Finding the Intersection of Neuroplasticity, Stroke Recovery, and Learning: Scope and Contributions to Stroke Rehabilitation

Leeanne Carey, Alistair Walsh, Achini Adikari, Peter Goodin, Damminda Alahakoon, Daswin De Silva, Kok-Leong Ong, Michael Nilsson, Lara Boyd, Leeanne Carey, Alistair Walsh, Achini Adikari, Peter Goodin, Damminda Alahakoon, Daswin De Silva, Kok-Leong Ong, Michael Nilsson, Lara Boyd

Abstract

Aim: Neural plastic changes are experience and learning dependent, yet exploiting this knowledge to enhance clinical outcomes after stroke is in its infancy. Our aim was to search the available evidence for the core concepts of neuroplasticity, stroke recovery, and learning; identify links between these concepts; and identify and review the themes that best characterise the intersection of these three concepts.

Methods: We developed a novel approach to identify the common research topics among the three areas: neuroplasticity, stroke recovery, and learning. A concept map was created a priori, and separate searches were conducted for each concept. The methodology involved three main phases: data collection and filtering, development of a clinical vocabulary, and the development of an automatic clinical text processing engine to aid the process and identify the unique and common topics. The common themes from the intersection of the three concepts were identified. These were then reviewed, with particular reference to the top 30 articles identified as intersecting these concepts.

Results: The search of the three concepts separately yielded 405,636 publications. Publications were filtered to include only human studies, generating 263,751 publications related to the concepts of neuroplasticity (n = 6,498), stroke recovery (n = 79,060), and learning (n = 178,193). A cluster concept map (network graph) was generated from the results; indicating the concept nodes, strength of link between nodes, and the intersection between all three concepts. We identified 23 common themes (topics) and the top 30 articles that best represent the intersecting themes. A time-linked pattern emerged.

Discussion and conclusions: Our novel approach developed for this review allowed the identification of the common themes/topics that intersect the concepts of neuroplasticity, stroke recovery, and learning. These may be synthesised to advance a neuroscience-informed approach to stroke rehabilitation. We also identified gaps in available literature using this approach. These may help guide future targeted research.

Figures

Figure 1
Figure 1
Concept map depicting the three main concepts and the potential associations between them.
Figure 2
Figure 2
The high-level process of the methodology.
Figure 3
Figure 3
Generated concept map using the automatic text processing engine—showing 3 main concepts (nodes), strength of link between nodes (number of publications), identification of common themes being discussed based on the proposed concept link map (encircled areas 1, 2, and 3), and topics (words) that help to characterise the concept and/or the links between them.
Figure 4
Figure 4
Generated comparison to demonstrate the evolution of topics over three selected time periods. The weight of the links is a representation of the quantity of publications.

References

    1. Cramer S. C., Sur M., Dobkin B. H., et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(6):1591–1609. doi: 10.1093/brain/awr039.
    1. Greenough W. T., Black J. E., Wallace C. S. Experience and brain development. Child Development. 1987;58(3):539–559. doi: 10.2307/1130197.
    1. Chang Y. Reorganization and plastic changes of the human brain associated with skill learning and expertise. Frontiers in Human Neuroscience. 2014;8:p. 35. doi: 10.3389/fnhum.2014.00035.
    1. Ungerleider L. G., Doyon J., Karni A. Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory. 2002;78(3):553–564.
    1. May A. Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Sciences. 2011;15(10):475–482. doi: 10.1016/j.tics.2011.08.002.
    1. Dancause N., Barbay S., Frost S. B., et al. Extensive cortical rewiring after brain injury. The Journal of Neuroscience. 2005;25(44):10167–10179. doi: 10.1523/JNEUROSCI.3256-05.2005.
    1. Holtmaat A., Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Reviews Neuroscience. 2009;10(9):647–658. doi: 10.1038/nrn2699.
    1. Janssen H., Bernhardt J., Collier J. M., et al. An enriched environment improves sensorimotor function post-ischemic stroke. Neurorehabilitation and Neural Repair. 2010;24(9):802–813. doi: 10.1177/1545968310372092.
    1. Nudo R. J. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. Journal of Rehabilitation Medicine. 2003;35:7–10. doi: 10.1080/16501960310010070.
    1. Nudo R. J. Postinfarct cortical plasticity and behavioral recovery. Stroke. 2007;38(2):840–845. doi: 10.1161/01.STR.0000247943.12887.d2.
    1. Murphy T. H., Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nature Reviews Neuroscience. 2009;10(12):861–872. doi: 10.1038/nrn2735.
    1. Pekna M., Pekny M., Nilsson M. Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke. 2012;43(10):2819–2828. doi: 10.1161/STROKEAHA.112.654228.
    1. Carey L. M., Seitz R. Functional neuroimaging in stroke recovery and neurorehabilitation: conceptual issues and perspectives. International Journal of Stroke. 2007;2(4):245–264. doi: 10.1111/j.1747-4949.2007.00164.x.
    1. Bernhardt J., Hayward K. S., Kwakkel G., et al. Agreed definitions and a shared vision for new standards in stroke recovery research: the stroke recovery and rehabilitation roundtable taskforce. Neurorehabilitation and Neural Repair. 2017;31(9):793–799. doi: 10.1177/1545968317732668.
    1. National Stroke Foundation. National Stroke Audit- Rehabilitation Services Report. Australia: Melbourne; 2016.
    1. van Vliet P., Carey L. M., Nilsson M. Targeting stroke treatment to the individual. International Journal of Stroke. 2012;7(6):480–481. doi: 10.1111/j.1747-4949.2012.00867.x.
    1. Cramer S. C., Riley J. D. Neuroplasticity and brain repair after stroke. Current Opinion in Neurology. 2008;21(1):76–82. doi: 10.1097/WCO.0b013e3282f36cb6.
    1. Nudo R. J. Recovery after damage to motor cortical areas. Current Opinion in Neurobiology. 1999;9(6):740–747. doi: 10.1016/S0959-4388(99)00027-6.
    1. Carey L. M. Stroke Rehabilitation: Insights from Neuroscience and Imaging. New York, NY, USA: Oxford University Press; 2012.
    1. Carey L. M. Loss of somatic sensation. In: Selzer M. E., Cohen L. G., Clarke S., Duncan P. W., editors. Textbook of Neural Repair and Rehabilitation. Cambridge, UK: Cambridge University Press; 2012.
    1. Skidmore E. R. Training to optimize learning after traumatic brain injury. Current Physical Medicine and Rehabilitation Reports. 2015;3(2):99–105. doi: 10.1007/s40141-015-0081-6.
    1. Carey L. M. Neuroplasticity and learning lead a new era in stroke rehabiliation. International Journal of Therapy and Rehabilitation. 2007;14(6):250–251. doi: 10.12968/ijtr.2007.14.6.23893.
    1. Carey L. M., Polatajko H. J., Baum C. M. Stroke rehabilitation: a learning perspective. In: Carey L. M., editor. Stroke Rehabiliation: Insights from Neuroscience and Imaging. New York, NY, USA: Oxford University Press; 2012. pp. 11–23.
    1. Feldman R., Sanger J. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. UK: Cambridge University Press; 2007.
    1. Collobert R., Weston J., Bottou L., Karlen M., Kavukcuoglu K., Kuksa P. Natural language processing (almost) from scratch. Journal of Machine Learning Research. 2011;12:2493–2537.
    1. Salton G., Yang C. S., Yu C. T. A theory of term importance in automatic text analysis. Journal of the American Society for Information Science. 1975;26(1):33–44. doi: 10.1002/asi.4630260106.
    1. National Center for Biotechnology Information. Entrez programming utilities help. 2010, .
    1. Liddy E. D. Encyclopedia of Library and Information Science. New York, NY, USA: Marcel Decker, Inc.; 2001. Natural language processing.
    1. Minnie D., Srinivasan S. Intelligent search engine algorithms on indexing and searching of text documents using text representation. 2011 International Conference on Recent Trends in Information Systems; December 2011; India Kolkata. pp. 121–125.
    1. Charalambous C. C., Helm E. E., Lau K. A., Morton S. M., Reisman D. S. The feasibility of an acute high-intensity exercise bout to promote locomotor learning after stroke. Topics in Stroke Rehabilitation. 2018;25(2):83–89. doi: 10.1080/10749357.2017.1399527.
    1. Fan J., Voisin J., Milot M. H., Higgins J., Boudrias M. H. Transcranial direct current stimulation over multiple days enhances motor performance of a grip task. Annals of Physical and Rehabilitation Medicine. 2017;60(5):329–333. doi: 10.1016/j.rehab.2017.07.001.
    1. van der Vliet R., Ribbers G. M., Vandermeeren Y., Frens M. A., Selles R. W. BDNF Val66Met but not transcranial direct current stimulation affects motor learning after stroke. Brain Stimulation. 2017;10(5):882–892. doi: 10.1016/j.brs.2017.07.004.
    1. Pearson-Fuhrhop K. M., Minton B., Acevedo D., Shahbaba B., Cramer S. C. Genetic variation in the human brain dopamine system influences motor learning and its modulation by L-Dopa. PLoS One. 2013;8(4, article e61197) doi: 10.1371/journal.pone.0061197.
    1. Horton J. C., Fahle M., Mulder T., Trauzettel-Klosinski S. Adaptation, perceptual learning, and plasticity of brain functions. Graefe's Archive for Clinical and Experimental Ophthalmology. 2017;255(3):435–447. doi: 10.1007/s00417-016-3580-y.
    1. Divya K. P., Menon R. N., Varma R. P., et al. Post-stroke cognitive impairment - a cross-sectional comparison study between mild cognitive impairment of vascular and non-vascular etiology. Journal of the Neurological Sciences. 2017;372:356–362. doi: 10.1016/j.jns.2016.10.031.
    1. Wadden K. P., De Asis K., Mang C. S., et al. Predicting motor sequence learning in individuals with chronic stroke. Neurorehabilitation and Neural Repair. 2017;31(1):95–104. doi: 10.1177/1545968316662526.
    1. Censor N., Buch E. R., Nader K., Cohen L. G. Altered human memory modification in the presence of normal consolidation. Cerebral Cortex. 2016;26(9):3828–3837. doi: 10.1093/cercor/bhv180.
    1. Siegel J. S., Ramsey L. E., Snyder A. Z., et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(30, article 10.1073/pnas.1521083113):E4367–E4376. doi: 10.1073/pnas.1521083113.
    1. Buma F. E., van Kordelaar J., Raemaekers M., van Wegen E. E. H., Ramsey N. F., Kwakkel G. Brain activation is related to smoothness of upper limb movements after stroke. Experimental Brain Research. 2016;234(7):2077–2089. doi: 10.1007/s00221-015-4538-8.
    1. Reinkensmeyer D. J., Burdet E., Casadio M., et al. Computational neurorehabilitation: modeling plasticity and learning to predict recovery. Journal of NeuroEngineering. 2016;13(1):p. 42. doi: 10.1186/s12984-016-0148-3.
    1. Soekadar S. R., Birbaumer N., Slutzky M. W., Cohen L. G. Brain–machine interfaces in neurorehabilitation of stroke. Neurobiology of Disease. 2015;83:172–179. doi: 10.1016/j.nbd.2014.11.025.
    1. Kitago T., Goldsmith J., Harran M., et al. Robotic therapy for chronic stroke: general recovery of impairment or improved task-specific skill? Journal of Neurophysiology. 2015;114(3):1885–1894. doi: 10.1152/jn.00336.2015.
    1. Lefebvre S., Dricot L., Laloux P., et al. Neural substrates underlying stimulation-enhanced motor skill learning after stroke. Brain. 2015;138(1):149–163. doi: 10.1093/brain/awu336.
    1. Winstein C., Lewthwaite R., Blanton S. R., Wolf L. B., Wishart L. Infusing motor learning research into neurorehabilitation practice: a historical perspective with case exemplar from the accelerated skill acquisition program. Journal of Neurologic Physical Therapy. 2014;38(3):190–200. doi: 10.1097/NPT.0000000000000046.
    1. Mang C. S., Campbell K. L., Ross C. J. D., Boyd L. A. Promoting neuroplasticity for motor rehabilitation after stroke: considering the effects of aerobic exercise and genetic variation on brain-derived neurotrophic factor. Physical Therapy. 2013;93(12):1707–1716. doi: 10.2522/ptj.20130053.
    1. Buma F., Kwakkel G., Ramsey N. Understanding upper limb recovery after stroke. Restorative Neurology and Neuroscience. 2013;31(6):707–722. doi: 10.3233/RNN-130332.
    1. Byl N., Roderick J., Mohamed O., et al. Effectiveness of sensory and motor rehabilitation of the upper limb following the principles of neuroplasticity: patients stable poststroke. Neurorehabilitation and Neural Repair. 2003;17(3):176–191. doi: 10.1177/0888439003257137.
    1. Bowden M. G., Woodbury M. L., Duncan P. W. Promoting neuroplasticity and recovery after stroke: future directions for rehabilitation clinical trials. Current Opinion in Neurology. 2013;26(1):37–42. doi: 10.1097/WCO.0b013e32835c5ba0.
    1. Albert S. J., Kesselring J. Neurorehabilitation of stroke. Journal of Neurology. 2012;259(5):817–832. doi: 10.1007/s00415-011-6247-y.
    1. Arya K. N., Pandian S., Verma R., Garg R. K. Movement therapy induced neural reorganization and motor recovery in stroke: a review. Journal of Bodywork and Movement Therapies. 2011;15(4):528–537. doi: 10.1016/j.jbmt.2011.01.023.
    1. Duret C. Contributions of robotic devices to upper limb poststroke rehabilitation. Revue Neurologique. 2010;166(5):486–493. doi: 10.1016/j.neurol.2009.10.004.
    1. Graham J. V., Eustace C., Brock K., Swain E., Irwin-Carruthers S. The Bobath concept in contemporary clinical practice. Topics in Stroke Rehabilitation. 2009;16(1):57–68. doi: 10.1310/tsr1601-57.
    1. Ween J. E. Functional imaging of stroke recovery: an ecological review from a neural network perspective with an emphasis on motor systems. Journal of Neuroimaging. 2008;18(3):227–236. doi: 10.1111/j.1552-6569.2007.00180.x.
    1. Ziemann U., Siebner H. R. Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimulation. 2008;1(1):60–66. doi: 10.1016/j.brs.2007.08.003.
    1. Daly J. J., Ruff R. L. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. ScientificWorldJournal. 2007;7:2031–2045. doi: 10.1100/tsw.2007.299.
    1. Hlustík P., Mayer M. Paretic hand in stroke: from motor cortical plasticity research to rehabilitation. Cognitive and Behavioral Neurology. 2006;19(1):34–40.
    1. Krakauer J. W. Motor learning: its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology. 2006;19(1):84–90. doi: 10.1097/.
    1. Forrester L. W., Wheaton L. A., Luft A. R. Exercise-mediated locomotor recovery and lower-limb neuroplasticity after stroke. Journal of Rehabilitation Research & Development. 2008;45(2):205–220. doi: 10.1682/JRRD.2007.02.0034.
    1. Winstein C. J., Merians A. S., Sullivan K. J. Motor learning after unilateral brain damage. Neuropsychologia. 1999;37(8):975–987. doi: 10.1016/s0028-3932(98)00145-6.
    1. Brodaty H., Withall A., Altendorf A., Sachdev P. S. Rates of depression at 3 and 15 months poststroke and their relationship with cognitive decline: the Sydney Stroke Study. American Journal of Geriatric Psychiatry. 2007;15(6):477–486. doi: 10.1097/JGP.0b013e3180590bca.
    1. Jolly T. A. D., Cooper P. S., Wan Ahmadul Badwi S. A., et al. Microstructural white matter changes mediate age-related cognitive decline on the Montreal Cogntiive Assessment (MoCA) Psychophysiology. 2016;53(2):258–267. doi: 10.1111/psyp.12565.
    1. Nudo R. J., Wise B. M., SiFuentes F., Milliken G. W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–1794. doi: 10.1126/science.272.5269.1791.
    1. Boyd L., Vidoni E., Wessel B. Motor learning after stroke: is skill acquisition a prerequisite for contralesional neuroplastic change? Neuroscience Letters. 2010;482(1):21–25. doi: 10.1016/j.neulet.2010.06.082.
    1. Carey L. M., Seitz R. J., Parsons M., et al. Beyond the lesion: neuroimaging foundations for post-stroke recovery. Future Neurology. 2013;8(5):507–527. doi: 10.2217/fnl.13.39.
    1. Boyd L. A., Hayward K. S., Ward N. S., et al. Biomarkers of stroke recovery: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Neurorehabilitation and Neural Repair. 2017;31(10-11):864–876. doi: 10.1177/1545968317732680.
    1. Carey J. R., Bhatt E., Nagpal A. Neuroplasticity promoted by task complexity. Exercise and sport sciences reviews. 2005;33(1):24–31.
    1. Ganguly K., Poo M. Activity-dependent neural plasticity from bench to bedside. Neuron. 2013;80(3):729–741. doi: 10.1016/j.neuron.2013.10.028.
    1. Seidler R. D. Neural correlates of motor learning, transfer of learning, and learning to learn. Exercise and Sport Sciences Reviews. 2010;38(1):3–9. doi: 10.1097/JES.0b013e3181c5cce7.
    1. Skidmore E. R., Dawson D. R., Butters M. A., et al. Strategy training shows promise for addressing disability in the first 6 months after stroke. Neurorehabilitation and Neural Repair. 2015;29(7):668–676. doi: 10.1177/1545968314562113.
    1. McEwen S., Polatajko H., Baum C., et al. Combined cognitive-strategy and task-specific training improve transfer to untrained activities in subacute stroke: an exploratory randomized controlled trial. Neurorehabilitation and Neural Repair. 2015;29(6):526–536. doi: 10.1177/1545968314558602.
    1. Carey L. M. Directions for stroke rehabilitation clinical practice and research. In: Carey L. M., editor. Stroke Rehabilitation: Insights from Neuroscience and Imaging. New York, NY, USA: Oxford University Press; 2012. pp. 240–249.
    1. Pollock A., St George B., Fenton M., Firkins L. Top ten research priorities relating to life after stroke. The Lancet Neurology. 2012;11(3):p. 209. doi: 10.1016/S1474-4422(12)70029-7.

Source: PubMed

3
Subscribe