: the effects on healthy athletes. J. Biol. Regul. Homeost. Agents 32, 185–193.
    1. Park S.-J., Cho K.-H., Kim S.-H. (2019). The immediate effect of interferential current therapy on muscle tone and stiffness in chronic stroke patients. J. Korean Soc. Phys. Med. 14, 1–5. 10.13066/kspm.2019.14.1.1
    1. Park S. K., Yang D. J., Uhm Y. H., Yoon J. H., Kim J. H. (2018). Effects of extracorporeal shock wave therapy on upper extremity muscle tone in chronic stroke patients. J. Phys. Ther. Sci. 30, 361–364. 10.1589/jpts.30.361
    1. Pennati G. V., Plantin J., Borg J., Lindberg P. G. (2016). Normative NeuroFlexor data for detection of spasticity after stroke: a cross-sectional study. J. Neuroeng. Rehabil. 13:30. 10.1186/s12984-016-0133-x
    1. Piehl-Aulin K., Laurent C., Engstr M-Laurent A., Hellstr M. S., Henriksson J. (1991). Hyaluronan in human skeletal muscle of lower extremity: concentration, distribution, and effect of exercise. J. Appl. Physiol. 71, 2493–2498. 10.1152/jappl.1991.71.6.2493
    1. Raghavan P., Lu Y., Mirchandani M., Stecco A. (2016). Human recombinant hyaluronidase injections for upper limb muscle stiffness in individuals with cerebral injury: a case series. EBioMedicine 9, 306–313. 10.1016/j.ebiom.2016.05.014
    1. Romeo P., Lavanga V., Pagani D., Sansone V. (2014). Extracorporeal shock wave therapy in musculoskeletal disorders: a review. Med. Princ. Pract. 23, 7–13. 10.1159/000355472
    1. Rutkove S. B., Aaron R., Shiffman C. A. (2002). Localized bioimpedance analysis in the evaluation of neuromuscular disease. Muscle Nerve 25, 390–7. 10.1002/mus.10048
    1. Rydahl S. J., Brouwer B. J. (2004). Ankle stiffness and tissue compliance in stroke survivors: a validation of Myotonometer measurements. Arch. Phys. Med. Rehabil. 85, 1631–1637. 10.1016/j.apmr.2004.01.026
    1. Santamato A., Micello M. F., Panza F., Fortunato F., Logroscino G., Picelli A., et al. . (2014). Extracorporeal shock wave therapy for the treatment of poststroke plantar-flexor muscles spasticity: a prospective open-label study. Top. Stroke Rehabil. 21(Suppl. 1), S17–S24. 10.1310/tsr21S1-S17
    1. Santamato A., Notarnicola A., Panza F., Ranieri M., Micello M. F., Manganotti P., et al. (2013). SBOTE study: extracorporeal shock wave therapy vs. electrical stimulation after botulinum toxin type a injection for post-stroke spasticity-a prospective randomized trial. Ultrasound Med. Biol. 39, 283–91. 10.1016/j.ultrasmedbio.2012.09.019
    1. Shiffman C. A., Aaron R., Amoss V., Therrien J., Coomler K. (1999). Resistivity and phase in localized BIA. Phys. Med. Biol. 44, 2409–2429. 10.1088/0031-9155/44/10/304
    1. Shiffman C. A., Rutkove S. B. (2013). Circuit modeling of the electrical impedance: I. Neuromusc. Dis. Physiol. Meas. 34, 203–21. 10.1088/0967-3334/34/2/203
    1. Sions J. M., Tyrell C. M., Knarr B. A., Jancosko A., Binder-Macleod S. A. (2012). Age- and stroke-related skeletal muscle changes: a review for the geriatric clinician. J. Geriatr. Phys. Ther. 35, 155–61. 10.1519/JPT.0b013e318236db92
    1. Sohn M. K., Cho K. H., Kim Y. J., Hwang S. L. (2011). Spasticity and electrophysiologic changes after extracorporeal shock wave therapy on gastrocnemius. Ann. Rehabil. Med. 35, 599–604. 10.5535/arm.2011.35.5.599
    1. Tarulli A. W., Chin A. B., Partida R. A., Rutkove S. B. (2006). Electrical impedance in bovine skeletal muscle as a model for the study of neuromuscular disease. Physiol. Meas. 27, 1269–1279. 10.1088/0967-3334/27/12/002
    1. Troncati F., Paci M., Myftari T., Lombardi B. (2013). Extracorporeal Shock Wave Therapy reduces upper limb spasticity and improves motricity in patients with chronic hemiplegia: a case series. Neurorehabilitation 33, 399–405. 10.3233/NRE-130970
    1. Wang R., Gäverth J., Herman P. A. (2018). Changes in the neural and non-neural related properties of the spastic wrist flexors after treatment with botulinum toxin A in post-stroke subjects: an optimization study. Front. Bioeng. Biotechnol. 6:73. 10.3389/fbioe.2018.00073
    1. Wang R., Herman P., Ekeberg Ö., Gäverth J., Fagergren A., Forssberg H. (2017). Neural and non-neural related properties in the spastic wrist flexors: an optimization study. Med. Eng. Phys. 47, 198–209. 10.1016/j.medengphy.2017.06.023
    1. Wu Y. T., Yu H. K., Chen L. R., Chang C. N., Chen Y. M., Hu G. C. (2018). Extracorporeal shock waves vs. botulinum toxin type A in the treatment of poststroke upper limb spasticity: a randomized noninferiority trial. Arch. Phys. Med. Rehabil. 99, 2143–2150. 10.1016/j.apmr.2018.05.035
    1. Yelnik A. P., Simon O., Parratte B., Gracies J. M. (2010). How to clinically assess and treat muscle overactivity in spastic paresis. J. Rehabil. Med. 42, 801–7. 10.2340/16501977-0613
    1. Zetterberg H., Frykberg G. E., Gäverth J., Lindberg P. G. (2015). Neural and nonneural contributions to wrist rigidity in Parkinson's disease: an explorative study using the NeuroFlexor. Biomed. Res. Int. 2015:276182. 10.1155/2015/276182
    1. Zong Y., Shin H. H., Wang Y. C., Li S., Zhou P., Li X. (2018). Assessing hand muscle structural modifications in chronic stroke. Front. Neurol. 9:296. 10.3389/fneur.2018.00296

Source: PubMed

3
Subscribe