Two-year outcomes after arthroscopic surgery compared to physical therapy for femoracetabular impingement: A protocol for a randomized clinical trial

Nancy S Mansell, Daniel I Rhon, Bryant G Marchant, John M Slevin, John L Meyer, Nancy S Mansell, Daniel I Rhon, Bryant G Marchant, John M Slevin, John L Meyer

Abstract

Background: As the prevalence of hip pathology in the younger athletic population rises, the medical community continues to investigate effective intervention options. Femoracetabular impingement is the morphologically abnormal articulation of the femoral head against the acetabulum, and often implicated in pre-arthritic hip conditions of musculoskeletal nature. Arthroscopic surgical decompression and non-surgical rehabilitation programs focused on strengthening and stability are common interventions. However, they have never been directly compared in clinical trials. The primary purpose of this study will be to assess the difference in outcomes between these 2 commonly utilized interventions for femoracetabular impingement.

Methods: The study will be a single site, non-inferiority, randomized controlled trial comparing two different treatment approaches (surgical and nonsurgical) for FAI. The enrollment goal is for a total of 80 subjects with a diagnosis of Femoracetabular impingement that are surgical candidates and have failed 6 weeks of conservative treatment. This will be a convenience sample of consecutive patients that are Tricare beneficiaries and seeking care at Madigan Army Medical Center. Patients that meet the criteria will be screened, provide written consent before enrollment, and then randomized into one of two arms (Group I = hip arthroscopy, Group II = physical therapy). Group I will undergo hip arthroscopy with or without labral repair. Group II will follow an impairment based physical therapy program consisting of 2 sessions per week for 6 weeks. The primary outcome will be the Hip Outcome Score and secondary measures will include the International Hip Outcome Tool and the Global Rating of Change. Measures will be taken at baseline, 6 months, 1 and 2 years. Hip-related healthcare utilization between both groups will also be assessed at the end of 2 years.

Discussion: The current evidence to support both surgical and conservative interventions for femoroacetabular impingement is based on low-level research. To date, none of these interventions have been directly compared in a randomized clinical trial. Clinical trials are needed to help establish the value of these interventions in the management of femoracetabular impingement and to help define appropriate clinical pathways.

Trial registration: NCT01993615 30 October 2013.

Figures

Fig. 1
Fig. 1
Proposed Recruitment Flow of Patients

References

    1. Siebenrock KA, Schoeniger R, Ganz R. Anterior femoro-acetabular impingement due to acetabular retroversion. Treatment with periacetabular osteotomy. J Bone Joint Surg Am. 2003;85-A(2):278–286.
    1. Kalberer F, Sierra RJ, Madan SS, Ganz R, Leunig M. Ischial spine projection into the pelvis : a new sign for acetabular retroversion. Clin Orthop Relat Res. 2008;466(3):677–683. doi: 10.1007/s11999-007-0058-6.
    1. Reynolds D, Lucas J, Klaue K. Retroversion of the acetabulum. A cause of hip pain. J Bone Joint Surg. 1999;81(2):281–288. doi: 10.1302/0301-620X.81B2.8291.
    1. Nouh MR, Schweitzer ME, Rybak L, Cohen J. Femoroacetabular impingement: can the alpha angle be estimated? AJR Am J Roentgenol. 2008;190(5):1260–1262. doi: 10.2214/AJR.07.3258.
    1. Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: radiographic diagnosis--what the radiologist should know. AJR Am J Roentgenol. 2007;188(6):1540–1552. doi: 10.2214/AJR.06.0921.
    1. Skendzel JG, Philippon MJ, Briggs KK, Goljan P. The effect of joint space on midterm outcomes after arthroscopic hip surgery for femoroacetabular impingement. Am J Sports Med. 2014;42(5):1127–1133. doi: 10.1177/0363546514526357.
    1. Smith TO, Simpson M, Ejindu V, Hing CB. The diagnostic test accuracy of magnetic resonance imaging, magnetic resonance arthrography and computer tomography in the detection of chondral lesions of the hip. Eur J Orthop Surg Traumatol. 2013;23(3):335–344. doi: 10.1007/s00590-012-0972-5.
    1. Register B, Pennock AT, Ho CP, Strickland CD, Lawand A, Philippon MJ. Prevalence of abnormal hip findings in asymptomatic participants: a prospective, blinded study. Am J Sports Med. 2012;40(12):2720–2724. doi: 10.1177/0363546512462124.
    1. Schmitz MR, Campbell SE, Fajardo RS, Kadrmas WR. Identification of acetabular labral pathological changes in asymptomatic volunteers using optimized, noncontrast 1.5-T magnetic resonance imaging. Am J Sports Med. 2012;40(6):1337–1341. doi: 10.1177/0363546512439991.
    1. Zaltz I, Kelly BT, Hetsroni I, Bedi A. The crossover sign overestimates acetabular retroversion. Clin Orthop Relat Res. 2013;471(8):2463–2470. doi: 10.1007/s11999-012-2689-5.
    1. Diaz-Ledezma C, Novack T, Marin-Pena O, Parvizi J. The relevance of the radiological signs of acetabular retroversion among patients with femoroacetabular impingement. Bone Joint J. 2013;95-B(7):893–899. doi: 10.1302/0301-620X.95B7.31109.
    1. Chladek P, Musalek M, Trc T, Zahradnik P, Kos P: Femoroacetabular impingement syndrome-efficacy of surgical treatment with regards to age and basic diagnosis. International orthopaedics. 2015;39(3):417-22.
    1. Bardakos NV, Villar RN. Predictors of progression of osteoarthritis in femoroacetabular impingement: a radiological study with a minimum of ten years follow-up. J Bone Joint Surg. 2009;91(2):162–169. doi: 10.1302/0301-620X.91B2.21137.
    1. Hartofilakidis G, Bardakos NV, Babis GC, Georgiades G. An examination of the association between different morphotypes of femoroacetabular impingement in asymptomatic subjects and the development of osteoarthritis of the hip. J Bone Joint Surg. 2011;93(5):580–586. doi: 10.1302/0301-620X.93B5.25236.
    1. MacFarlane RJ, Konan S, El-Huseinny M, Haddad FS. A review of outcomes of the surgical management of femoroacetabular impingement. Ann R Coll Surg Engl. 2014;96(5):331–338. doi: 10.1308/003588414X13946184900723.
    1. Hellman MD, Riff AJ, Frank RM, Haughom BD, Nho SJ. Operative treatment of femoroacetabular impingement. Phys Sportsmed. 2014;42(3):112–119. doi: 10.3810/psm.2014.09.2082.
    1. Polat G, Dikmen G, Erdil M, Asik M. Arthroscopic treatment of femoroacetabular impingement: early outcomes. Acta Orthop Traumatol Turc. 2013;47(5):311–317. doi: 10.3944/AOTT.2013.3041.
    1. Zaltz I, Kelly BT, Larson CM, Leunig M, Bedi A. Surgical treatment of femoroacetabular impingement: what are the limits of hip arthroscopy? Arthroscopy. 2014;30(1):99–110. doi: 10.1016/j.arthro.2013.10.005.
    1. Wright AA, Hegedus EJ. Augmented home exercise program for a 37-year-old female with a clinical presentation of femoroacetabular impingement. Man Ther. 2012;17(4):358–363. doi: 10.1016/j.math.2011.10.004.
    1. Byrd JW. Femoroacetabular impingement in athletes: current concepts. Am J Sports Med. 2014;42(3):737–751. doi: 10.1177/0363546513499136.
    1. Tranovich MJ, Salzler MJ, Enseki KR, Wright VJ. A review of femoroacetabular impingement and hip arthroscopy in the athlete. Phys Sportsmed. 2014;42(1):75–87. doi: 10.3810/psm.2014.02.2050.
    1. Wall PD, Fernandez M, Griffin DR, Foster NE. Nonoperative treatment for femoroacetabular impingement: a systematic review of the literature. PM R. 2013;5(5):418–426. doi: 10.1016/j.pmrj.2013.02.005.
    1. Zwarenstein M, Treweek S, Gagnier JJ, Altman DG, Tunis S, Haynes B, et al. Improving the reporting of pragmatic trials: an extension of the CONSORT statement. BMJ. 2008;337:a2390. doi: 10.1136/bmj.a2390.
    1. Sugarek NJ, Deyo RA, Holmes BC. Locus of control and beliefs about cancer in a multi-ethnic clinic population. Oncol Nurs Forum. 1988;15(4):481–486.
    1. Lodhia P, Slobogean GP, Noonan VK, Gilbart MK. Patient-reported outcome instruments for femoroacetabular impingement and hip labral pathology: a systematic review of the clinimetric evidence. Arthroscopy. 2011;27(2):279–286. doi: 10.1016/j.arthro.2010.08.002.
    1. Mohtadi NG, Griffin DR, Pedersen ME, Chan D, Safran MR, Parsons N, et al. The Development and validation of a self-administered quality-of-life outcome measure for young, active patients with symptomatic hip disease: the International Hip Outcome Tool (iHOT-33) Arthroscopy. 2012;28(5):595–605. doi: 10.1016/j.arthro.2012.03.013.
    1. Jaeschke R, Singer J, Guyatt GH. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin Trials. 1989;10(4):407–415. doi: 10.1016/0197-2456(89)90005-6.
    1. Juniper EF, Guyatt GH, Willan A, Griffith LE. Determining a minimal important change in a disease-specific Quality of Life Questionnaire. J Clin Epidemiol. 1994;47(1):81–87. doi: 10.1016/0895-4356(94)90036-1.
    1. Edell BH, Edington S, Herd B, O’Brien RM, Witkin G. Self-efficacy and self-motivation as predictors of weight loss. Addict Behav. 1987;12(1):63–66. doi: 10.1016/0306-4603(87)90009-8.
    1. Jensen MP, Turner JA, Romano JM. What is the maximum number of levels needed in pain intensity measurement? Pain. 1994;58(3):387–392. doi: 10.1016/0304-3959(94)90133-3.
    1. Osman A, Barrios FX, Gutierrez PM, Kopper BA, Merrifield T, Grittmann L. The Pain Catastrophizing Scale: further psychometric evaluation with adult samples. J Behav Med. 2000;23(4):351–365. doi: 10.1023/A:1005548801037.
    1. Osman A, Barrios FX, Kopper BA, Hauptmann W, Jones J, O’Neill E. Factor structure, reliability, and validity of the Pain Catastrophizing Scale. J Behav Med. 1997;20(6):589–605. doi: 10.1023/A:1025570508954.
    1. Martin RL, Philippon MJ. Evidence of reliability and responsiveness for the hip outcome score. Arthroscopy. 2008;24(6):676–682. doi: 10.1016/j.arthro.2007.12.011.
    1. Kirkley A, Birmingham TB, Litchfield RB, Giffin JR, Willits KR, Wong CJ, et al. A randomized trial of arthroscopic surgery for osteoarthritis of the knee. N Engl J Med. 2008;359(11):1097–1107. doi: 10.1056/NEJMoa0708333.
    1. Katz JN, Brophy RH, Chaisson CE, de Chaves L, Cole BJ, Dahm DL, et al. Surgery versus physical therapy for a meniscal tear and osteoarthritis. N Engl J Med. 2013;368(18):1675–1684. doi: 10.1056/NEJMoa1301408.
    1. Weinstein JN, Lurie JD, Tosteson TD, Hanscom B, Tosteson AN, Blood EA, et al. Surgical versus nonsurgical treatment for lumbar degenerative spondylolisthesis. N Engl J Med. 2007;356(22):2257–2270. doi: 10.1056/NEJMoa070302.
    1. Schulz KF, Altman DG, Moher D, Group C. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med. 2010;152(11):726–732. doi: 10.7326/0003-4819-152-11-201006010-00232.
    1. Freedman B. Equipoise and the ethics of clinical research. N Engl J Med. 1987;317(3):141–145. doi: 10.1056/NEJM198707163170304.
    1. Palmer AJ, Thomas GE, Pollard TC, Rombach I, Taylor A, Arden N, et al. The feasibility of performing a randomised controlled trial for femoroacetabular impingement surgery. Bone Joint Res. 2013;2(2):33–40. doi: 10.1302/2046-3758.22.2000137.

Source: PubMed

3
Subscribe