Association of anticoagulant use with clinical outcomes from crizotinib in ALK- and ROS1-rearranged advanced non-small cell lung cancers: A retrospective analysis of PROFILE 1001

Terry L Ng, David C C Tsui, Sherry Wang, Tiziana Usari, Tejas Patil, Keith Wilner, David R Camidge, Terry L Ng, David C C Tsui, Sherry Wang, Tiziana Usari, Tejas Patil, Keith Wilner, David R Camidge

Abstract

Background: ROS1- and ALK-rearranged advanced NSCLCs are associated with increased thromboembolic risk. We hypothesized that a prothrombotic phenotype offers an evolutionary advantage to subsets of these cancers. The impact of this phenotype could alter outcomes from targeted therapy.

Methods: In a retrospective analysis of ROS1- and ALK-rearranged NSCLCs treated with crizotinib in a phase 1 trial, we compared progression-free survival (PFS) and objective response rate (ORR) based on the history of anticoagulation use (a possible surrogate of thromboembolism) at baseline (within 90 days before study enrollment) or within 90 days of study treatment.

Results: Twelve out of 53 (22.6%) ROS1- and 39 out of 153 (25.5%) ALK-rearranged NSCLCs received anticoagulation before or during the trial. Most ROS1 and ALK patients on anticoagulation received low-molecular-weight heparin (75% and 64.1%, respectively). In the ROS1-rearranged group, the median PFS (95% CI) values were 5.1 (4.4-14.4) and 29.0 (16.5-48.8) months, and the ORR values were 41.7% (95% CI: 15.2 to 72.3) and 80.5% (95% CI: 65.1 to 91.2) among those with and without anticoagulation treatment, respectively. In the ALK-rearranged group, the median PFS (95% CI) was 7.1 (5.4-7.7) and 12.0 (9.4-18.3) months, and the ORR was 41% (95% CI: 25.6 to 57.9) and 74.3% (95% CI: 65.3 to 82.1) among those with and without anticoagulation, respectively.

Conclusions: Anticoagulation (as a potential surrogate of a prothrombotic subset) in ROS1- and ALK-rearranged NSCLCs may be associated with a lower PFS and ORR to crizotinib.

Clinicaltrial: gov: NCT00585195.

Keywords: ALK; ROS1; crizotinib; lung cancer; thromboembolism.

Conflict of interest statement

Dr. Ng reports grants from Takeda Oncology, personal fees from ARIAD, personal fees from Takeda Oncology, and personal fees from Boehringer Ingelheim, outside the submitted work. Dr. Tsui has nothing to disclose. Dr. Wang reports personal fees from Pfizer, outside the submitted work. Dr. Usari reports personal fees from Pfizer, outside the submitted work. Dr. Patil reports personal fees from Roche/Genentech, personal fees from AstraZeneca, personal fees from Guidepoint Global, personal fees from FCB Health, and personal fees from Aptitude Health, outside the submitted work. Dr. Wilner reports personal fees from Pfizer Inc, outside the submitted work. Dr. Camidge reports grants from Takeda Oncology, personal fees from Takeda Oncology, personal fees from Pfizer, and personal fees from Roche, outside the submitted work.

© 2022 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
Progression‐free survival in ROS1‐rearranged NSCLC based on anticoagulant use. Progression‐free survival in ALK‐rearranged NSCLC based on anticoagulant use

References

    1. Ng TL, Smith DE, Mushtaq R, et al. ROS1 gene rearrangements are associated with an elevated risk of peridiagnosis thromboembolic events. J Thorac Oncol. 2019;14(4):596‐605. doi:10.1016/j.jtho.2018.12.001
    1. Zer A, Moskovitz M, Hwang DM, et al. ALK‐rearranged non‐small‐cell lung cancer is associated with a high rate of venous thromboembolism. Clin Lung Cancer. 2017;18(2):156‐161. doi:10.1016/j.cllc.2016.10.007
    1. Zugazagoitia J, Biosca M, Oliveira J, et al. Incidence, predictors and prognostic significance of thromboembolic disease in patients with advanced ALK‐rearranged non‐small cell lung cancer. Eur Respir J. 2018;51(5):1702431 10.1183/13993003.02431-2017
    1. Al‐Samkari H, Leiva O, Dagogo‐Jack I, et al. Impact of ALK rearrangement on venous and arterial thrombotic risk in NSCLC. J Thorac Oncol. 2020;15(9):1497‐1506. doi:10.1016/j.jtho.2020.04.033
    1. Dou F, Zhang Y, Yi J, et al. Association of ALK rearrangement and risk of venous thromboembolism in patients with non‐small cell lung cancer: a prospective cohort study. Thromb Res. 2020;186:36‐41. doi:10.1016/j.thromres.2019.12.009
    1. Chiari R, Ricciuti B, Landi L, et al. ROS1‐rearranged non‐small‐cell lung cancer is associated with a high rate of venous thromboembolism: analysis from a phase II, prospective, multicenter, two‐arms trial (METROS). Clin Lung Cancer. 2020;21(1):15‐20. doi:10.1016/j.cllc.2019.06.012
    1. Alexander M, Pavlakis N, John T, et al. A multicenter study of thromboembolic events among patients diagnosed with ROS1‐rearranged non‐small cell lung cancer. Lung Cancer. 2020;142:34‐40. doi:10.1016/j.lungcan.2020.01.017
    1. Bellucci S, Michiels JJ. The role of JAK2 V617F mutation, spontaneous erythropoiesis and megakaryocytopoiesis, hypersensitive platelets, activated leukocytes, and endothelial cells in the etiology of thrombotic manifestations in polycythemia vera and essential thrombocythemia. Semin Thromb Hemost. 2006;32(4 Pt 2):381‐398. doi:10.1055/s-2006-942759
    1. Falanga A, Marchetti M, Vignoli A, et al. V617F JAK‐2 mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, and plasma hemostatic and inflammatory molecules. Exp Hematol. 2007;35(5):702‐711. doi:10.1016/j.exphem.2007.01.053
    1. Breen KA, Grimwade D, Hunt BJ. The pathogenesis and management of the coagulopathy of acute promyelocytic leukaemia. Br J Haematol. 2012;156(1):24‐36. doi:10.1111/j.1365-2141.2011.08922.x
    1. Rashidi A, Silverberg ML, Conkling PR, Fisher SI. Thrombosis in acute promyelocytic leukemia. Thromb Res. 2013;131(4):281‐289. doi:10.1016/j.thromres.2012.11.024
    1. Boccaccio C, Comoglio PM. Genetic link between cancer and thrombosis. J Clin Oncol. 2009;27(29):4827‐4833. doi:10.1200/JCO.2009.22.7199
    1. Rak J, Yu JL, Luyendyk J, Mackman N. Oncogenes, trousseau syndrome, and cancer‐related changes in the coagulome of mice and humans. Cancer Res. 2006;66(22):10643‐10646. doi:10.1158/0008-5472.CAN-06-2350
    1. Payne H, Ponomaryov T, Watson SP, Brill A. Mice with a deficiency in CLEC‐2 are protected against deep vein thrombosis. Blood. 2017;129(14):2013‐2020. doi:10.1182/blood-2016-09-742999
    1. Riedl J, Preusser M, Nazari PM, et al. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood. 2017;129(13):1831‐1839. doi:10.1182/blood-2016-06-720714
    1. Geddings JE, Hisada Y, Boulaftali Y, et al. Tissue factor‐positive tumor microvesicles activate platelets and enhance thrombosis in mice. J Thromb Haemost. 2016;14(1):153‐166. doi:10.1111/jth.13181
    1. Rak J, Milsom C, May L, Klement P, Yu J. Tissue factor in cancer and angiogenesis: the molecular link between genetic tumor progression, tumor neovascularization, and cancer coagulopathy. Semin Thromb Hemost. 2006;32(1):54‐70. doi:10.1055/s-2006-933341
    1. Zwicker JI, Liebman HA, Neuberg D, et al. Tumor‐derived tissue factor‐bearing microparticles are associated with venous thromboembolic events in malignancy. Clin Cancer Res. 2009;15(22):6830‐6840. doi:10.1158/1078-0432.CCR-09-0371
    1. Falanga A, Panova‐Noeva M, Russo L. Procoagulant mechanisms in tumour cells. Best Pract Res Clin Haematol. 2009;22(1):49‐60. doi:10.1016/j.beha.2008.12.009
    1. Camidge DR, Bang YJ, Kwak EL, et al. Activity and safety of crizotinib in patients with ALK‐positive non‐small‐cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012;13(10):1011‐1019. doi:10.1016/S1470-2045(12)70344-3
    1. Shaw AT, Riely GJ, Bang YJ, et al. Crizotinib in ROS1‐rearranged advanced non‐small‐cell lung cancer (NSCLC): updated results, including overall survival, from PROFILE 1001. Ann Oncol. 2019;30(7):1121‐1126. doi:10.1093/annonc/mdz131
    1. Kuderer NM, Ortel TL, Francis CW. Impact of venous thromboembolism and anticoagulation on cancer and cancer survival. J Clin Oncol. 2009;27(29):4902‐4911. doi:10.1200/JCO.2009.22.4584
    1. Snyder KM, Kessler CM. The pivotal role of thrombin in cancer biology and tumorigenesis. Semin Thromb Hemost. 2008;34(8):734‐741. doi:10.1055/s-0029-1145255
    1. Radjabi AR, Sawada K, Jagadeeswaran S, et al. Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase‐9 and beta1‐integrin on the cell surface. J Biol Chem. 2008;283(5):2822‐2834. doi:10.1074/jbc.M704855200
    1. Shi X, Gangadharan B, Brass LF, Ruf W, Mueller BM. Protease‐activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res. 2004;2(7):395‐402.
    1. Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin‐regulated dormant tumor phenotype. Cancer Cell. 2006;10(5):355‐362. doi:10.1016/j.ccr.2006.10.002
    1. Schaffner F, Ruf W. Tissue factor and protease‐activated receptor signaling in cancer. Semin Thromb Hemost. 2008;34(2):147‐153. doi:10.1055/s-2008-1079254
    1. Solomon BJ, Kim DW, Wu YL, et al. Final overall survival analysis from a study comparing first‐line Crizotinib versus chemotherapy in ALK‐mutation‐positive non‐small‐cell lung cancer. J Clin Oncol. 2018;36(22):2251‐2258. doi:10.1200/JCO.2017.77.4794
    1. Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK‐positive lung cancer. N Engl J Med. 2013;368(25):2385‐2394. doi:10.1056/NEJMoa1214886
    1. Lebeau B, Chastang C, Brechot JM, et al. Subcutaneous heparin treatment increases survival in small cell lung cancer. "Petites Cellules" group. Cancer. 1994;74(1):38‐45. doi:10.1002/1097-0142(19940701)74:1<38::aid-cncr2820740108>;2-e
    1. Altinbas M, Coskun HS, Er O, et al. A randomized clinical trial of combination chemotherapy with and without low‐molecular‐weight heparin in small cell lung cancer. J Thromb Haemost. 2004;2(8):1266‐1271. doi:10.1111/j.1538-7836.2004.00871.x
    1. Kuderer NM, Khorana AA, Lyman GH, Francis CW. A meta‐analysis and systematic review of the efficacy and safety of anticoagulants as cancer treatment: impact on survival and bleeding complications. Cancer. 2007;110(5):1149‐1161. doi:10.1002/cncr.22892

Source: PubMed

3
Subscribe