Effectiveness of robot-assisted gait training in children with cerebral palsy: a bicenter, pragmatic, randomized, cross-over trial (PeLoGAIT)

C Ammann-Reiffer, C H G Bastiaenen, A D Meyer-Heim, H J A van Hedel, C Ammann-Reiffer, C H G Bastiaenen, A D Meyer-Heim, H J A van Hedel

Abstract

Background: Walking ability is a priority for many children with cerebral palsy (CP) and their parents when considering domains of importance regarding treatment interventions. Partial body-weight supported treadmill training has become an established therapeutic treatment approach to address this demand. Further, new robotic rehabilitation technologies have increasingly been implemented in the clinical setting to allow for longer training sessions with increased step repetitions while maintaining a consistent movement pattern. But the current evidence about its clinical effectiveness in pediatric rehabilitation is weak. The aim of this research project is therefore to investigate the effectiveness of robot-assisted gait training on improvements of functional gait parameters in children with cerebral palsy.

Methods/design: Children aged 6 to 18 years with bilateral spastic cerebral palsy who are able to walk at least 14 m with or without walking aids will be recruited in two pediatric therapy centers in Switzerland. Within a pragmatic cross-over design with randomized treatment sequences, they perform 5 weeks of robot-assisted gait training (three times per week with a maximum of 45 min walking time each) or a 5-week period of standard treatment, which is individually customized to the needs of the child and usually consists of 1-2 sessions of physiotherapy per week and additional hippotherapy, circuit training as well as occupational therapy as necessary. Both interventions take place in an outpatient setting. The percentage score of the dimension E of the Gross Motor Function Measure-88 (GMFM-88) as primary outcome as well as the dimension D of the GMFM-88, 6-minute and 10-meter walking tests as secondary outcomes are assessed before and at the end of each intervention period. Additionally, a 5-week follow-up assessment is scheduled for the children who are assigned to the standard treatment first. Treatment effects, period effects as well as follow-up effects are analyzed with paired analyses and independent test statistics are used to assess carry-over effects.

Discussion: Although robot-assisted gait training has become an established treatment option to address gait impairments, evidence for its effectiveness is vague. This pragmatic trial will provide important information on its effects under clinical outpatient conditions.

Trial registration: ClinicalTrials.gov: NCT00887848 . Registered 23 April 2009.

Keywords: Adolescent; Cerebral palsy; Child; Cross-over design; Randomized controlled trial; Robotics; Therapy; Walking.

Figures

Fig. 1
Fig. 1
Pediatric robot-assisted gait training with the Lokomat. The Lokomat automates gait therapy on a treadmill by two actuated leg orthoses, which can be individually adapted to the patient’s legs and attached with three cuffs, while the patient is secured by means of a counter system with a harness providing partial body-weight support
Fig. 2
Fig. 2
Overview of the outcome measures and the measurement time points per group. Abbreviations: RAGT: Robot-assisted gait training; GMFM-88: Gross Motor Function Measure-88; 10MWT: 10-m walking test; *on an optional basis
Fig. 3
Fig. 3
Overview of the study protocol and the statistical analyses. Abbreviations: CTC1: Baseline assessment in CTC-group; TC1: Baseline assessment in TC-group; CTC2: Intermediate assessment in CTC-group; TC2: Intermediate assessment in TC-group; CTC3: End assessment in CTC-group; TC3: End assessment in TC-group; CTC4: Follow-up assessment in CTC-group; ∆C1: Change during usual care in CTC-group; ∆C2: change during usual care in TC-group; ∆C3: Change during follow-up in CTC-group; ∆T1: Change during robot-assisted gait training in TC-group; ∆T2: Change during robot-assisted gait training in CTC-group

References

    1. Vargus-Adams JN, Martin LK. Domains of importance for parents, medical professionals and youth with cerebral palsy considering treatment outcomes. Child Care Health Dev. 2011;37(2):276–81. doi: 10.1111/j.1365-2214.2010.01121.x.
    1. Beveridge B, Feltracco D, Struyf J, Strauss E, Dang S, Phelan S et al. “You gotta try it all”: Parents’ Experiences with Robotic Gait Training for their Children with Cerebral Palsy. Phys Occup Ther Pediatr. 2015;35(4):327-41.
    1. Dickinson HO, Parkinson KN, Ravens-Sieberer U, Schirripa G, Thyen U, Arnaud C, et al. Self-reported quality of life of 8–12-year-old children with cerebral palsy: a cross-sectional European study. Lancet. 2007;369(9580):2171–8. doi: 10.1016/S0140-6736(07)61013-7.
    1. Dobkin BH. Clinical practice. Rehabilitation after stroke. N Engl J Med. 2005;352(16):1677–84. doi: 10.1056/NEJMcp043511.
    1. Johansson BB. Brain plasticity and stroke rehabilitation. The Willis lecture. Stroke. 2000;31(1):223–30. doi: 10.1161/01.STR.31.1.223.
    1. Barbeau H, Visintin M. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil. 2003;84(10):1458–65. doi: 10.1016/S0003-9993(03)00361-7.
    1. Kwakkel G, Kollen BJ, Wagenaar RC. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiatry. 2002;72(4):473–9.
    1. Moseley AM, Stark A, Cameron ID, Pollock A. Treadmill training and body weight support for walking after stroke. Cochrane Database Syst Rev. 2005;4:D002840.
    1. Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2013;94(11):2297–308. doi: 10.1016/j.apmr.2013.06.023.
    1. Ganesan M, Sathyaprabha TN, Pal PK, Gupta A. Partial Body weight support treadmill training in patients with Parkinson’s disease: Impact on gait and clinical manifestation. Arch Phys Med Rehabil. 2015;96(9):1557-65.
    1. Swinnen E, Beckwee D, Pinte D, Meeusen R, Baeyens JP, Kerckhofs E. Treadmill training in multiple sclerosis: can body weight support or robot assistance provide added value? a systematic review. Mult Scler Int. 2012;2012:240274.
    1. Schindl MR, Forstner C, Kern H, Hesse S. Treadmill training with partial body weight support in nonambulatory patients with cerebral palsy. Arch Phys Med Rehabil. 2000;81(3):301–6. doi: 10.1016/S0003-9993(00)90075-3.
    1. Dodd KJ, Foley S. Partial body-weight-supported treadmill training can improve walking in children with cerebral palsy: a clinical controlled trial. Dev Med Child Neurol. 2007;49(2):101–5. doi: 10.1111/j.1469-8749.2007.00101.x.
    1. Cherng RJ, Liu CF, Lau TW, Hong RB. Effect of treadmill training with body weight support on gait and gross motor function in children with spastic cerebral palsy. Am J Phys Med Rehabil. 2007;86(7):548–55. doi: 10.1097/PHM.0b013e31806dc302.
    1. Mattern-Baxter K, McNeil S, Mansoor JK. Effects of home-based locomotor treadmill training on gross motor function in young children with cerebral palsy: a quasi-randomized controlled trial. Arch Phys Med Rehabil. 2013;94(11):2061–7. doi: 10.1016/j.apmr.2013.05.012.
    1. Tefertiller C, Pharo B, Evans N, Winchester P. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev. 2011;48(4):387–416. doi: 10.1682/JRRD.2010.04.0055.
    1. Labruyere R, Gerber CN, Birrer-Brutsch K, Meyer-Heim A, van Hedel HJ. Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Res Dev Disabil. 2013;34(11):3906–15. doi: 10.1016/j.ridd.2013.07.031.
    1. Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.
    1. Hesse S, Schmidt H, Werner C, Bardeleben A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol. 2003;16(6):705–10. doi: 10.1097/00019052-200312000-00010.
    1. Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, Berweck S, Sennhauser FH, Colombo G, et al. Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 2007;49(12):900–6. doi: 10.1111/j.1469-8749.2007.00900.x.
    1. Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21(4):307–14. doi: 10.1177/1545968307300697.
    1. Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007;38(2):349–54. doi: 10.1161/01.STR.0000254607.48765.cb.
    1. Wirz M, Zemon DH, Rupp R, Scheel A, Colombo G, Dietz V, et al. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial. Arch Phys Med Rehabil. 2005;86(4):672–80. doi: 10.1016/j.apmr.2004.08.004.
    1. Borggraefe I, Klaiber M, Schuler T, Warken B, Schroeder SA, Heinen F, et al. Safety of robotic-assisted treadmill therapy in children and adolescents with gait impairment: a bi-centre survey. Dev Neurorehabil. 2010;13(2):114–9. doi: 10.3109/17518420903321767.
    1. Meyer-Heim A, Ammann-Reiffer C, Schmartz A, Schafer J, Sennhauser FH, Heinen F, et al. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch Dis Child. 2009;94(8):615–20. doi: 10.1136/adc.2008.145458.
    1. Borggraefe I, Meyer-Heim A, Kumar A, Schaefer JS, Berweck S, Heinen F. Improved gait parameters after robotic-assisted locomotor treadmill therapy in a 6-year-old child with cerebral palsy. Mov Disord. 2008;23(2):280–3. doi: 10.1002/mds.21802.
    1. Borggraefe I, Kiwull L, Schaefer JS, Koerte I, Blaschek A, Meyer-Heim A, et al. Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study. Eur J Phys Rehabil Med. 2010;46(2):125–31.
    1. Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann-Reiffer C, Knecht B, et al. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 2010;14(6):496–502. doi: 10.1016/j.ejpn.2010.01.002.
    1. Schroeder AS, Homburg M, Warken B, Auffermann H, Koerte I, Berweck S, et al. Prospective controlled cohort study to evaluate changes of function, activity and participation in patients with bilateral spastic cerebral palsy after Robot-enhanced repetitive treadmill therapy. Eur J Paediatr Neurol. 2014;18(4):502–10. doi: 10.1016/j.ejpn.2014.04.012.
    1. Druzbicki M, Rusek W, Snela S, Dudek J, Szczepanik M, Zak E, et al. Functional effects of robotic-assisted locomotor treadmill thearapy in children with cerebral palsy. J Rehabil Med. 2013;45(4):358–63. doi: 10.2340/16501977-1114.
    1. World Medical Association Declaration of Helsinki Ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–4. doi: 10.1001/jama.2013.281053.
    1. Boutron I, Moher D, Altman DG, Schulz KF, Ravaud P. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: explanation and elaboration. Ann Intern Med. 2008;148(4):295–309. doi: 10.7326/0003-4819-148-4-200802190-00008.
    1. Zwarenstein M, Treweek S, Gagnier JJ, Altman DG, Tunis S, Haynes B, et al. Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ. 2008;337:a2390. doi: 10.1136/bmj.a2390.
    1. Aurich-Schuler A, Warken B, Graser JV, Ulrich T, Borggraefe I, Heinen F, van Hedel HJA, Meyer-Heim AD. Practical recommendations for robot-assisted treadmill therapy (Lokomat) in children with cerebral palsy: Indications, goal setting, and clinical implementation within the WHO-ICF framework. Neuropediatrics. 2015;46(4):248–60. doi: 10.1055/s-0035-1550150.
    1. Russell DJ, Rosenbaum PL, Cadman DT, Gowland C, Hardy S, Jarvis S. The gross motor function measure: a means to evaluate the effects of physical therapy. Dev Med Child Neurol. 1989;31(3):341–52. doi: 10.1111/j.1469-8749.1989.tb04003.x.
    1. Ammann-Reiffer C, Bastiaenen CH, de Bie RA, van Hedel HJ. Measurement properties of gait-related outcomes in youth with neuromuscular diagnoses: a systematic review. Phys Ther. 2014;94(8):1067–82. doi: 10.2522/ptj.20130299.
    1. Franki I, Van den Broeck C, De Cat J, Molenaers G, Vanderstraeten G, Desloovere K. A study of whether video scoring is a reliable option for blinded scoring of the Gross Motor Function Measure-88. Clin Rehabil. 2015;29(8):809-15.
    1. Bjornson K, Graubert C, McLaughlin J. Test-retest reliability of the gross motor function measure in children with cerebral palsy. Pediatr Phys Ther. 2000;12(4):200–2. doi: 10.1097/00001577-200001240-00012.
    1. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. Am J Respir Crit Care Med. 2002;166(1):111-7.
    1. Fosang AL, Galea MP, McCoy AT, Reddihough DS, Story I. Measures of muscle and joint performance in the lower limb of children with cerebral palsy. Dev Med Child Neurol. 2003;45(10):664–70. doi: 10.1111/j.1469-8749.2003.tb00868.x.
    1. Hislop HJ, Montgomery J. Daniels’ and Worthinghams Muskeltests - Manuelle Untersuchungstechniken. 7. München: Urban und Fischer Verlag; 1999.
    1. Redekop S, Andrysek J, Wright V. Single-session reliability of discrete gait parameters in ambulatory children with cerebral palsy based on GMFCS level. Gait Posture. 2008;28(4):627–33. doi: 10.1016/j.gaitpost.2008.04.008.
    1. Wang HY, Yang YH. Evaluating the responsiveness of two versions of the gross motor function measure for children with cerebral palsy. Arch Phys Med Rehabil. 2006;87(1):51–6. doi: 10.1016/j.apmr.2005.08.117.
    1. Senn S. Cross-over Trials in Clinical Research. 2. Chichester: John Wiley & Sons Ltd.; 2002.
    1. Dziura JD, Post LA, Zhao Q, Fu Z, Peduzzi P. Strategies for dealing with missing data in clinical trials: from design to analysis. Yale J Biol Med. 2013;86(3):343–58.
    1. Thorpe KE, Zwarenstein M, Oxman AD, Treweek S, Furberg CD, Altman DG, et al. A pragmatic-explanatory continuum indicator summary (PRECIS): a tool to help trial designers. J Clin Epidemiol. 2009;62(5):464–75. doi: 10.1016/j.jclinepi.2008.12.011.

Source: PubMed

3
Subscribe