Effect of vitamin D supplementation on upper and lower limb muscle strength and muscle power in athletes: A meta-analysis

Lin Zhang, Minghui Quan, Zhen-Bo Cao, Lin Zhang, Minghui Quan, Zhen-Bo Cao

Abstract

Background: Vitamin D may play a role in skeletal muscle because of the discovery of VDR in skeletal muscle. However, vitamin D deficiency is a global problem, including athletes. Studies examining the effect of vitamin D supplementation on muscle function in athletes have inconsistent results. Therefore, we aimed to quantitatively summarize the evidence for the effect of vitamin D supplementation on skeletal muscle strength and explosive power of athletes using a meta-analysis.

Methods: PubMed, EMBASE, Cochrane Library, and Web of Science were searched for studies to identify randomized controlled trials or controlled trials meeting the inclusion criteria. By a meta-analysis, effect sizes (standardized mean differences, SMD) with 95% confidence intervals (CI) was calculated to compare reported outcomes across studies, I2 index was used to assessing heterogeneity, and heterogeneity factors were identified by regression analysis. The potential publication and sensitivity analyses were also assessed.

Results: Eight RCTs involving 284 athletes were included. The protocols used to evaluate the muscle strength of athletes were inconsistent across the included studies, and muscle explosive power was assessed via vertical jump tests. The results indicated that vitamin D supplementation had no impact on overall muscle strength outcomes (SMD 0.05, 95% CI: -0.39 to 0.48, p = 0.84). In subgroup analysis, vitamin D supplementation had an effect on lower-limb muscle strength (SMD 0.55, 95% CI:0.12 to 0.98, p = 0.01) but not upper-limb muscle strength (SMD -0.19, 95% CI:-0.73 to 0.36, p = 0.50) or muscle explosive power (SMD 0.05, 95% CI:-0.24 to 0.34, p = 0.73). Vitamin D supplementation was more effective for athletes trained indoors (SMD 0.48, 95% CI:0.06 to 0.90, p = 0.02).

Conclusions: Vitamin D supplementation positively affected lower limb muscle strength in athletes, but not upper limb muscle strength or muscle power. Different muscle groups and functions may respond differently to vitamin D supplementation. Additional studies should focus on determining the appropriate vitamin D supplementation methods and optimal serum 25(OH)D levels for athletes.

Registration: The protocol for our study is registered in the international prospective register of systematic reviews (PROSPERO registration number CRD42016045872).

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. PRISMA 2009 flow diagram for…
Fig 1. PRISMA 2009 flow diagram for the literature selection process.
Fig 2. Forest plot displaying the effect…
Fig 2. Forest plot displaying the effect of vitamin D supplementation on muscle strength and power.
(a) Effect of vitamin D supplementation on upper and lower limb muscle strength. (b) Effect of vitamin D supplementation on muscle power. SMD: standardized mean differences. 95% CI: 95% confidence interval. I2: I-squared test of heterogeneity. Bench press1 / Leg press 1: oral vitamin D3 20000 IU/week for 12 weeks. Bench press 2/ Leg press 2: oral vitamin D3 40000 IU/week for 12 weeks. ICQ: isokinetic concentric quadriceps peak torque. ICH: isokinetic concentric hamstring peak torque. Vertical jump1: oral vitamin D3 20000 IU/week for 12 weeks. Vertical jump2: oral vitamin D3 40000 IU/week for 12 weeks.

References

    1. Van MW, Hlobil H, Kemper HC. Incidence, severity, aetiology and prevention of sports injuries. A review of concepts. Sports Medicine. 1992;14(2):82 10.2165/00007256-199214020-00002
    1. Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42(2):311
    1. Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE. The Roles of Vitamin D in Skeletal Muscle: Form, Function, and Metabolism. Endocr Rev. 2013;34(1):33–83. 10.1210/er.2012-1012
    1. Hamilton B. Vitamin D and Athletic Performance: The Potential Role of Muscle. Asian J Sports Med. 2011;2(4):211–9. 10.5812/asjsm.34736.
    1. Ryan ZC, Craig TA, Folmes CD, Wang X, Lanza IR, Schaible NS, et al. 1alpha,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells. J Biol Chem. 2016;291(3):1514–28. 10.1074/jbc.M115.684399
    1. Sun X, Cao Z, Tanisawa k, Ito T, Oshima S, Higuchi M. 25(OH)D is associated with muscular strength in male adults. Med Sci Sports Exerc. 2014;46(5):475.
    1. Sinha A, Hollingsworth KG, Ball S, Cheetham T. Improving the vitamin D status of vitamin D deficient adults is associated with improved mitochondrial oxidative function in skeletal muscle. J Clin Endocrinol Metab. 2013;98(3):E509–13. 10.1210/jc.2012-3592 .
    1. Heidari B, Shirvani JS, Firouzjahi A, Heidari P, Hajian-Tilaki KO. Association between nonspecific skeletal pain and vitamin D deficiency. Int J Rheum Dis. 2010;13(4):340–6. 10.1111/j.1756-185X.2010.01561.x .
    1. Girgis CM. Vitamin D and muscle function in the elderly: the elixir of youth? Curr Opin Clin Nutr Metab Care. 2014;17(6):546–50. 10.1097/MCO.0000000000000104 .
    1. Visser M, Deeg DJ, Lips P, Longitudinal Aging Study A. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab. 2003;88(12):5766–72. 10.1210/jc.2003-030604 .
    1. Wagatsuma A, Sakuma K. Vitamin D signaling in myogenesis: potential for treatment of sarcopenia. Biomed Res Int. 2014:121–254. 10.1155/2014/121254
    1. Houston DK, Cesari M, Ferrucci L, Cherubini A, Maggio D, Bartali B, et al. Association between vitamin D status and physical performance: the InCHIANTI study. J Gerontol. 2007;62(4):440–6.
    1. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81. 10.1056/NEJMra070553 .
    1. Bouillon R. Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol. 2017;13(8):466–79. 10.1038/nrendo.2017.31 .
    1. Farrokhyar F, Tabasinejad R, Dao D, Peterson D, Ayeni OR, Hadioonzadeh R, et al. Prevalence of vitamin D inadequacy in athletes: a systematic-review and meta-analysis. Sports Med. 2015;45(3):365–78. 10.1007/s40279-014-0267-6 .
    1. Close GL, Russell J, Cobley JN, Owens DJ, Wilson G, Gregson W, et al. Assessment of vitamin D concentration in non-supplemented professional athletes and healthy adults during the winter months in the UK: implications for skeletal muscle function. J Sports Sci. 2013;31(4):344–53. 10.1080/02640414.2012.733822 .
    1. Close GL, Leckey J, Patterson M, Bradley W, Owens DJ, Fraser WD, et al. The effects of vitamin D(3) supplementation on serum total 25[OH]D concentration and physical performance: a randomised dose-response study. Br J Sports Med. 2013;47(11):692–6. 10.1136/bjsports-2012-091735 .
    1. Dahlquist DT, Dieter BP, Koehle MS. Plausible ergogenic effects of vitamin D on athletic performance and recovery. J Int Soc Sports Nutr 2015;12(1):1–12. 10.1186/s12970-014-0062-7
    1. Halliday TM, Peterson NJ, Thomas JJ, Kleppinger K, Hollis BW, Larson-Meyer DE. Vitamin D status relative to diet, lifestyle, injury, and illness in college athletes. Med Sci Sports Exerc. 2011;43(2):335–43. 10.1249/MSS.0b013e3181eb9d4d .
    1. Girgis CM, Baldock PA, Downes M. Vitamin D, muscle and bone: Integrating effects in development, aging and injury. Mol Cell Endocrinol. 2015;410:3–10. 10.1016/j.mce.2015.03.020 .
    1. Farrokhyar F, Sivakumar G, Savage K, Koziarz A, Jamshidi S, Ayeni OR, et al. Effects of Vitamin D Supplementation on Serum 25-Hydroxyvitamin D Concentrations and Physical Performance in Athletes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Sports Med. 2017. 10.1007/s40279-017-0749-4 .
    1. Chiang CM, Ismaeel A, Griffis RB, Weems S. Effects of Vitamin D Supplementation on Muscle Strength in Athletes: A Systematic Review. J Strength Cond Res. 2017;31(2):566–74. 10.1519/JSC.0000000000001518 .
    1. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Epidemiology Biostatistics & Public Health. 2009;6(4):e1–e34.
    1. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21. .
    1. Stockton KA, Mengersen K, Paratz JD, Kandiah D, Bennell KL. Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int. 2011;22(3):859–71. 10.1007/s00198-010-1407-y .
    1. Beaudart C, Buckinx F, Rabenda V, Gillain S, Cavalier E, Slomian J, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99(11):4336–45. 10.1210/jc.2014-1742 .
    1. Wang XQ, Pi YL, Chen PJ, Liu Y, Wang R, Li X, et al. Traditional Chinese Exercise for Cardiovascular Diseases: Systematic Review and Meta‐Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2016;5(3):e002562 10.1161/JAHA.115.002562
    1. Shanely RA, Nieman DC, Knab AM, Gillitt ND, Meaney MP, Jin F, et al. Influence of vitamin D mushroom powder supplementation on exercise-induced muscle damage in vitamin D insufficient high school athletes. J Sports Sci. 2014;32(7):670–9. 10.1080/02640414.2013.847279 .
    1. Dubnov-Raz G, Livne N, Raz R, Cohen AH, Constantini NW. Vitamin D Supplementation and Physical Performance in Adolescent Swimmers. Int J Sport Nutr Exerc Metab 2015;25(4):317–25. 10.1123/ijsnem.2014-0180
    1. Jastrzebska M, Kaczmarczyk M, Jastrzebski Z. Effect of Vitamin D Supplementation on Training Adaptation in Well-Trained Soccer Players. J Strength Cond Res. 2016;30(9):2648–55. 10.1519/JSC.0000000000001337 .
    1. Todd JJ, McSorley EM, Pourshahidi LK, Madigan SM, Laird E, Healy M, et al. Vitamin D3 supplementation using an oral spray solution resolves deficiency but has no effect on VO2 max in Gaelic footballers: results from a randomised, double-blind, placebo-controlled trial. Eur J Nutr. 2016:1–11. 10.1007/s00394-016-1202-4.
    1. Wyon MA, Wolman R, Nevill AM, Cloak R, Metsios GS, Gould D, et al. Acute Effects of Vitamin D3 Supplementation on Muscle Strength in Judoka Athletes: A Randomized Placebo-Controlled, Double-Blind Trial. Clin J Sport Med. 2016;26(4):279–84. 10.1097/JSM.0000000000000264 .
    1. Fairbairn KA, Ceelen IJ, Skeaff CM, Cameron CM, Perry TL. Vitamin D3 Supplementation Does Not Improve Sprint Performance in Professional Rugby Players: A Randomised, Placebo-Controlled Double Blind Intervention Study. Int J Sport Nutr Exerc Metab. 2017:1 .
    1. Tomlinson PB, Joseph C, Angioi M. Effects of vitamin D supplementation on upper and lower body muscle strength levels in healthy individuals. A systematic review with meta-analysis. J Sci Med Sport. 2015;18(5):575–80. 10.1016/j.jsams.2014.07.022 .
    1. Ceglia L. Vitamin D and skeletal muscle tissue and function. Mol Aspects Med. 2008;29(6):407–14. 10.1016/j.mam.2008.07.002 .
    1. Geusens P, Vandevyver C, Vanhoof J, Cassiman JJ, Boonen S, Raus J. Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. J Bone Miner Res. 1997;12(12):2082–8. 10.1359/jbmr.1997.12.12.2082 .
    1. Grundberg E, Brandstrom H, Ribom EL, Ljunggren O, Mallmin H, Kindmark A. Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women. Eur J Endocrinol. 2004;150(3):323–8. .
    1. Wang P, Ma LH, Wang HY, Zhang W, Tian Q, Cao DN, et al. Association between polymorphisms of vitamin D receptor gene ApaI, BsmI and TaqI and muscular strength in young Chinese women. International Journal of Sports Medicine. 2006;27(3):182–6. 10.1055/s-2005-865626
    1. Walsh S, Ludlow AT, Metter EJ, Ferrucci L, Roth SM. Replication study of the vitamin D receptor (VDR) genotype association with skeletal muscle traits and sarcopenia. Aging Clinical & Experimental Research. 2015:1–8.
    1. P G, C V, J V, al e. Quadriceps and grip strength are related to vitamin D receptor genotype in elderly nonobese women. Journal of Bone and Mineral Research. 1997;12(12):2082–8. 10.1359/jbmr.1997.12.12.2082
    1. Windelinckx A, De-Mars G, G, Aerssens J, Delecluse C, Lefevre J, Thomis M. Polymorphisms in the vitamin D receptor gene are associated with muscle strength in men and women. Osteoporosis International. 2007;18(9):1235–42. 10.1007/s00198-007-0374-4
    1. Girgis CM, Cha KM, Houweling PJ, Rao R, Mokbel N, Lin M, et al. Vitamin D Receptor Ablation and Vitamin D Deficiency Result in Reduced Grip Strength, Altered Muscle Fibers, and Increased Myostatin in Mice. Calcif Tissue Int. 2015;97(6):602–10. 10.1007/s00223-015-0054-x .
    1. Hamilton B. Vitamin D and human skeletal muscle. Scand J Med Sci Sports. 2010;20(2):182–90. 10.1111/j.1600-0838.2009.01016.x
    1. Al-Said YA, Al-Rached HS, Al-Qahtani HA, Jan MM. Severe proximal myopathy with remarkable recovery after vitamin D treatment. Can J Neurol Sci. 2009;36(3):336–9. .
    1. P F I. Electromyography in nutritional osteomalacic myopathy. J Neurol Neurosurg Psychiatry. 1976;39(7):686–93.
    1. Ceglia L, Niramitmahapanya S, da Silva Morais M, Rivas DA, Harris SS, Bischoff-Ferrari H, et al. A randomized study on the effect of vitamin D(3) supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. J Clin Endocrinol Metab. 2013;98(12):E1927–35. 10.1210/jc.2013-2820
    1. Cangussu LM, Nahas-Neto J, Orsatti CL, Bueloni-Dias FN, Nahas EA. Effect of vitamin D supplementation alone on muscle function in postmenopausal women: a randomized, double-blind, placebo-controlled clinical trial. Osteoporos Int. 2015;26(10):2413–21. 10.1007/s00198-015-3151-9 .
    1. Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2011;59(12):2291–300. 10.1111/j.1532-5415.2011.03733.x .
    1. Rosendahl-Riise H, Spielau U, Ranhoff AH, Gudbrandsen OA, Dierkes J. Vitamin D supplementation and its influence on muscle strength and mobility in community-dwelling older persons: a systematic review and meta-analysis. Journal of Human Nutrition & Dietetics the Official Journal of the British Dietetic Association. 2017;30(1):3–15.
    1. Rosendahl-Riise H, Spielau U, Ranhoff AH, Gudbrandsen OA, Dierkes J. Vitamin D supplementation and its influence on muscle strength and mobility in community-dwelling older persons: a systematic review and meta-analysis. J Hum Nutr Diet. 2017;30(1):3–15. PubMed Central PMCID: PMC5248635. 10.1111/jhn.12394
    1. Halloran BP, DeLuca HF. Appearance of the intestinal cytosolic receptor for 1,25-dihydroxyvitamin D3 during neonatal development in the rat. J Biol Chem. 1981;256(14):7338–42. .
    1. Dokoh S, Donaldson CA, Haussler MR. Influence of 1,25-dihydroxyvitamin D3 on cultured osteogenic sarcoma cells: correlation with the 1,25-dihydroxyvitamin D3 receptor. Cancer Res. 1984;44(5):2103–9. .
    1. Bischoff-Ferrari HA, Borchers M, Gudat F, Durmuller U, Stahelin HB, Dick W. Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res. 2004;19(2):265–9. 10.1359/jbmr.2004.19.2.265 .
    1. Schroeder ET, Singh A, Bhasin S, Storer TW, Azen C, Davidson T, et al. Effects of an oral androgen on muscle and metabolism in older, community-dwelling men. Am J Physiol Endocrinol Metab. 2003;284(1):E120–8. 10.1152/ajpendo.00363.2002 .
    1. Grimaldi AS, Parker BA, Capizzi JA, Clarkson PM, Pescatello LS, White MC, et al. 25(OH) vitamin D is associated with greater muscle strength in healthy men and women. Med Sci Sports Exerc. 2013;45(1):157–62. PubMed Central PMCID: PMC3544152. 10.1249/MSS.0b013e31826c9a78
    1. Ferrreira L, Gobbi S, Gobbi LT. An explanatory mechanism for the different decline in limb strength in older women. Arch Gerontol Geriatr. 2009;49(3):373–7. 10.1016/j.archger.2008.12.002 .
    1. Heaney RP, Holick MF. Why the IOM recommendations for vitamin D are deficient. J Bone Miner Res. 2011;26(3):455–7. 10.1002/jbmr.328 .
    1. Bischoff-Ferrari HA, Dawson-Hughes B, Orav EJ, Staehelin HB, Meyer OW, Theiler R, et al. Monthly High-Dose Vitamin D Treatment for the Prevention of Functional Decline: A Randomized Clinical Trial. Jama Internal Medicine. 2016;176(2):1.
    1. Koundourakis NE, Avgoustinaki PD, Malliaraki N, Margioris AN. Muscular effects of vitamin D in young athletes and non-athletes and in the elderly. Hormones. 2016;15(4):471–88. 10.14310/horm.2002.1705
    1. Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. 2010;303(18):1815–22. 10.1001/jama.2010.594 .
    1. Jorde R, Strand HM, Kjærgaard M, Sneve M, Grimnes G. Supplementation with High Doses of Vitamin D to Subjects without Vitamin D Deficiency May Have Negative Effects: Pooled Data from Four Intervention Trials in Tromso. 2015.
    1. Morton JP, Iqbal Z, Drust B, Burgess D, Close GL, Brukner PD. Seasonal variation in vitamin D status in professional soccer players of the English Premier League. Appl Physiol Nutr Metab. 2012;37(4):798–802. 10.1139/h2012-037 .
    1. Galan F, Ribas J, Sanchez-Martinez PM, Calero T, Sanchez AB, Munoz A. Serum 25-hydroxyvitamin D in early autumn to ensure vitamin D sufficiency in mid-winter in professional football players. Clin Nutr. 2012;31(1):132–6. 10.1016/j.clnu.2011.07.008 .
    1. Valtuena J, Dominguez D, Til L, Gonzalez-Gross M, Drobnic F. High prevalence of vitamin D insufficiency among elite Spanish athletes the importance of outdoor training adaptation. Nutr Hosp. 2014;30(1):124–31. 10.3305/nh.2014.30.1.7539 .
    1. Constantini NW, Arieli R, Chodick G, Dubnov-Raz G. High prevalence of vitamin D insufficiency in athletes and dancers. Clin J Sport Med. 2010;20(5):368–71. 10.1097/JSM.0b013e3181f207f2 .
    1. Sato Y, Iwamoto J, Kanoko T, Satoh K. Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis 2005;20(3):187–92. 10.1159/000087203
    1. Bean JF, Herman S, Kiely DK, Frey IC, Leveille SG, Fielding RA, et al. Increased Velocity Exercise Specific to Task (InVEST) training: a pilot study exploring effects on leg power, balance, and mobility in community-dwelling older women. J Am Geriatr Soc. 2004;52(5):799–804. 10.1111/j.1532-5415.2004.52222.x .
    1. Bartoszewska M, Kamboj M, Patel DR. Vitamin D, muscle function, and exercise performance. Pediatr Clin North Am. 2010;57(3):849–61. 10.1016/j.pcl.2010.03.008 .
    1. Verhagen AP, de Vet HC, de Bie RA, Kessels AG, Boers M, Bouter LM, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51(12):1235–41. .

Source: PubMed

3
Subscribe