Computer-assisted total knee arthroplasty using mini midvastus or medial parapatellar approach technique: A prospective, randomized, international multicentre trial

Peter Feczko, Lutz Engelmann, Jacobus J Arts, David Campbell, Peter Feczko, Lutz Engelmann, Jacobus J Arts, David Campbell

Abstract

Background: Despite the growing evidence in the literature there is still a lack of consensus regarding the use of minimally invasive surgical technique (MIS) in total knee arthroplasty (TKA).

Methods: A prospective, randomized, international multicentre trial including 69 patients was performed to compare computer-assisted TKA (CAS-TKA) using either mini-midvastus (MIS group) or standard medial parapatellar approach (conventional group). Patients from 3 centers (Maastricht, Zwickau, Adelaide) with end-stage osteoarthritis of the knee were randomized to either an MIS group with dedicated instrumentation or a conventional group to receive cruciate retaining CAS-TKA without patella resurfacing. The primary outcome was to compare post operative pain and range of motion (ROM). The secondary outcome was to measure the duration of surgery, blood loss, chair rise test, quadriceps strength, anterior knee pain, Knee Society Score (KSS),WOMAC scores, mechanical leg axis and component alignment.

Results: Patients in the MIS group (3.97 ± 2.16) had significant more pain at 2 weeks than patients in the conventional group (2.77 ± 1.43) p = 0.003. There was no significant difference in any of the other primary outcome parameters. Surgery time was significantly longer (p < 0.001) and there were significantly higher blood loss (p = 0.002) in the MIS group as compared to the conventional group. The difference of the mean mechanical leg alignment between the groups was not statistically significant (-0.43° (95% CI -1.50-0.64); p = 0.43). There was no significant difference of component alignment between the two surgical groups with respect to flexion/extension (p = 0.269), varus/valgus (p = 0.653) or rotational alignment (p = 0.485) of the femur component and varus valgus alignment (p = 0.778) or posterior slope (p = 0.164) of the tibial component.

Conclusion: There was no advantage of the MIS approach compared to a conventional approach CAS-TKA in any of the primary outcome measurements assessed, however the MIS approach was associated with longer surgical time and greater blood loss. MIS-TKA in combination with computer navigation is safe in terms of implant positioning.

Trial registration number: ClinicalTrials.gov NCT02625311 8 December 2015.

Figures

Fig. 1
Fig. 1
Boxplot of the mechanical leg axis (degrees) for MIS and conventional TKA groups. The mean mechanical leg axis in the conventional group was 0.97° ± SD 1.87°, in the MIS group 0.54° ± SD 2.53°. The difference of the mean mechanical leg alignment between the groups was not statistically significant (‐0.43° (95 % CI ‐1.50 - 0.64); p = 0.43)
Fig. 2
Fig. 2
Flexion/extension position of the femoral component. The flexion position in the conventional group was 1.94° ± SD 2.54°, in the MIS group 2.77° ± SD 2.09°. The difference between the two surgical groups was (‐0.83° (95 % CI ‐2.32 - 0.67); p = 0.27). Outliers are shown as dots
Fig. 3
Fig. 3
Rotational position of the femoral component. The rotational position in the conventional group was -1.00° ± SD 2.22°, in the MIS group -0.55° ± SD 2.74°. The difference between the two surgical groups was (‐0.45° (95 % CI ‐1.74 - 0.83); p = 0.49). Outliers are shown as dots
Fig. 4
Fig. 4
Varus/valgus position of the femoral component. The varus position in the conventional group was 0.71° ± SD 1.64°, in the MIS group 0.89° ± SD 1.68°. The difference between the two surgical groups was (‐0.18° (95 % CI ‐0.99 - 0.62); p = 0.65). Outliers are shown as dots
Fig. 5
Fig. 5
Varus/valgus position of the tibial component. The varus position in the conventional group was -0.97° ± SD 2.30°, in the MIS group -0.81° ± SD 2.25°. The difference between the two surgical groups was (‐0.16° (95 % CI ‐1.26 - 0.95); p = 0.78). Outliers are shown as dots
Fig. 6
Fig. 6
Posterior slope of the tibial component. The posterior slope in the conventional group was 4.63° ± SD 1.86°, in the MIS group 3.63° ± SD 2.61°. The difference between the two surgical groups was (1.00° (95 % CI ‐0.43 - 2.42); p = 0.16). Outliers are shown as dots

References

    1. Font-Rodriguez DE, Scuderi GR, Insall JN. Survivorship of cemented total knee arthroplasty. Clin Orthop Relat Res. 1997;345:79–86. doi: 10.1097/00003086-199712000-00012.
    1. Callaghan JJ, O’Rourke MR, Iossi MF, Liu SS, Goetz DD, Vittetoe DA, et al. Cemented rotating-platform total knee replacement. A concise follow up, at a minimum of fifteen years, of a previous report. J Bone Joint Surg Am. 2005;87(9):1995–8. doi: 10.2106/JBJS.D.03039.
    1. Keating EM, Meding JB, Faris PM, Ritter MA. Long-term followup of nonmodular total knee replacements. Clin Orthop Relat Res. 2002;404:34–9. doi: 10.1097/00003086-200211000-00007.
    1. Gill GS, Joshi AB. Long-term results of cemented, posterior cruciate ligament-retaining total knee arthroplasty in osteoarthritis. Am J Knee Surg. 2001;14(4):209–14.
    1. Pavone V, Boettner F, Fickert S, Sculco TP. Total condylar knee arthroplasty: a long-term follow-up. Clin Orthop Relat Res. 2001;388:18–25. doi: 10.1097/00003086-200107000-00005.
    1. Ritter MA, Faris PM, Keating EM, Meding JB. Postoperative alignment of total knee replacement. Its effect on survival. Clin Orthop Relat Res. 1994;299:153–6.
    1. Rodriguez JA, Bhende H, Ranawat CS. Total condylar knee replacement: a 20-year followup study. Clin Orthop Relat Res. 2001;388:10–7. doi: 10.1097/00003086-200107000-00004.
    1. Shan L, Shan B, Suzuki A, Nouh F, Saxena A. Intermediate and long-term quality of life after total knee replacement: a systematic review and meta-analysis. J Bone Joint Surg Am. 2015;97(2):156–68. doi: 10.2106/JBJS.M.00372.
    1. Lotke PA, Lonner JH, editors. Master techniques in orthopaedic surgery: knee arthroplasty. Anterior medial exposure. 3. Lippincott: Williams & Wilkins; 2009. pp. 1–18.
    1. Pan WM, Li XG, Tang TS, Qian ZL, Zhang Q, Zhang CM. Mini-subvastus versus a standard approach in total knee arthroplasty: a prospective, randomized controlled study. J Int Med Res. 2010;38(3):890–900. doi: 10.1177/147323001003800315.
    1. Lai Z, Shi S, Fei J, Wei W. Total knee arthroplasty performed with either a mini-subvastus or a standard approach: a prospective randomized controlled study with a minimum follow-up of 2 years. Arch Orthop Trauma Surg. 2014;134(8):1155–62. doi: 10.1007/s00402-014-1963-2.
    1. Deirmengian CA, Lonner JH. What’s new in adult reconstructive knee surgery. J Bone Joint Surg Am. 2010;92(16):2753–64. doi: 10.2106/JBJS.J.01202.
    1. Goble EM, Justin DF. Minimally invasive total knee replacement: principles and technique. Orthop Clin North Am. 2004;35(2):235–45. doi: 10.1016/S0030-5898(03)00113-5.
    1. Scuderi GR. Minimally invasive total knee arthroplasty: surgical technique. Am J Orthop (Belle Mead NJ) 2006;35(7 Suppl):7–11.
    1. Lonner JH. Minimally invasive approaches to total knee arthroplasty: results. Am J Orthop (Belle Mead NJ) 2006;35(7 Suppl):27–9.
    1. Hofmann AA, Plaster RL, Murdock LE. Subvastus (Southern) approach for primary total knee arthroplasty. Clin Orthop Relat Res. 1991;269:70–7.
    1. Engh GA, Holt BT, Parks NL. A midvastus muscle-splitting approach for total knee arthroplasty. J Arthroplasty. 1997;12(3):322–31. doi: 10.1016/S0883-5403(97)90030-9.
    1. Tria AJ, Jr, Coon TM. Minimal incision total knee arthroplasty: early experience. Clin Orthop Relat Res. 2003;416:185–90. doi: 10.1097/01.blo.0000093030.56370.d9.
    1. Alan RK, Tria AJ., Jr Quadricpes-sparing total knee arthroplasty using the posterior stabilized TKA design. J Knee Surg. 2006;19(1):71–6.
    1. Tenholder M, Clarke HD, Scuderi GR. Minimal-incision total knee arthroplasty: the early clinical experience. Clin Orthop Relat Res. 2005;440:67–76. doi: 10.1097/01.blo.0000185450.89364.10.
    1. Satterly T, Neeley R, Johnson-Wo AK, Bhowmik-Stoker M, Shrader MW, Jacofsky MC, et al. Role of total knee arthroplasty approaches in gait recovery through 6 months. J Knee Surg. 2013;26(4):257–62. doi: 10.1055/s-0032-1329719.
    1. Lin SY, Chen CH, Fu YC, Huang PJ, Lu CC, Su JY, et al. Comparison of the clinical and radiological outcomes of three minimally invasive techniques for total knee replacement at two years. Bone Joint J. 2013;95-B(7):906–10. doi: 10.1302/0301-620X.95B7.29694.
    1. Pongcharoen B, Yakampor T, Charoencholvanish K. Patellar tracking and anterior knee pain are similar after medial parapatellar and midvastus approaches in minimally invasive TKA. Clin Orthop Relat Res. 2013;471(5):1654–60. doi: 10.1007/s11999-012-2778-5.
    1. Laskin RS, Beksac B, Phongjunakorn A, Pittors K, Davis J, Shim JC, et al. Petersen Minimally invasive total knee replacement through a mini-midvastus incision: an outcome study. Clin Orthop Relat Res. 2004;428:74–81. doi: 10.1097/01.blo.0000148582.86102.47.
    1. Tashiro Y, Miura H, Matsuda S, Okazaki K, Iwamoto Y. Minimally invasive versus standard approach in total knee arthroplasty. Clin Orthop Relat Res. 2007;463:144–50.
    1. Schroer WC, Dieffeld PJ, Reedy ME, LeMarr AR. Mini-subvastus approach for total knee arthroplasty. J Arthroplasty. 2008;23(1):19–25. doi: 10.1016/j.arth.2006.12.100.
    1. Bonutti PM, Mont MA, McMahon M, Ragland PS, Kester M. Minimally invasive total knee arthroplasty. J Bone Joint Surg Am. 2004;86-A(Suppl 2):26–32.
    1. Cheng T, Liu T, Zhang G. Does minimally invasive surgery improve short-term recovery in total knee arthroplasty? Clin Orthop Relat Res. 2010;468:1635–48. doi: 10.1007/s11999-010-1285-9.
    1. Schroer WC, Diesfeld PJ, Reedy ME, LeMarr AR. Isokinetic strength testing of MinimallyInvasive total knee arthroplasty recovery. J Arthroplasty. 2010;25(2):274–9. doi: 10.1016/j.arth.2008.09.017.
    1. Tasker A, Hassaballa M, Murray J, Lancaster S, Artz N, Harries W, et al. Minimally invasive total knee arthroplasty; a pragmatic randomised controlled trial reporting outcomes up to 2 year follow up. Knee. 2014;21(1):189–93. doi: 10.1016/j.knee.2013.07.010.
    1. Kim JG, Lee SW, Ha JK, Choi HJ, Yang SJ, Lee MY. The effectiveness of minimally invasive total knee arthroplasty to preserve quadriceps strength: a randomized controlled trial. Knee. 2011;18:443–7. doi: 10.1016/j.knee.2010.08.008.
    1. Hernandez-Vaquero D, Noriega-Fernandez A, Suarez-Vazquez A. Total knee arthroplasties performed with a mini-incision or a standard incision. Similar results at six months follow-up. BMC Musculoskelet Disord. 2010;6:11–27.
    1. Schroer WC, Diesfeld PJ, Reedy ME, LeMarr AR. Surgical accuracy with the mini-subvastus total knee arthroplasty - a computer tomography scan analysis of postoperative implant alignment. J Arthroplasty. 2008;23(4):543–9. doi: 10.1016/j.arth.2007.05.034.
    1. Kolisek FR, Bonutti PM, Hozack WJ, Purtill J, Sharkey PF, Zelicof SB, et al. Clinical experience using a minimally invasive surgical approach for total knee arthroplasty: early results of a prospective randomized study compared to a standard approach. J Arthroplasty. 2007;22(1):8–13. doi: 10.1016/j.arth.2006.06.004.
    1. Dalury DF, Dennis DA. Mini-incision total knee arthroplasty can increase risk of componentmalalignment. Clin Orthop Relat Res. 2005;440:77–81. doi: 10.1097/01.blo.0000185757.17401.7b.
    1. Gandhi R, Smith H, Lefaivre KA, Davey RD, Mahomed NN. Complications after minimally invasive total knee arthroplasty as compared with traditional incision techniques - a meta-analysis. J Arthroplasty. 2011;26(1):29–35. doi: 10.1016/j.arth.2009.11.022.
    1. Xu SZ, Lin XJ, Tong X, Wang XW. Minimally invasive midvastus versus standard parapatellar approach in total knee arthroplasty: a meta-analysis of randomized controlled trials. PLoS One. 2014;9(5) doi: 10.1371/journal.pone.0095311.
    1. Heekin RD, Fokin AA. Mini-midvastus versus mini-medial parapatellar approach for minimally invasive total knee arthroplasty: outcomes pendulum is at equilibrium. J Arthroplasty. 2014;29(2):339–42. doi: 10.1016/j.arth.2013.05.016.
    1. Dayton MR, Bade MJ, Muratore T, Shulman BC, Kohrt WM, Stevens-Lapsley JE. Minimally invasive total knee arthroplasty: surgical implications for recovery. J Knee Surg. 2013;26(3):195–201. doi: 10.1055/s-0032-1327449.
    1. Guy SP, Farndon MA, Conroy JL, Bennett C, Grainger AJ, London NJ. A prospective randomized study of minimally invasive midvastus total knee arthroplasty compared with standard total knee arthroplasty. Knee. 2012;19(6):866–71. doi: 10.1016/j.knee.2012.04.009.
    1. Li C, Zeng Y, Shen B, Kang P, Yang J, Zhou Z, et al. A meta-analysis of minimally invasive and convetional medial parapatellar approaches fpr primary total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2015;23(7):1971–85. doi: 10.1007/s00167-014-2837-4.
    1. Alcelik I, Sukeik M, Pollock R, Misra A, Naguib A, Haddad FS. Comparing the mid-vastus and medial parapatellar approaches in total knee arthroplasty: a meta-analysis of short-term outcomes. Knee. 2012;19(4):229–36. doi: 10.1016/j.knee.2011.07.010.
    1. Khanna A, Gougoulias N, Longo UG, Maffulli N. Minimally invasive total knee arthroplasty: a systematic review. Orthop Clin North Am. 2009;40(4):479–89. doi: 10.1016/j.ocl.2009.05.003.
    1. Liu Z, Yang H. Comparison of the minimally invasive and standard approaches for total knee arthroplasty: systematic review and meta-analysis. J Int Med Res. 2011;39(5):1607–17. doi: 10.1177/147323001103900503.
    1. Smith TO, King JJ, Hing CB. A meta-analysis of randomized controlled trials comparing the clinical and radiological outcomes following minimally invasive to conventional exposure for total knee arthroplasty. Knee. 2012;19(1):1–7. doi: 10.1016/j.knee.2010.12.001.
    1. de Steiger RN, Liu YL, Graves SE. Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg Am. 2015;97:635–42. doi: 10.2106/JBJS.M.01496.
    1. Bauwens K, Matthes G, Wich M, Gebhard F, Hanson B, Ekkernkamp A, et al. Navigated total knee replacement. A meta-analysis. J Bone Joint Surg Am. 2007;89(2):261–9. doi: 10.2106/JBJS.F.00601.
    1. Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K. Meta-analysis of alignment outcomes in computer-assisted total kne arthroplasty surgery. J Arthroplasty. 2007;22(8):1097–106. doi: 10.1016/j.arth.2007.08.001.
    1. Hernandez-Vaquero D, Noriega-Fernandez A, Fernandez-Carreira JM, Fernandez-Simon JM, Llorens de Los Rios J. Computer-assisted surgery improves rotational positioning of the femoral component but not the tibial component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2014;22(12):3127–34. doi: 10.1007/s00167-014-3233-9.
    1. Dutton AQ, Yeo SJ. Computer-assisted minimally invasive total knee arthroplasty compared with standard total knee arthroplasty. Surgical technique. J Bone Joint Surg Am. 2009;91 Suppl 2 Pt 1:116–30.
    1. Khakha RS, Chowdhry M, Norris M, Kheiran A, Patel N, Chauhan SK. Five-year follow-up of minimally invasive computer assisted total knee arthroplasty (MICATKA) versus conventional computer assisted total knee arthroplasty (CATKA) - a population matched study. Knee. 2014;21(5):944–8. doi: 10.1016/j.knee.2014.06.007.
    1. Guyatt GH, Townsend M, Berman LB, Keller JL. A comparison of Likert and visual analogue scales for measuring change in function. J Chronic Dis. 1987;40(12):1129–33. doi: 10.1016/0021-9681(87)90080-4.
    1. Norkin CC, White DJ. Measurement of joint motion; a guide to goniometry. F.A. Davis Company; 4th ed. 2009.
    1. Brosseau L, Tousignant M, Budd J, Chartier N, Duciaume L, Plamondon S, et al. Intratester and intertester reliability and criterion validity of the parallelogram and universal goniometers for active knee flexion in healthy subjects. Physiother Res Int. 1997;2(3):150–66. doi: 10.1002/pri.97.
    1. Lenssen AF, van Dam EM, Crijns YH, Verhey M, Geesink RJ, van den Brandt PA, et al. Reproducibility of goniometric measurement of the knee in the in-hospital phase following total knee arthroplasty. BMC Musculoskelet Disord. 2007;8:83. doi: 10.1186/1471-2474-8-83.
    1. Jones SE, Kon SS, Canavan JL, Patel MS, Clark AL, Nolan CM, et al. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax. 2013;68(11):1015–20. doi: 10.1136/thoraxjnl-2013-203576.
    1. Evanich CJ, Tkach TK, von Glinski S, Camargo MP, Hofmann AA. 6- to 10-year experience using countersunk metal-backed patellas. J Arthroplasty. 1997;12(2):149–54. doi: 10.1016/S0883-5403(97)90060-7.
    1. Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the knee society clinical rating system. Clin Orthop Relat Res. 1989;248:13–4.
    1. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Sitt L. Validation study of WOMAC: a health status instrument for measuring clinically-important patient-relevant outcomes following total hip or knee arthroplasty in osteoarthritis. J Orthop Reuth. 1988;1:95–108.
    1. Ewald FC. The knee society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop Relat Res. 1989;248:9–12.
    1. Chauhan SK, Clark GW, Lloyd S, Scott RG, Breidahl W, Sikorski JM. Computer-assisted total knee replacement. A controlled cadaver study using a multi-parameter quantitative CT assessment of alignment (the Perth CT Protocol) J Bone Joint Surg Br. 2004;86(6):818–23. doi: 10.1302/0301-620X.86B6.15456.

Source: PubMed

3
Subscribe