Exercise training does not improve myocardial diastolic tissue velocities in Type 2 diabetes

Antti Loimaala, Kaj Groundstroem, Marjo Rinne, Arja Nenonen, Heini Huhtala, Ilkka Vuori, Antti Loimaala, Kaj Groundstroem, Marjo Rinne, Arja Nenonen, Heini Huhtala, Ilkka Vuori

Abstract

Background: Myocardial diastolic tissue velocities are reduced already in newly onset Type 2 diabetes mellitus (T2D). Poor disease control may lead to left ventricular (LV) systolic dysfunction and heart failure. The aim of this study was to assess the effects of exercise training on myocardial diastolic function in T2D patients without ischemic heart disease.

Methods: 48 men (52.3 +/- 5.6 yrs) with T2D were randomized to supervised training four times a week and standard therapy (E), or standard treatment alone (C) for 12 months. Glycated hemoglobin (HbA1c), oxygen consumption (VO2max), and muscle strength (Sit-up) were measured. Tissue Doppler Imaging (TDI) was used to determine the average maximal mitral annular early (Ea) and late (Aa) diastolic as well as systolic (Sa) velocities, systolic strain (epsilon) and strain rate (epsilon) from the septum, and an estimation of left ventricular end diastolic pressure (E/Ea).

Results: Exercise capacity (VO2max, E 32.0 to 34.7 vs. C 32.6 to 31.5 ml/kg/min, p = .001), muscle strength (E 12.7 to 18.3 times vs. C 14.6 to 14.7 times, p < .001), and HbA1c (E 8.2 to 7.5% vs. C 8.0 to 8.4%, p = .006) improved significantly in the exercise group compared to the controls (ANOVA). Systolic blood pressure decreased in the E group (E 144 to 138 mmHg vs. C 146 to 144 mmHg, p = .04). Contrary to risk factor changes diastolic long axis relaxation did not improve significantly, early diastolic velocity Ea from 8.1 to 7.9 cm/s for the E group vs. C 7.4 to 7.8 cm/s (p = .85, ANOVA). Likewise, after 12 months the mitral annular systolic velocity, systolic strain and strain rate, as well as E/Ea were unchanged.

Conclusion: Exercise training improves endurance and muscle fitness in T2D, resulting in better glycemic control and reduced blood pressure. However, myocardial diastolic tissue velocities did not change significantly. Our data suggest that a much longer exercise intervention may be needed in order to reverse diastolic impairment in diabetics, if at all possible.

Figures

Figure 1
Figure 1
Mean peak mitral annular long-axis tissue doppler velocities (cm/s) in the study groups at baseline and after 12 months. Values are means (SE).
Figure 2
Figure 2
Maximal systolic strain (%) from the septum.
Figure 3
Figure 3
Maximal systolic strain rate (1/s) from the septum.

References

    1. Burchfiel CM, Reed DM, Marcus EB, Strong JP, Hayashi T. Association of diabetes mellitus with coronary aterosclerosis and myocardial lesions: an autopsy study from the Honolulu Heart Program. Am J Epidemiol. 1993;137:1328–1340.
    1. Uusitupa M, Mustonen JN, Airaksinen KE. Diabetic heart muscle disease. Ann Med. 1990;22:377–386.
    1. The Diabetes Control and Complications Trial Research Group The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus. N Engl J Med. 1993;329:977–986. doi: 10.1056/NEJM199309303291401.
    1. Rubler S, Dlugash J, Yeceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30:595–602. doi: 10.1016/0002-9149(72)90595-4.
    1. Loimaala A, Groundstroem K, Majahalme S, Nenonen A, Vuori I. Impaired myocardial function in newly onset Type 2 diabetes associates with arterial stiffness. Eur J Echocardiography. 2006;7:341–347. doi: 10.1016/j.euje.2005.07.001.
    1. Fang ZY, Yuda S, Anderson V, Short L, Case C, Marwick TH. Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol. 2003;41:611–617. doi: 10.1016/S0735-1097(02)02869-3.
    1. Vinereanu D, Nicolaides E, Boden L, Payne N, Jones CJH, Fraser AG. Conduit arterial stiffness is associated with impaired left ventricular subendocardial function. Heart. 2003;89:449–451. doi: 10.1136/heart.89.4.449.
    1. Hillis GS, Möller JE, Pellikka PA, Gersh BJ, Wright RS, Ommen SR, Reeder GS, Oh JK. Noninvasive estimation of left ventricular filling pressure by E/e' is a powerful predictor of survival after acute myocardial infarction. J Am Coll Cardiol. 2004;43:360–367. doi: 10.1016/j.jacc.2003.07.044.
    1. UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS33) Lancet. 1998;352:837–852. doi: 10.1016/S0140-6736(05)61359-1.
    1. Patel R, Nagueh SF, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen HA, Quinones MA, Zoghbi WA, Entman ML, Roberts R, Marian AJ. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation. 2001;104:317–324. doi: 10.1161/hc2801.094031.
    1. Sutherland GR, Stewart MJ, Groundstroem KW, Moran CM, Fleming A, Guell-Peris FJ, Riemersma RA, Fenn LN, Fox KAA, McDicken WN. Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echocardiogr. 1994;7:441–458.
    1. World Medical Organization Declaration of Helsinki. Br Med J. 1996;313:1448–1449.
    1. Kirstein P, Carlson K. Determination of the cholesterol content of high density lipoprotein subfractions HDL2 and HDL3, without contamination of Lp(a), in human plasma. Clin Chem Acta. 1981;113:123–34. doi: 10.1016/0009-8981(81)90146-7.
    1. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.
    1. Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr. 1989;2:358–368.
    1. Perez JE, McGill JB, Santiago JV, Schechtman KB, Waggoner AD, Barzilai B, Sobel BE. Abnormal myocardial acoustic properties in diabetic patients and their correlation with the severity of disease. J Am Coll Cardiol. 1992;19:1154–1162.
    1. Nagueh SF, Bachincski LL, Meyer D, Hill R, Zoghbi WA, Tam JW, Quinones MA, Roberts R, Marian AJ. Tissue doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation. 2001;104:128–130.
    1. Lehto S, Pyörälä K, Miettinen H, Rönnemaa T, Palomäki P, Tuomilehto J, Laakso M. Myocardial infarct size and mortality in patients with non-insulin dependent diabetes mellitus. J Intern Med. 1994;236:291–297.
    1. Fletcher GF, Balady G, Blair SN, Blumenthal J, Caspersen C, Chaitman B, Epstein S, Froelicher ESJ, Froelicher VF, Pina IL, Pollock ML. Statement on exercise: Benefits and recommendations for physical activity programs for all Americans. Circulation. 1996;94:857–862.
    1. Hull SS, Vanoli E, Adamson PB, Verrier RL, Foreman RD, Schwartz PJ. Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia. Circulation. 1994;89:548–552.
    1. Sylvén C, Sarkar N, Rück A, Drvota V, Y-Hassa S, Lind B, Nygren A, Källner G, Blomberg P, van der Linden J, Lindblom D, Brodin LÅ, Islam KB. Myocardial Doppler tissue velocity improves following myocardial gene therapy with VEGF-A165 plasmid in patients with inoperable angina pectoris. Coron Artery Dis. 2001;12:239–243. doi: 10.1097/00019501-200105000-00010.
    1. Loimaala A, Huikuri HV, Kööbi T, Rinne M, Nenonen A, Vuori I. Exercise training improves baroreflex sensitivity in Type II diabetic men. Diabetes. 2003;52:1837–1842. doi: 10.2337/diabetes.52.7.1837.
    1. Weidemann F, Breinig F, Beer M, Sandstede J, Turschner O, Voelker W, Ertl G, Knoll A, Wanner C, Strotmann JM. Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease. A prospective strain rate imaging study. Circulation. 2003;108:1299–1301. doi: 10.1161/01.CIR.0000091253.71282.04.
    1. Hansen A, Johansson B-L, Wahren J, von Bibra H. C-peptide exerts beneficial effects on myocardial blod flow and function in patients with type 1 diabetes. Diabetes. 2002;51:3077–3082. doi: 10.2337/diabetes.51.10.3077.
    1. Amos AF, McCarty DJ, Zimmeth P. The rising global burden of diabetes and its complications: Estimates and projections to the year 2010. Diabet Med. 1997;14:S1–S85. doi: 10.1002/(SICI)1096-9136(199712)14:5+<S7::AID-DIA522>;2-I.
    1. Tuomilehto J, Lindström J, Erikson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–1350. doi: 10.1056/NEJM200105033441801.
    1. Laakso M, Lehto S. Epidemiology of macrovascular disease in diabetes. Diabet Rev. 1997;5:294–315.
    1. Gwilt DJ, Petri M, Lewis PW, Nattrass M, Pentecost BL. Myocardial infarct size and mortality in diabetic subjects. Br Heart J. 1985;54:466–472. doi: 10.1136/hrt.54.5.466.
    1. Liebson PR, Grandits GA, Dianzumba S, Prineas RJ, Grimm RH, Jr, Neaton JD, Stamler J, for the Treatment of Hypertension Study Research Group Comparison of five antihypertensive monotherapies and placebo for change in left ventricular mass in patients receiving nutritional-hygienic therapy in the Treatment of Mild Hypertension Study (TOMHS) Circulation. 1995;91:698–706.

Source: PubMed

3
Subscribe