Clinical Experience Using a 3D-Printed Patient-Specific Instrument for Medial Opening Wedge High Tibial Osteotomy

Jesse Chieh-Szu Yang, Cheng-Fong Chen, Chu-An Luo, Ming-Chau Chang, Oscar K Lee, Ye Huang, Shang-Chih Lin, Jesse Chieh-Szu Yang, Cheng-Fong Chen, Chu-An Luo, Ming-Chau Chang, Oscar K Lee, Ye Huang, Shang-Chih Lin

Abstract

Purpose: High tibial osteotomy (HTO) has been adopted as an effective surgery for medial degeneration of the osteoarthritis (OA) knee. However, satisfactory outcomes necessitate the precise creation and distraction of osteotomized wedges and the use of intraoperative X-ray images to continually monitor the wedge-related manipulation. Thus HTO is highly technique-demanding and has a high radiation exposure. We report a patient-specific instrument (PSI) guide for the precise creation and distraction of HTO wedge.

Methods: This study first parameterized five HTO procedures to serve as a design rationale for an innovative PSI guide. Preoperative X-ray and computed tomography- (CT-) scanning images were used to design and fabricate PSI guides for clinical use. The weight-bearing line (WBL) of the ten patients was shifted to the Fujisawa's point and instrumented using the TomoFix system. The radiological results of the PSI-guided HTO surgery were evaluated by the WBL percentage and tibial slope.

Results: All patients consistently showed an increased range of motion and a decrease in pain and discomfort at about three-month follow-up. This study demonstrates the satisfactory accuracy of the WBL adjustment and tibial slope maintenance after HTO with PSI guide. For all patients, the average pre- and postoperative WBL are, respectively, 14.2% and 60.2%, while the tibial slopes are 9.9 and 10.1 degrees. The standard deviations are 2.78 and 0.36, respectively, in postoperative WBL and tibial slope. The relative errors of the pre- and postoperative WBL percentage and tibial slope averaged 4.9% and 4.1%, respectively.

Conclusion: Instead of using navigator systems, this study integrated 2D and 3D preoperative planning to create a PSI guide that could most likely render the outcomes close to the planning. The PSI guide is a precise procedure that is time-saving, radiation-reducing, and relatively easy to use. Precise osteotomy and good short-term results were achieved with the PSI guide.

Figures

Figure 1
Figure 1
Schematic diagrams of surgical parameters for HTO with a medial opening wedge. (a) Cutting position, lateral hinge, sawing direction, and sawing depth in the coronal plane. (b) 3D diagram of the lateral hinge and distraction angle. The symbols are defined in the content.
Figure 2
Figure 2
(a) Schematic diagram of the 2D preoperative planning for WBL percentage and distraction angle. (b) Fujisawa's point is adopted as a preplanning guide in the limb radiograph.
Figure 3
Figure 3
(a) Flow chart of the preoperative planning strategy. (b) Simulation of the biplanar cut. (c) Valgus correction of the 3D tibial model.
Figure 4
Figure 4
Schematic diagrams of (a) the PSI guide for medial opening wedge HTO and (b) intraoperative usage before and after distraction.
Figure 5
Figure 5
Intraoperative photograph with the PSI guide.
Figure 6
Figure 6
Postoperative photographs of a patient in standing and squatting positions three months after surgery.
Figure 7
Figure 7
Pre- and postoperative comparisons of (a) the WBL percentage, with the negative value indicating that the WBL passes outside medially of the entire joint, and (b) the tibial slope.
Figure 8
Figure 8
Pre- and postoperative data of ten HTO patients: (a) WBL percentage and (b) tibial slope.

References

    1. Ryohei T., Hiroyuki I., Masato A., Haruhiko B., Izumi S., Ken K. Medial opening wedge high tibial osteotomy with early full weight bearing. 2009;25:46–53.
    1. Spahn G. Complications in high tibial (medial opening wedge) osteotomy. 2004;124(10):649–653. doi: 10.1007/s00402-003-0588-7.
    1. Amis A. A. Biomechanics of high tibial osteotomy. 2013;21(1):197–205. doi: 10.1007/s00167-012-2122-3.
    1. Su C. L., Kwang A. J., Chang H. N., Soong H. J., Seung H. H. The short-term follow-up results of open wedge high tibial osteotomy with using an Aescula open wedge plate and an allogenic bone graft: the minimum 1-year follow-up results. 2010;2(1):47–54.
    1. Staubli A. E., Simoni C. D., Babst R., Lobenhoffer P. TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia – early results in 92 cases. 2003;34:55–62.
    1. Blecha L. D., Zambelli P. Y., Ramaniraka N. A., Bourban P. E., Manson J. A., Pioletti D. P. How plate positioning impacts the biomechanics of the open wedge tibial osteotomy: A finite element analysis. 2005;8:307–313.
    1. Floerkemeier S., Staubli A. E., Schroeter S., Goldhahn S., Lobenhoffer P. Outcome after high tibial open-wedge osteotomy: A retrospective evaluation of 533 patients. 2013;21(1):170–180. doi: 10.1007/s00167-012-2087-2.
    1. Bode G., von Heyden J., Pestka J., et al. Prospective 5-year survival rate data following open-wedge valgus high tibial osteotomy. 2015;23(7):1949–1955. doi: 10.1007/s00167-013-2762-y.
    1. Harris J. D., McNeilan R., Siston R. A., Flanigan D. C. Survival and clinical outcome of isolated high tibial osteotomy and combined biological knee reconstruction. 2013;20(3):154–161. doi: 10.1016/j.knee.2012.12.012.
    1. Ekhtiari S., Haldane C. E., de Sa D., Simunovic N., Musahl V., Ayeni O. R. Return to work and sport following high tibial osteotomy: a systematic review. 2016;98(18):1568–1577.
    1. Duivenvoorden T., van Diggele P., Reijman M., Bos P. K., van Egmond J., Bierma-Zeinstra S. M. A., et al. Adverse events and survival after closing- and opening-wedge high tibial osteotomy: a comparative study of 412 patients. 2017;25(3):895–901.
    1. Akamatsu Y., Mitsugi N., Mochida Y., et al. Navigated opening wedge high tibial osteotomy improves intraoperative correction angle compared with conventional method. 2012;20(3):586–593. doi: 10.1007/s00167-011-1616-8.
    1. Billings A., Scott D. F., Camargo M. P., Hofmann A. A. High tibial osteotomy with a calibrated osteotomy guide, rigid internal fixation, and early motion: Long-term follow-up. 2000;82(1):70–79. doi: 10.2106/00004623-200001000-00009.
    1. Jones L. D., Brown C. P., Jackson W., Monk A. P., Price A. J. Assessing accuracy requirements in high tibial osteotomy: a theoretical, computer-based model using AP radiographs. 2017;25(9):2952–2956.
    1. Lee Y. S., Moon G. H. Comparative analysis of osteotomy accuracy between the conventional and devised technique using a protective cutting system in medial open-wedge high tibial osteotomy. 2015;20(1):129–136. doi: 10.1007/s00776-014-0663-7.
    1. Kwun J. D., Kim H. J., Park J., Park I. H., Kyung H. S. Open wedge high tibial osteotomy using three-dimensional printed models: Experimental analysis using porcine bone. 2017;24(1):16–22.
    1. TomoFix medial high tibial plate surgical technique for medial high tibial osteotomies, .
    1. Noyes F. R., Goebel S. X., West J. Opening wedge tibial osteotomy: The 3-triangle method to correct axial alignment and tibial slope. 2005;33(3):378–387. doi: 10.1177/0363546504269034.
    1. Lee Y. S., Park S. J., Shin V. I., Lee J. H., Kim Y. H., Song E. K. Achievement of targeted posterior slope in the medial opening wedge high tibial osteotomy: A mathematical approach. 2010;38(3):583–593. doi: 10.1007/s10439-009-9860-5.
    1. Dexel J., Fritzsche H., Beyer F., Harman M. K., Lützner J. Open-wedge high tibial osteotomy: incidence of lateral cortex fractures and influence of fixation device on osteotomy healing. 2017;25(3):832–837. doi: 10.1007/s00167-015-3730-5.
    1. Hernigou P., Medevielle D., Debeyre J., Goutallier D. Proximal tibial osteotomy for osteoarthritis with varus deformity. A ten to thirteen-year follow-up study. 1987;69(3):332–354. doi: 10.2106/00004623-198769030-00005.
    1. Amendola A. Unicompartimental osteoarthritis in the active patient: the role of high tibial osteotomy. 2003;19(1):109–116.
    1. Kim S. J., Koh Y. G., Chun Y. M., Kim Y. C., Park Y. S., Sung C. H. Medial opening wedge high-tibial osteotomy using a kinematic navigation system versus a conventional method: a 1-year retrospective, comparative study. 2009;17(2):128–134.
    1. Stanley J. C., Robinson K. G., Devitt B. M., et al. Computer assisted alignment of opening wedge high tibial osteotomy provides limited improvement of radiographic outcomes compared to flouroscopic alignment. 2016;23(2):289–294. doi: 10.1016/j.knee.2015.12.006.
    1. Iorio R., Pagnottelli M., Vadalà A., et al. Open-wedge high tibial osteotomy: Comparison between manual and computer-assisted techniques. 2013;21(1):113–119. doi: 10.1007/s00167-011-1785-5.
    1. Reising K., Strohm P. C., Hauschild O., et al. Computer-assisted navigation for the intraoperative assessment of lower limb alignment in high tibial osteotomy can avoid outliers compared with the conventional technique. 2013;21(1):181–188. doi: 10.1007/s00167-012-2088-1.
    1. Raaijmaakers M., Gelaude F., De Smedt K., Clijmans T., Dille J., Mulier M. A custom-made guide-wire positioning device for hip surface replacement arthroplasty: description and first results. 2010;14(11):p. 161.
    1. Kunz M., Waldman S. D., Rudan J. F., Bardana D. D., Stewart A. J. Computer-assisted mosaic arthroplasty using patient-specific instrument guides. 2012;20(5):857–861. doi: 10.1007/s00167-011-1638-2.
    1. Lee Y. S., Lee M. C., Kang S. G., Elazab A., Oh W. S. Open-Wedge High Tibial Osteotomy Using a Protective Cutting System: Technical Advancement for the Accuracy of the Osteotomy and Avoiding Intraoperative Complications. 2016;5(1):e7–e10. doi: 10.1016/j.eats.2015.08.016.
    1. Jenny J. Y., Tavan A., Jenny G., Kehr P. Long-term survival rate of tibial osteotomies for valgus gonarthrosis. 1998;84(4):350–357.
    1. Miniaci A., Ballmer F. T., Ballmer P. M., Jakob R. P. Proximal tibial osteotomy. A new fixation device. 1989;(246):250–259.
    1. Luo C. A., Hua S. Y., Lin S. C., Chen C. M., Tseng C. S. Stress and stability comparison between different systems for high tibial osteotomies. 2013;14:p. 110.
    1. Gebhard F., Krettek C., Hüfner T., et al. Reliability of computer-assisted surgery as an intraoperative ruler in navigated high tibial osteotomy. 2011;131(3):297–302. doi: 10.1007/s00402-010-1145-9.
    1. Heijens E., Kornherr P., Meister C. The role of navigation in high tibial osteotomy: a study of 50 patients. 2009;32(10):40–43. doi: 10.3928/01477447-20090915-58.
    1. Picardo N. E., Khan W., Johnstone D. Computer-assisted navigation in high tibial osteotomy: a systematic review of the literature. 2012;6:305–312.
    1. Munier M., Donnez M., Ollivier M., et al. Can three-dimensional patient-specific cutting guides be used to achieve optimal correction for high tibial osteotomy? Pilot study. 2017;103(2):245–250.
    1. Ducat A., Sariali E., Lebel B., et al. Posterior tibial slope changes after opening- and closing-wedge high tibial osteotomy: A comparative prospective multicenter study. 2012;98(1):68–74. doi: 10.1016/j.otsr.2011.08.013.
    1. Mitchell E. L., Furey P. Prevention of radiation injury from medical imaging. 2011;53(1) Suppl 1:22S–27S. doi: 10.1016/j.jvs.2010.05.139.
    1. Biswas D., Bible J. E., Bohan M., Simpson A. K., Whang P. G., Grauer J. N. Radiation exposure from musculoskeletal computerized tomographic scans. 2009;91(8):1882–1889. doi: 10.2106/JBJS.H.01199.
    1. Victor J., Premanathan A. Virtual 3D planning and patient specific surgical guides for osteotomies around the knee: a feasibility and proof-of-concept study. 2013;95(11 Suppl A):153–158.

Source: PubMed

3
Subscribe