Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: a promising approach for uncovering early COVID-19 drug therapies

Georgia Ragia, Vangelis G Manolopoulos, Georgia Ragia, Vangelis G Manolopoulos

Abstract

Aim: The COVID-19 pandemic caused by infection with the novel coronavirus SARS-CoV-2 is urging the scientific community worldwide to intense efforts for identifying and developing effective drugs and pharmacologic strategies to treat the disease. Many of the drugs that are currently in (pre)clinical development are addressing late symptoms of the disease. This review focuses on potential pharmacologic intervention at an early stage of infection which could result in less-infected individuals and less cases with severe COVID-19 disease due to reduced virus entry into the cells.

Method: We scanned the literature for evidence on drugs that target the virus entry machinery into host cells and consist mainly of ACE2 and TMPRSS2, as well as other cellular molecules regulating ACE2 expression, such as ADAM-17 and calmodulin.

Results: Several drugs/drug classes have been identified. Most of them are already used clinically for other indications. They include recombinant soluble ACE2, indirect ACE2 modulators (angiotensin receptor blockers, calmodulin antagonists, selective oestrogen receptor modifiers), TMPRSS2 inhibitors (camostat mesylate, nafamostat mesylate, antiandrogens, inhaled corticosteroids) and ADAM-17 enhancers (5-fluorouracil).

Conclusion: Several agents have potential for prophylactic and therapeutic intervention at the early stages of SARS-CoV-2 infection and COVID-19 disease and they should be urgently investigated further in appropriate preclinical models and clinical studies.

Keywords: 5-fluorouracil; ACE2; ADAM-17; Angiotensin receptor blockers; Antiandrogens; COVID-19; Calmodulin antagonists; Camostat mesylate; Inhaled corticosteroids; Nafamostat mesylate; SARS-CoV-2; SERMs; TMPRSS2.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
The ACE2/TMPRSS2 pathway and its interaction with SARS-CoV-2. SARS-CoV-2 binds to membrane-bound ACE2 to enter the host cells. This interaction with ACE2 is mediated via the spike glycoprotein on SARS-CoV-2 surface. Spike protein priming is essential for entry of SARS-CoV-2 and relies upon TMPRSS2. The ectodomain of ACE2 can be shed by ADAM-17 generating the soluble form of ACE2 (sACE2). CALM interacts with ACE2 and inhibits shedding of its ectodomain. AR activation up-regulates TMPRSS2 expression, whereas ER activation potentially regulates ACE2 expression. Upregulation is represented by green. Potential up- or down-regulation is represented by orange. AR, androgen receptor; ACE2, angiotensin-converting enzyme 2; ADAM-17, disintegrin metalloproteinase 17; CALM, calmodulin; ERs, oestrogen receptors; sACE2, soluble ACE2; TMPRSS2, transmembrane protease, serine 2
Fig. 2
Fig. 2
COVID-19 early stage pharmacologic intervention targeting Sars-CoV-2 cell entry through the ACE2/TMPRSS2 pathway. Mechanisms of action of pharmacologic agents acting on the ACE2/TMPRSS2 pathway that could prevent Sars-CoV-2 entry to host cell are summarized. These agents include (i) directly acting agents such as hrsACE2 that imitates the soluble human enzyme ACE2; (ii) indirect ACE2 modulators including (a) ARBs that potentially block the binding and hence, attachment of SARS-CoV-2 to ACE2-expressing cells, (b) calmodulin antagonists that inhibit CALM-ACE2 interaction and increase the release of the ACE2 ectodomain, and (c) SERMs that potentially modulate ACE2 expression; (iii) TMPRSS2 inhibitors (camostat mesylate, nafamostat mesylate, antiandrogens, and potentially ICS if verified in different studies) that inhibit the S-mediated membrane fusion of SARS-CoV-2; and (iv) ADAM-17 enhancers (conjugated estrogens, 5-fluorouracil) that activate ADAM-17 and increase the release of the sACE2 through ACE2 ectodomain shedding. Upregulation is represented by green. Potential up- or down-regulation is represented by orange. Inhibition is represented by ⊣. AR, androgen receptor; ACE2, angiotensin-converting enzyme 2; ADAM-17, disintegrin metalloproteinase 17; ARBs, angiotensin receptor blockers; CALM, calmodulin; ERs, oestrogen receptors; ICS, inhaled corticosteroids; TMPRSS2, transmembrane protease, serine 2; SERMs, selective oestrogen receptor modulators; 5-FU, 5-fluorouracil

References

    1. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–454. doi: 10.1038/nature02145.
    1. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, Wong SK, Huang IC, Xu K, Vasilieva N, Murakami A, He Y, Marasco WA, Guan Y, Choe H, Farzan M. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24(8):1634–1643. doi: 10.1038/sj.emboj.7600640.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052.
    1. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB (2020) Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA. 10.1001/jama.2020.6019
    1. Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, Hooper NM, Turner AJ. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2) J Biol Chem. 2005;280(34):30113–30119. doi: 10.1074/jbc.M505111200.
    1. Lambert DW, Clarke NE, Hooper NM, Turner AJ. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain. FEBS Lett. 2008;582(2):385–390. doi: 10.1016/j.febslet.2007.11.085.
    1. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46(4):586–590. doi: 10.1007/s00134-020-05985-9.
    1. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pöhlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A. 2005;102(22):7988–7993. doi: 10.1073/pnas.0409465102.
    1. Haschke M, Schuster M, Poglitsch M, Loibner H, Salzberg M, Bruggisser M, Penninger J, Krähenbühl S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet. 2013;52(9):783–792. doi: 10.1007/s40262-013-0072-7.
    1. Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD, Hall R, Poirier G, Ronco JJ, Tidswell M, Hardes K, Powley WM, Wright TJ, Siederer SK, Fairman DA, Lipson DA, Bayliffe AI, Lazaar AL. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017;21(1):234. doi: 10.1186/s13054-017-1823-x.
    1. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, Romero JP, Wirnsberger G, Zhang H, Slutsky AS, Conder R, Montserrat N, Mirazimi A, Penninger JM. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell. 2020;S0092-8674(20):30399–30398. doi: 10.1016/j.cell.2020.04.004.
    1. Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturrate E, Johnson SB, Hausvater A, Newman JD, Berger JS, Bangalore S, Katz SD, Fishman GI, Kunichoff D, Chen Y, Ogedegbe G, Hochman JS. Renin-angiotensin-aldosterone system inhibitors and risk of Covid-19. N Engl J Med. 2020;382:2441–2448. doi: 10.1056/NEJMoa2008975.
    1. Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin-angiotensin-aldosterone system blockers and the risk of Covid-19. N Engl J Med. 2020;382:2431–2440. doi: 10.1056/NEJMoa2006923.
    1. Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular disease, drug therapy, and mortality in Covid-19. N Engl J Med. 2020;382:e102. doi: 10.1056/NEJMoa2007621.
    1. Yang G, Tan Z, Zhou L, Yang M, Peng L, Liu J, Cai J, Yang R, Han J, Huang Y, He S. Effects of ARBs and ACEIs on virus infection, inflammatory status and clinical outcomes in COVID-19 patients with hypertension: a single center retrospective study. Hypertension. 2020;76:51–58. doi: 10.1161/HYPERTENSIONAHA.120.15143.
    1. Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14. doi: 10.1038/s41421-020-0153-3.
    1. Kurtz TW, Pravenec M. Molecule-specific effects of angiotensin II-receptor blockers independent of the renin-angiotensin system. Am J Hypertens. 2008;21(8):852–859. doi: 10.1038/ajh.2008.202.
    1. Michel MC, Foster C, Brunner HR, Liu L. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev. 2013;65(2):809–848. doi: 10.1124/pr.112.007278.
    1. Soto-Vega E, Meza I, Ramírez-Rodríguez G, Benitez-King G. Melatonin stimulates calmodulin phosphorylation by protein kinase C. J Pineal Res. 2004;37(2):98–106. doi: 10.1111/j.1600-079X.2004.00141.x.
    1. Roufogalis BD. Calmodulin antagonism. In: Marmé D, editor. Calcium and cell physiology. Berlin, Heidelberg: Springer; 1985. pp. 148–169.
    1. Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, Liu C, Reiter RJ. COVID-19: melatonin as a potential adjuvant treatment. Life Sci. 2020;250:117583. doi: 10.1016/j.lfs.2020.117583.
    1. Lam HY. Tamoxifen is a calmodulin antagonist in the activation of cAMP phosphodiesterase. Biochem Biophys Res Commun. 1984;118(1):27–32. doi: 10.1016/0006-291x(84)91062-3.
    1. Butts A, Koselny K, Chabrier-Roselló Y, Semighini CP, Brown JC, Wang X, Annadurai S, DiDone L, Tabroff J, Childers WE, Jr, Abou-Gharbia M, Wellington M, Cardenas ME, Madhani HD, Heitman J, Krysan DJ. Estrogen receptor antagonists are anti-cryptococcal agents that directly bind EF hand proteins and synergize with fluconazole in vivo. mBio. 2014;5(1):e00765–e00713. doi: 10.1128/mBio.00765-13.
    1. Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, Johnson RF, Olinger GG, Jr, Jahrling PB, Laidlaw M, Johansen LM, Lear-Rooney CM, Glass PJ, Hensley LE, Frieman MB. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob Agents Chemother. 2014;58(8):4885–4893. doi: 10.1128/AAC.03036-14.
    1. Montoya MC, Krysan DJ. Repurposing estrogen receptor antagonists for the treatment of infectious disease. mBio. 2018;9(6):e02272–e02218. doi: 10.1128/mBio.02272-18.
    1. . Press release. EU-supported private-public consortium Exscalate4CoV: raloxifene proposed for clinical trials after tests show it inhibits SARS-CoV-2. . Accessed 3 July 2020
    1. Bukowska A, Spiller L, Wolke C, Lendeckel U, Weinert S, Hoffmann J, Bornfleth P, Kutschka I, Gardemann A, Isermann B, Goette A. Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Exp Biol Med (Maywood) 2017;242(14):1412–1423. doi: 10.1177/1535370217718808.
    1. Brosnihan KB, Hodgin JB, Smithies O, Maeda N, Gallagher P. Tissue-specific regulation of ACE/ACE2 and AT1/AT2 receptor gene expression by oestrogen in apolipoprotein E/oestrogen receptor-alpha knock-out mice. Exp Physiol. 2008;93(5):658–664. doi: 10.1113/expphysiol.2007.041806.
    1. Suba Z. Prevention and therapy of COVID-19 via exogenous estrogen treatment for both male and female patients. J Pharm Pharm Sci. 2020;23(1):75–85. doi: 10.18433/jpps31069.
    1. Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R, Jr, Nunneley JW, Barnard D, Pöhlmann S, McKerrow JH, Renslo AR, Simmons G. Protease inhibitors targeting coronavirus and filovirus entry. Antivir Res. 2015;116:76–84. doi: 10.1016/j.antiviral.2015.01.011.
    1. Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue JI, Matsuda Z. Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother. 2016;60(11):6532–6539. doi: 10.1128/AAC.01043-16.
    1. Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S (2020) Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother AAC.00754–20. 10.1128/AAC.00754-20
    1. Clinckemalie L, Spans L, Dubois V, Laurent M, Helsen C, Joniau S, Claessens F. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol Endocrinol. 2013;27(12):2028–2040. doi: 10.1210/me.2013-1098.
    1. Goren A, Vaño-Galván S, Wambier CG, McCoy J, Gomez-Zubiaur A, Moreno-Arrones OM, Shapiro J, Sinclair RD, Gold MH, Kovacevic M, Mesinkovska NA, Goldust M, Washenik K. A preliminary observation: male pattern hair loss among hospitalized COVID-19 patients in Spain - a potential clue to the role of androgens in COVID-19 severity. J Cosmet Dermatol. 2020;19:1545–1547. doi: 10.1111/jocd.13443.
    1. Montopoli M, Zumerle S, Vettor R, Rugge M, Zorzi M, Catapano CV, Carbone GM, Cavalli A, Pagano F, Ragazzi E, Prayer-Galetti T, Alimonti A (2020) Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (n=4532). Ann Oncol. 10.1016/j.annonc.2020.04.479
    1. Peters MC, Sajuthi S, Deford P, Christenson S, Rios CL, Montgomery MT, Woodruff PG, Mauger DT, Erzurum SC, Johansson MW, Denlinger LC, Jarjour NN, Castro M, Hastie AT, Moore W, Ortega VE, Bleecker ER, Wenzel SE, Israel E, Levy BD, Seibold MA, Fahy JV. COVID-19-related genes in sputum cells in asthma. Relationship to demographic features and corticosteroids. Am J Respir Crit Care Med. 2020;202(1):83–90. doi: 10.1164/rccm.202003-0821OC.
    1. Bradding P, Richardson M, Hinks TSC, Howarth PH, Choy DF, Arron JR, Wenzel SE, Siddiqui S. ACE2, TMPRSS2, and furin gene expression in the airways of people with asthma-implications for COVID-19. J Allergy Clin Immunol. 2020;S0091-6749(20):30730–30732. doi: 10.1016/j.jaci.2020.05.013.
    1. . Low-cost dexamethasone reduces death by up to one third in hospitalised patients with severe respiratory complications of COVID-19. , published on June 16, 2020. Accessed 3 July 2020
    1. Gooz M. ADAM-17: the enzyme that does it all. Crit Rev Biochem Mol Biol. 2010;45(2):146–169. doi: 10.3109/10409231003628015.
    1. Xu J, Mukerjee S, Silva-Alves CR, Carvalho-Galvão A, Cruz JC, Balarini CM, Braga VA, Lazartigues E, França-Silva MS. A disintegrin and metalloprotease 17 in the cardiovascular and central nervous systems. Front Physiol. 2016;7:469. doi: 10.3389/fphys.2016.00469.
    1. Ren J, Nie Y, Lv M, Shen S, Tang R, Xu Y, Hou Y, Zhao S, Wang T. Estrogen upregulates MICA/B expression in human non-small cell lung cancer through the regulation of ADAM17. Cell Mol Immunol. 2015;12(6):768–776. doi: 10.1038/cmi.2014.101.
    1. Kyula JN, Van Schaeybroeck S, Doherty J, Fenning CS, Longley DB, Johnston PG. Chemotherapy-induced activation of ADAM-17: a novel mechanism of drug resistance in colorectal cancer. Clin Cancer Res. 2010;16(13):3378–3389. doi: 10.1158/1078-0432.CCR-10-0014.

Source: PubMed

3
Subscribe