Development and validation of bioimpedance prediction equations for fat-free mass in unilateral male amputees

Hyuk-Jae Choi, Chang-Yong Ko, Yunhee Chang, Gyoo-Suk Kim, Kyungsik Choi, Chul-Hyun Kim, Hyuk-Jae Choi, Chang-Yong Ko, Yunhee Chang, Gyoo-Suk Kim, Kyungsik Choi, Chul-Hyun Kim

Abstract

Background: Metabolic disease due to increased fat mass is observed in amputees (APTs), thereby restricting their activity. Systemic health management with periodic body composition (BC) testing is essential for healthy living. Bioelectrical impedance analysis (BIA) is a non-invasive and low-cost method to test BC; however, the APTs are classified as being exempted in the BIA.

Objective: To develop segmental estimated regression equations (sEREs) for determining the fat-free mass (FFM, kg) suitable for APTs and improve the accuracy and validity of the sERE.

Methods: Seventy-five male APTs participated in this cross-sectional study. Multiple regression analysis was performed to develop highly accurate sEREs of BIA based on independent variables derived from anthropometric measurements, dual-energy X-ray absorptiometry (DXA), and BIA parameters. The difference in validity between the predicted DXA and sum of the segmentally-predicted FFM values by sEREs (Sum_sEREs) values was evaluated using bivariate linear regression analysis and the Bland-Altman plot.

Results: The coefficient of determination (R2 ) and total error (TE) between DXA and Sum_sEREs were 71% and 5.4 (kg) in the cross-validation analysis.

Conclusions: We confirmed the possibility of evaluating the FFM of APTs through the sEREs developed in this study. We also identified several independent variables that should be considered while developing such sEREs. Further studies are required to determine the validity of our sEREs and the most appropriate BIA frequencies for measuring FFM in APTs.

Keywords: Amputation; Body composition; Clinical diagnosis; Dual-energy X-ray absorptiometry; Estimated regression equation; Fat-free mass; Multiple regression analysis; Bioelectrical impedance analysis.

Conflict of interest statement

Chang-Yong Ko is employed by Department of Research & Development, Refind Inc. and Kyungsik Choi is employed by Healthmax company. The authors declare there are no competing interests.

©2021 Choi et al.

Figures

Figure 1. The testing postures and the…
Figure 1. The testing postures and the electrode placements.
(A) InBody S10 in the supine position [permitted from the manufacture] (B) Electrode placements of sound limbs (C) Electrode placements of residual limbs.
Figure 2. Bivariate linear regression for FFM…
Figure 2. Bivariate linear regression for FFM values obtained using DXA and sEREs.
FFM: fat-free mass (kg), sEREs: segmental estimated regression equations, TE: total error, r: validity coefficient, DXA: dual-energy X-ray absorptiometry.
Figure 3. Bland–Altman plot.
Figure 3. Bland–Altman plot.
Bias: mean of DXA-BIA value, ± 4.5(FFM) poor = “poor” standard for evaluating prediction errors, FFM: fat-free mass (kg), DXA: dual-energy X-ray absorptiometry, sEREs: segmental estimated regression equations.

References

    1. Achamrah N, Colange G, Delay J, Rimbert A, Folope V, Petit A, Grigioni S, Déchelotte P, Coëffier M. Comparison of body composition assessment by DXA and BIA according to the body mass index: a retrospective study on 3655 measures. PLOS ONE. 2018;13:e0200465. doi: 10.1371/journal.pone.0200465.
    1. Ainsworth BE, Stolarczyk LM, Heyward VH, Berry CB, Irwin ML, Mussulman LM. Predictive accuracy of bioimpedance in estimating fat-free mass of African-American women. Medicine and Science in Sports and Exercise. 1997;29:781–787. doi: 10.1097/00005768-199706000-00008.
    1. Beattie P, Isaacson K, Riddle DL, Rothstein JM. Validity of derived measurements of leg-length differences obtained by use of a tape measure. Physical Therapy. 1990;70:150–157. doi: 10.1093/ptj/70.3.150.
    1. Beaudart C, Bruyère O, Geerinck A, Hajaoui M, Scafoglieri A, Perkisas S, Bautmans I, Gielen E, Reginster JY, Buckinx F. Equation models developed with bioelectric impedance analysis tools to assess muscle mass: a systematic review. Clinical Nutrition ESPEN. 2020;35:47–62. doi: 10.1016/j.clnesp.2019.09.012.
    1. Brantlov S, Ward LC, Jødal L, Rittig S, Lange A. Critical factors and their impact on bioelectrical impedance analysis in children: a review. Journal of Medical Engineering and Technology. 2017;41:22–35. doi: 10.1080/03091902.2016.1209590.
    1. Buckinx F, Landi F, Cesari M, Fielding RA, Visser M, Engelke K, Maggi S, Dennison E, Al-Daghri NM, Allepaerts S, Bauer J, Bautmans I, Brandi ML, Bruyère O, Cederholm T, Cerreta F, Cherubini A, Cooper C, Cruz-Jentoft A, McCloskey E, Dawson-Hughes B, Kaufman JM, Laslop A, Petermans J, Reginster JY, Rizzoli R, Robinson S, Rolland Y, Rueda R, Vellas B, Kanis JA. Pitfalls in the measurement of muscle mass: a need for a reference standard. Journal of Cachexia, Sarcopenia and Muscle. 2018;9:269–278. doi: 10.1002/jcsm.12268.
    1. Buckinx F, Reginster JY, Dardenne N, Croisiser JL, Kaux JF, Beaudart C, Slomian J, Bruyère O. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study. BMC Musculoskeletal Disorders. 2015;16:60. doi: 10.1186/s12891-015-0510-9.
    1. Bukowski EL. Atlas of amputations and limb deficiencies: surgical, prosthetic, and rehabilitation principles, ed 3. Physical Therapy. 2006;86:595–596. doi: 10.1093/ptj/86.4.595.
    1. Campa F, Toselli S. Bioimpedance vector analysis of elite, subelite, and low-level male volleyball players. International Journal of Sports Physiology and Performance. 2018;13:1250–1253. doi: 10.1123/ijspp.2018-0039.
    1. Centomo H, Amarantini D, Martin L, Prince F. Differences in the coordination of agonist and antagonist muscle groups in below-knee amputee and able-bodied children during dynamic exercise. Journal of Electromyography & Kinesiology. 2008;18:487–494. doi: 10.1016/j.jelekin.2006.11.008.
    1. Charatsi AM, Dusser P, Freund R, Maruani G, Rossin H, Boulier A, Le Bourgeois M, Chedevergne F, De Blic J, Letourneur A, Casimir G, Jais JP, Sermet-Gaudelus I. Bioelectrical impedance in young patients with cystic fibrosis: validation of a specific equation and clinical relevance. Journal of Cystic Fibrosis. 2016;15:825–833. doi: 10.1016/j.jcf.2016.05.004.
    1. Chin T, Sawamura S, Fujita H, Nakajima S, Oyabu H, Nagakura Y, Ojima I, Otsuka H, Nakagawa A. Physical fitness of lower limb amputees. American Journal of Physical Medicine & Rehabilitation. 2002;81:321–325. doi: 10.1097/00002060-200205000-00001.
    1. Coffey L, Gallagher P, Desmond D. Goal pursuit and goal adjustment as predictors of disability and quality of life among individuals with a lower limb amputation: a prospective study. Archives of Physical Medicine and Rehabilitation. 2014;95:244–252. doi: 10.1016/j.apmr.2013.08.011.
    1. Colica C, Di Renzo L, Gualtieri P, Romano L, Costade Miranda R, De Lorenzo A, Purificato I. Development and cross-validation of predictive equation for estimating total body lean in children. Annali Dell Istituto Superiore di Sanita. 2018;54:20–27. doi: 10.4415/ann_18_01_06.
    1. Dogan MH, Karadag B, Ozyigit T, Kayaoglu S, Ozturk AO, Altuntas Y. Correlations between sarcopenia and hypertensive target organ damage in a Turkish cohort. Acta Clinica Belgica. 2012;67:328–332. doi: 10.2143/ACB.67.5.2062685.
    1. Eckard CS, Pruziner AL, Sanchez AD, Andrews AM. Metabolic and body composition changes in first year following traumatic amputation. Journal of Rehabilitation Research and Development. 2015;52:553–562. doi: 10.1682/JRRD.2014.02.0044.
    1. Gallagher P, Allen D, Maclachlan M. Phantom limb pain and residual limb pain following lower limb amputation: a descriptive analysis. Disability and Rehabilitation. 2001;23:522–530. doi: 10.1080/09638280010029859.
    1. Guedes AD, Bianco B, Lipay MV, Callou EQ, Castro ML, Verreschi IT. A specific bioelectrical impedance equation to predict body composition in Turner’s syndrome. Arq Bras Endocrinol Metabol. 2010;54:24–29. doi: 10.1590/s0004-27302010000100005.
    1. Hackenberg L, Hierholzer E, Potzl W, Gotze C, Liljenqvist U. Rasterstereographic back shape analysis in idiopathic scoliosis after posterior correction and fusion. Clinical Biomechanics (Bristol, Avon) 2003;18:883–889.
    1. Hecht F, . Shiel WC. Webster’s new world medical dictionary. 3rd Edition. Hoboken: Wiley; 2003.
    1. Heymsfield S, Lohman T, Wang ZM, Going SB. Human body composition. 2nd edition Human Kinetics; Champaign: 2005.
    1. Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, Pierson Jr RN. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. American Journal of Clinical Nutrition. 1990;52:214–218. doi: 10.1093/ajcn/52.2.214.
    1. Heyward VH, Wagner DR. Applied body composition assessment. Human Kinetics; Leeds: 2004a.
    1. Heyward VH, Wagner DR. Applied body composition assessment. Human Kinetics; Champaign: 2004b.
    1. Holzer LA, Sevelda F, Fraberger G, Bluder O, Kickinger W, Holzer G. Body image and self-esteem in lower-limb amputees. PLOS ONE. 2014;9:e92943. doi: 10.1371/journal.pone.0092943.
    1. Isakov E, Burger H, Gregoric M, Marincek C. Stump length as related to atrophy and strength of the thigh muscles in trans-tibial amputees. Prosthetics and Orthotics International. 1996;20:96–100. doi: 10.3109/03093649609164425.
    1. Jamaluddin S, Sulaiman AR, Imran MK, Juhara H, Ezane MA, Nordin S. Reliability and accuracy of the tape measurement method with a nearest reading of 5 mm in the assessment of leg length discrepancy. Singapore Medical Journal. 2011;52:681–684.
    1. Janssen I, Heymsfield SB, Baumgartner RN, Ross R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. Journal of Applied Physiology. 2000;89:465–471. doi: 10.1152/jappl.2000.89.2.465.
    1. Janssen I, Heymsfield SB, Ross R. Application of simple anthropometry in the assessment of health risk: implications for the Canadian physical activity, fitness and lifestyle appraisal. Journal of Applied Physiology. 2002;27:396–414. doi: 10.1139/h02-021.
    1. Jeon KC, Kim SY, Jiang FL, Chung S, Ambegaonkar JP, Park JH, Kim YJ, Kim CH. Prediction equations of the multifrequency standing and supine bioimpedance for appendicular skeletal muscle mass in Korean older people. International Journal of Environmental Research and Public Health. 2020;17:5847. doi: 10.3390/ijerph17165847.
    1. Kafri MW, Potter JF, Myint PK. Multi-frequency bioelectrical impedance analysis for assessing fat mass and fat-free mass in stroke or transient ischaemic attack patients. European Journal of Clinical Nutrition. 2014;68:677–682. doi: 10.1038/ejcn.2013.266.
    1. Kaysen GA, Zhu F, Sarkar S, Heymsfield SB, Wong J, Kaitwatcharachai C, Kuhlmann MK, Levin NW. Estimation of total-body and limb muscle mass in hemodialysis patients by using multifrequency bioimpedance spectroscopy. American Journal of Clinical Nutrition. 2005;82:988–995. doi: 10.1093/ajcn/82.5.988.
    1. Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors. 2014;14:10895–10928. doi: 10.3390/s140610895.
    1. Kopelman PG. Obesity as a medical problem. Nature. 2000;404:635–643. doi: 10.1038/35007508.
    1. Kriemler S, Puder J, Zahner L, Roth R, Braun-Fahrländer C, Bedogni G. Cross-validation of bioelectrical impedance analysis for the assessment of body composition in a representative sample of 6- to 13-year-old children. European Journal of Clinical Nutrition. 2009;63:619–626. doi: 10.1038/ejcn.2008.19.
    1. Kulkarni J, Adams J, Thomas E, Silman A. Association between amputation, arthritis and osteopenia in British male war veterans with major lower limb amputations. Clinical Rehabilitation. 1998;12:348–353. doi: 10.1191/026921598672393611.
    1. Kurdibaylo SF. Obesity and metabolic disorders in adults with lower limb amputation. Journal of Rehabilitation Research and Development. 1996;33:387–394.
    1. Kwak SG, Kim JH. Central limit theorem: the cornerstone of modern statistics. Korean Journal of Anesthesiology. 2017;70:144–156. doi: 10.4097/kjae.2017.70.2.144.
    1. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, Heitmann BLs, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AM, Pichard C. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clinical Nutrition. 2004d;23:1430–1453. doi: 10.1016/j.clnu.2004.09.012.
    1. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AM, Pichard C, Espen P. Bioelectrical impedance analysis-part II: utilization in clinical practice. Clinical Nutrition. 2004e;23:1430–1453. doi: 10.1016/j.clnu.2004.09.012.
    1. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AMWJ, Pichard C. Bioelectrical impedance analysis - Part I: review of principles and methods. Clinical Nutrition. 2004b;23:1226–1243. doi: 10.1016/j.clnu.2004.06.004.
    1. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AMWJ, Pichard C. Bioelectrical impedance analysis - Part II: utilization in clinical practice. Clinical Nutrition. 2004c;23:1430–1453. doi: 10.1016/j.clnu.2004.09.012.
    1. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AM, Pichard C, Compositionof the EWG Bioelectrical impedance analysis–part I: review of principles and methods. Clinical Nutrition. 2004a;23:1226–1243. doi: 10.1016/j.clnu.2004.06.004.
    1. Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C. Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition. 2001;17(00):248–253. doi: 10.1016/s0899-9007(00)00553-0.
    1. Lee SY, Ahn S, Kim YJ, Ji MJ, Kim KM, Choi SH, Jang HC, Lim S. Comparison between dual-energy x-ray absorptiometry and bioelectrical impedance analyses for accuracy in measuring whole body muscle mass and appendicular skeletal muscle mass. Nutrients. 2018;10:738. doi: 10.3390/nu10060738.
    1. Lee BJ, Cha HG, Lee WH. The effects of sitting with the right leg crossed on the trunk length and pelvic torsion of healthy individuals. Journal of Physical Therapy Science. 2016;28:3162–3164. doi: 10.1589/jpts.28.3162.
    1. Lee SY, Gallagher D. Assessment methods in human body composition. Current Opinion in Clinical Nutrition & Metabolic Care. 2008;11:566–572. doi: 10.1097/MCO.0b013e32830b5f23.
    1. Lieberman LS. Advances in body composition assessment, By Timothy G. Lohman. vii + 150 pp. Champaign, IL: Human Kinetics Publishers, 1992. $18.00 (paper) American Journal of Human Biology. 1993;5:593–593. doi: 10.1002/ajhb.1310050514.
    1. Lohman TG. Advances in body composition assessment. Human Kinetics; Champaign: 1992.
    1. Lukaski HC. Biological indexes considered in the derivation of the bioelectrical impedance analysis. American Journal of Clinical Nutrition. 1996;64:397s–404s. doi: 10.1093/ajcn/64.3.397S.
    1. Matusik E, Durmala J, Matusik P. Association of body composition with curve severity in children and adolescents with idiopathic scoliosis (IS) Nutrients. 2016;8:71. doi: 10.3390/nu8020071.
    1. Mialich MS, Sicchieri JMF, Junior AAJ. Analysis of body composition: a critical review of the use of bioelectrical impedance analysis. International Journal of Clinical Nutrition. 2014;2:1–10.
    1. Mishra SC, Chhatbar KC, Kashikar A, Mehndiratta A. Diabetic foot. Bmj. 2017;359:j5064. doi: 10.1136/bmj.j5064.
    1. Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutrition in Clinical Practice. 2015;30:180–193. doi: 10.1177/0884533614568155.
    1. Nalepa D, Czarkowska M, Zaluska W, Jakubowska K, Chrusciel P. Electrical bioimpedance in patients after ischemic stroke, a civilization disease. Annals of Agricultural and Environmental Medicine. 2019;26:46–50. doi: 10.26444/aaem/84849.
    1. Neelly K, Wallmann HW, Backus CJ. Validity of measuring leg length with a tape measure compared to a computed tomography scan. Physiotherapy: Theory and Practice. 2013;29:487–492. doi: 10.3109/09593985.2012.755589.
    1. Nguyen QD, Fusch G, Armbrust S, Jochum F, Fusch C. Impedance index or standard anthropometric measurements, which is the better variable for predicting fat-free mass in sick children? Acta Paediatrica. 2007;96:869–873. doi: 10.1111/j.1651-2227.2007.00272.x.
    1. O’Sullivan SB, Schmitz TJ, Fulk G, O’Sullivan SB. Physical Rehabilitation. Philadelphia: F.A. Davis; 2019.
    1. Piccoli A, Pastori G, Guizzo M, Rebeschini M, Naso A, Cascone C. Equivalence of information from single versus multiple frequency bioimpedance vector analysis in hemodialysis. Kidney International. 2005;67:301–313. doi: 10.1111/j.1523-1755.2005.00083.x.
    1. Rahman M, Berenson AB. Accuracy of current body mass index obesity classification for white, black, and Hispanic reproductive-age women. Obstetrics and Gynecology. 2010;115:982–988. doi: 10.1097/AOG.0b013e3181da9423.
    1. Renstrom P, Grimby G, Larsson E. Thigh muscle strength in below-knee amputees. Scandinavian Journal of Rehabilitation Medicine. 1983a;9:163–173.
    1. Renstrom P, Grimby G, Morelli B, Palmertz B. Thigh muscle atrophy in below-knee amputees. Scandinavian Journal of Rehabilitation Medicine. 1983b;9:150–162.
    1. Robbins CB, Vreeman DJ, Sothmann MS, Wilson SL, Oldridge NB. A review of the long-term health outcomes associated with war-related amputation. Military Medicine. 2009;174:588–592. doi: 10.7205/milmed-d-00-0608.
    1. Rosenberg DE, Turner AP, Littman AJ, Williams RM, Norvell DC, Hakimi KM, Czerniecki JM. Body mass index patterns following dysvascular lower extremity amputation. Disability and Rehabilitation. 2013;35:1269–1275. doi: 10.3109/09638288.2012.726690.
    1. Ross CA. Guidelines for measurement of amputation stump length. Bulletin of Prosthetics Research: 1972;6:7–82.
    1. Roubenoff R, Baumgartner RN, Harris TB, Dallal GE, Hannan MT, Economos CD, Stauber PM, Wilson PW, Kiel DP. Application of bioelectrical impedance analysis to elderly populations. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 1997;52:M129–136. doi: 10.1093/gerona/52a.3.m129.
    1. Sadeghi H, Allard P, Duhaime PM. Muscle power compensatory mechanisms in below-knee amputee gait. American Journal of Physical Medicine & Rehabilitation. 2001;80:25–32. doi: 10.1097/00002060-200101000-00007.
    1. Sang Gyu K, lt, sup, gt, lt, sup, gt, Sung-Hoon P, lt, sup, gt, lt, sup, gt Normality test in clinical research. Journal of Rheumatic Diseases. 2019;26:5–11. doi: 10.4078/jrd.2019.26.1.5.
    1. Sardinha LB, Correia IR, Magalhães JP, Júdice PB, Silva AM, Hetherington-Rauth M. Development and validation of BIA prediction equations of upper and lower limb lean soft tissue in athletes. European Journal of Clinical Nutrition. 2020;74:1646–1652. doi: 10.1038/s41430-020-0666-8.
    1. Sherk VD, Bemben MG, Bemben DA. Interlimb muscle and fat comparisons in persons with lower-limb amputation. Archives of Physical Medicine and Rehabilitation. 2010;91:1077–1081. doi: 10.1016/j.apmr.2010.04.008.
    1. Silveira EA, Barbosa LS, Rodrigues APS, Noll M, De Oliveira C. Body fat percentage assessment by skinfold equation, bioimpedance and densitometry in older adults. Archives of Public Health. 2020;78:1–9. doi: 10.1186/s13690-020-00449-4.
    1. Stolarczyk LM, Heyward VH, Hicks VL, Baumgartner RN. Predictive accuracy of bioelectrical impedance in estimating body composition of Native American women. American Journal of Clinical Nutrition. 1994;59:964–970. doi: 10.1093/ajcn/59.5.964.
    1. Stone PA, Flaherty SK, Aburahma AF, Hass SM, Jackson JM, Hayes JD, Hofeldt MJ, Hager CS, Elmore MS. Factors affecting perioperative mortality and wound-related complications following major lower extremity amputations. Annals of Vasular Surgery. 2006;20:209–216. doi: 10.1007/s10016-006-9009.
    1. Suk S, Bom PS, Do KS. Assessment of quality of life in lower limb amputees using short-Form 36. Annals of Rehabilitation Medicine. 2001;25:505–513.
    1. Tanaka NI, Miyatani M, Masuo Y, Fukunaga T, Kanehisa H. Applicability of a segmental bioelectrical impedance analysis for predicting the whole body skeletal muscle volume. Journal of Applied Physiology. 2007;103:1688–1695. doi: 10.1152/japplphysiol.00255.2007.
    1. Toselli S, Marini E, Latessa PMaietta, Benedetti L, Campa F. Maturity related differences in body composition assessed by classic and specific bioimpedance vector analysis among male elite youth soccer players. International Journal of Environmental Research and Public Health. 2020;17:739. doi: 10.3390/ijerph17030729.
    1. Ustun TB, Chatterji S, Bickenbach J, Kostanjsek N, Schneider M. The international classification of functioning, disability and health: a new tool for understanding disability and health. Disability and Rehabilitation. 2003;25:565–571. doi: 10.1080/0963828031000137063.
    1. Walter-Kroker A, Kroker A, Mattiucci-Guehlke M, Glaab T. A practical guide to bioelectrical impedance analysis using the example of chronic obstructive pulmonary disease. Nutrition Journal. 2011;10:1–8. doi: 10.1186/1475-2891-10-35.
    1. Ward LC. Bioelectrical impedance analysis for body composition assessment: reflections on accuracy, clinical utility, and standardisation. European Journal of Clinical Nutrition. 2019;73:194–199. doi: 10.1038/s41430-018-0335-3.
    1. Wickramasinghe VP, Lamabadusuriya SP, Cleghorn GJ, Davies PSW. Assessment of body composition in Sri Lankan children: validation of a bioelectrical impedance prediction equation. European Journal of Clinical Nutrition. 2008;62:1170–1177. doi: 10.1038/sj.ejcn.1602835.
    1. Woodrow G. Body composition analysis techniques in the aged adult: indications and limitations. Current Opinion in Clinical Nutrition & Metabolic Care. 2009;12:8–14. doi: 10.1097/MCO.0b013e32831b9c5b.
    1. Yoo C, Kim J, Yang Y, Lee J, Jeon G. Bioelectrical impedance analysis for severe stroke patients with upper extremity hemiplegia. Journal of Physical Therapy Science. 2016;28:2708–2712. doi: 10.1589/jpts.28.2708-2712.
    1. Yoo S. Complications following an amputation. Physical Medicine and Rehabilitation Clinics of North America. 2014;25:169–178. doi: 10.1016/j.pmr.2013.09.003.
    1. Zachariah SG, Saxena R, Fergason JR, Sanders JE. Shape and volume change in the transtibial residuum over the short term: preliminary investigation of six subjects. Journal of Rehabilitation Research and Development. 2004;41:683–694. doi: 10.1682/jrrd.2003.10.0153.
    1. Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Archives of Physical Medicine and Rehabilitation. 2008;89:422–429. doi: 10.1016/j.apmr.2007.11.005.

Source: PubMed

3
Subscribe