Assessment of the safety of antimalarial drug use during early pregnancy (ASAP): protocol for a multicenter prospective cohort study in Burkina Faso, Kenya and Mozambique

Halidou Tinto, Esperança Sevene, Stephanie Dellicour, Gregory S Calip, Umberto d'Alessandro, Eusébio Macete, Seydou Nakanabo-Diallo, Adama Kazienga, Innocent Valea, Hermann Sorgho, Anifa Valá, Orvalho Augusto, Maria Ruperez, Clara Menendez, Peter Ouma, Meghna Desai, Feiko Ter Kuile, Andy Stergachis, Halidou Tinto, Esperança Sevene, Stephanie Dellicour, Gregory S Calip, Umberto d'Alessandro, Eusébio Macete, Seydou Nakanabo-Diallo, Adama Kazienga, Innocent Valea, Hermann Sorgho, Anifa Valá, Orvalho Augusto, Maria Ruperez, Clara Menendez, Peter Ouma, Meghna Desai, Feiko Ter Kuile, Andy Stergachis

Abstract

Background: A major unresolved safety concern for malaria case management is the use of artemisinin combination therapies (ACTs) in the first trimester of pregnancy. There is a need for human data to inform policy makers and treatment guidelines on the safety of artemisinin combination therapies (ACT) when used during early pregnancy.

Methods: The overall goal of this paper is to describe the methods and implementation of a study aimed at developing surveillance systems for identifying exposures to antimalarials during early pregnancy and for monitoring pregnancy outcomes using health and demographic surveillance platforms. This was a multi-center prospective observational cohort study involving women at health and demographic surveillance sites in three countries in Africa: Burkina Faso, Kenya and Mozambique [(ClinicalTrials.gov Identifier: NCT01232530)]. The study was designed to identify pregnant women with artemisinin exposure in the first trimester and compare them to: 1) pregnant women without malaria, 2) pregnant women treated for malaria, but exposed to other antimalarials, and 3) pregnant women with malaria and treated with artemisinins in the 2nd or 3rd trimesters from the same settings. Pregnant women were recruited through community-based surveys and attendance at health facilities, including antenatal care clinics and followed until delivery. Data from the three sites will be pooled for analysis at the end of the study. Results are forthcoming.

Discussion: Despite few limitations, the methods described here are relevant to the development of sustainable pharmacovigilance systems for drugs used by pregnant women in the tropics using health and demographic surveillance sites to prospectively ascertain drug safety in early pregnancy.

Trial registration: NCT01232530.

References

    1. . Accessed 28 May 2014.
    1. McGready R, Phyo AP, Rijken MJ, Tarning J, Lindegardh N, Hanpithakpon W, et al. Artesunate/dihydroartemisinin pharmacokinetics in acute falciparum malaria in pregnancy: Absorption, bioavailability, disposition and disease effects. Br J Clin Pharmacol. 2012;73:467–477. doi: 10.1111/j.1365-2125.2011.04103.x.
    1. Tarning J, Kloprogge F, Piola P, Dhorda M, Muwanga S, Turyakira E, et al. Population pharmacokinetics of Artemether and dihydroartemisinin in pregnant women with uncomplicated Plasmodium falciparum malaria in Uganda. Malar J. 2012;11:293. doi: 10.1186/1475-2875-11-293.
    1. Yartey JE. Malaria in pregnancy: Access to effective interventions in Africa. Int J Gynecol Obstet. 2006;94:364–373. doi: 10.1016/j.ijgo.2006.04.026.
    1. Muehlenbachs A, Nabasumba C, McGready R, Turyakira E, Tumwebaze B, Dhorda M, et al. Artemether-lumefantrine to treat malaria in pregnancy is associated with reduced placental haemozoin deposition compared to quinine in a randomized controlled trial. Malar J. 2012;11:150. doi: 10.1186/1475-2875-11-150.
    1. Finaurini S, Basilico N, Corbett Y, D’Alessandro S, Parapini S, Olliaro P, et al. Dihydroartemisinin inhibits the human erythroid cell differentiation by altering the cell cycle. Toxicology. 2012;300:57–66. doi: 10.1016/j.tox.2012.05.024.
    1. Li Q, Si Y, Xie L, Zhang J, Weina P. Severe embryolethality of artesunate related to pharmacokinetics following intravenous and intramuscular doses in pregnant rats. Birth Defects Res Part B - Dev Reprod Toxicol. 2009;86:385–393. doi: 10.1002/bdrb.20207.
    1. Clark RL, Brannen KC, Sanders JE, Hoberman AM. Artesunate and artelinic acid: Association of embryotoxicity, reticulocytopenia, and delayed stimulation of hematopoiesis in pregnant rats. Birth Defects Res Part B - Dev Reprod Toxicol. 2011;92:52–68. doi: 10.1002/bdrb.20282.
    1. White TEK, Clark RL. Sensitive periods for developmental toxicity of orally administered artesunate in the rat. Birth Defects Res Part B - Dev Reprod Toxicol. 2008;83:407–417. doi: 10.1002/bdrb.20157.
    1. Boareto AC, Müller JC, Lourenço EL, Lombardi N, Lourenço AC, Rabitto I, et al. Effects of the combined artesunate and mefloquine antimalarial drugs on rat embryos. Hum Exp Toxicol. 2013;32:930–941. doi: 10.1177/0960327113475678.
    1. Boareto AC, Müller JC, de Araujo SL, Lourenço AC, Lourenço EL, Gomes C, et al. Study on the developmental toxicity of combined artesunate and mefloquine antimalarial drugs on rats. Reprod Toxicol. 2012;34:658–664. doi: 10.1016/j.reprotox.2012.10.004.
    1. McGready R, Tan SO, Ashley EA, Pimanpanarak M, Viladpai-Nguen J, Phaiphun L, et al. A randomised controlled trial of artemether-lumefantrine versus artesunate for uncomplicated Plasmodium falciparum treatment in pregnancy. PLoS Med. 2008;5 doi: 10.1371/journal.pmed.0050253.
    1. Dellicour S, Hall S, Chandramohan D, Greenwood B. The safety of artemisinins during pregnancy: a pressing question. Malar J. 2007;6:15. doi: 10.1186/1475-2875-6-15.
    1. Nosten F, McGready R, d’Alessandro U, Bonell A, Verhoeff F, Menendez C, et al. Antimalarial drugs in pregnancy: a review. Curr Drug Saf. 2006;1:1–15. doi: 10.2174/157488606775252584.
    1. Ward SA, Sevene EJP, Hastings IM, Nosten F, McGready R. Antimalarial drugs and pregnancy: safety, pharmacokinetics, and pharmacovigilance. Lancet Infect Dis. 2007;7:136–144. doi: 10.1016/S1473-3099(07)70025-7.
    1. Manyando C, Kayentao K, D’Alessandro U, Okafor HU, Juma E, Hamed K. A systematic review of the safety and efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria during pregnancy. Malar J. 2012;11:141. doi: 10.1186/1475-2875-11-141.
    1. Adam I, Elhassan EM, Omer EM, Abdulla MA, Mahgoub HM, Adam GK. Safety of artemisinins during early pregnancy, assessed in 62 Sudanese women. Ann Trop Med Parasitol. 2009;103:205–210. doi: 10.1179/136485909X398285.
    1. Manyando C, Mkandawire R, Puma L, Sinkala M, Mpabalwani E, Njunju E, et al. Safety of artemether-lumefantrine in pregnant women with malaria: results of a prospective cohort study in Zambia. Malar J. 2010;9:249. doi: 10.1186/1475-2875-9-249.
    1. McGready R, Lee SJ, Wiladphaingern J, Ashley EA, Rijken MJ, Boel M, et al. Adverse effects of falciparum and vivax malaria and the safety of antimalarial treatment in early pregnancy: A population-based study. Lancet Infect Dis. 2012;12:388–396. doi: 10.1016/S1473-3099(11)70339-5.
    1. Rulisa S, Kaligirwa N, Agaba S, Karema C, Mens PF, de Vries PJ. Pharmacovigilance of artemether-lumefantrine in pregnant women followed until delivery in Rwanda. Malar J. 2012;11:225. doi: 10.1186/1475-2875-11-225.
    1. Sangaré LR, Weiss NS, Brentlinger PE, Richardson BA, Staedke SG, Kiwuwa MS, et al. Patterns of anti-malarial drug treatment among pregnant women in Uganda. Malar J. 2011;10:152. doi: 10.1186/1475-2875-10-152.
    1. Dellicour S, Brasseur P, Thorn P, Gaye O, Olliaro P, Badiane M, et al. Probabilistic record linkage for monitoring the safety of artemisinin-based combination therapy in the first trimester of pregnancy in Senegal. Drug Saf. 2013;36:505–513. doi: 10.1007/s40264-013-0059-1.
    1. White NJ, McGready RM, Nosten FH. New medicines for tropical diseases in pregnancy: Catch-22. PLoS Med. 2008;5 doi: 10.1371/journal.pmed.0050133.
    1. Dellicour S, Ter Kuile FO, Stergachis A. Pregnancy exposure registries for assessing antimalarial drug safety in pregnancy in malaria-endemic countries. PLoS Med. 2008;5 doi: 10.1371/journal.pmed.0050187.
    1. Odhiambo FO, Laserson KF, Sewe M, Hamel MJ, Feikin DR, Adazu K, et al. Profile: The KEMRI/CDC health and demographic surveillance system-Western Kenya. Int J Epidemiol. 2012;41:977–987. doi: 10.1093/ije/dys108.
    1. Ouma P, Van Eijk AM, Hamel MJ, Parise M, Ayisi JG, Otieno K, et al. Malaria and anaemia among pregnant women at first antenatal clinic visit in Kisumu, western Kenya. Trop Med Int Heal. 2007;12:1515–1523. doi: 10.1111/j.1365-3156.2007.01960.x.
    1. Feikin DR, Audi A, Olack B, Bigogo GM, Polyak C, Burke H, et al. Evaluation of the optimal recall period for disease symptoms in home-based morbidity surveillance in rural and urban Kenya. Int J Epidemiol. 2010;39:450–458. doi: 10.1093/ije/dyp374.
    1. Derra K, Rouamba E, Kazienga A, Ouedraogo S, Tahita MC, Sorgho H, et al. Profile: Nanoro health and demographic surveillance system. Int J Epidemiol. 2012;41:1293–1301. doi: 10.1093/ije/dys159.
    1. Tinto H, Valea I, Sorgho H, Tahita MC, Traore M, Bihoun B, et al. The impact of clinical research activities on communities in rural Africa: the development of the Clinical Research Unit of Nanoro (CRUN) in Burkina Faso. Malar J. 2014;13:113. doi: 10.1186/1475-2875-13-113.
    1. Sacoor C, Nhacolo A, Nhalungo D, Aponte JJ, Bassat Q, Augusto O, et al. Profile: Manhica Health Research Centre (Manhica HDSS) Int J Epidemiol. 2013;42:1309–1318. doi: 10.1093/ije/dyt148.
    1. Sacarlal J, Aponte JJ, Aide P, Mandomando I, Bassat Q, Guinovart C, et al. Safety of the RTS, S/AS02A malaria vaccine in Mozambican children during a Phase IIb trial. Vaccine. 2008;26:174–184. doi: 10.1016/j.vaccine.2007.11.003.
    1. Ribera JM, Hausmann-Muela S, D’Alessandro U, Grietens KP. Malaria in pregnancy: What can the social sciences contribute? PLoS Med. 2007;4 doi: 10.1371/journal.pmed.0040092.
    1. Neilson JP. Ultrasound for fetal assessment in early pregnancy. Cochrane Database Syst Rev. 2000;2
    1. Mongelli M, Wilcox M, Gardosi J. Estimating the date of confinement: Ultrasonographic biometry versus certain menstrual dates. Am J Obstet Gynecol. 1996;174:278–281. doi: 10.1016/S0002-9378(96)70408-8.
    1. Lin AE, Herring AH, Amstutz KS, Westgate MN, Lacro RV, Al-Jufan M, et al. Cardiovascular malformations: Changes in prevalence and birth status, 1972–1990. Am J Med Genet. 1999;84:102–110. doi: 10.1002/(SICI)1096-8628(19990521)84:2<102::AID-AJMG4>;2-G.
    1. Nelson K, Holmes LB. Malformations due to presumed spontaneous mutations in newborn infants. N Engl J Med. 1989;320:19–23. doi: 10.1056/NEJM198901053200104.
    1. Seffah JD, Adanu RM. Obstetric ultrasonography in low-income countries. Clinical Obstetrics and Gynecology. 2009;52:250–255. doi: 10.1097/GRF.0b013e3181a4c2d5.
    1. Sasidharan K, Dutta S, Narang A. Validity of New Ballard Score until 7th day of postnatal life in moderately preterm neonates. Arch Dis Child Fetal Neonatal Ed. 2009;94:F39–44.
    1. White LJ, Lee SJ, Stepniewska K, Simpson JA, Dwell SL, Arunjerdja R, et al. Estimation of gestational age from fundal height: a solution for resource-poor settings. J R Soc Interface. 2012;9:503–510. doi: 10.1098/rsif.2011.0376.

Source: PubMed

3
Subscribe