A Movement Monitor Based on Magneto-Inertial Sensors for Non-Ambulant Patients with Duchenne Muscular Dystrophy: A Pilot Study in Controlled Environment

Anne-Gaëlle Le Moing, Andreea Mihaela Seferian, Amélie Moraux, Mélanie Annoussamy, Eric Dorveaux, Erwan Gasnier, Jean-Yves Hogrel, Thomas Voit, David Vissière, Laurent Servais, Anne-Gaëlle Le Moing, Andreea Mihaela Seferian, Amélie Moraux, Mélanie Annoussamy, Eric Dorveaux, Erwan Gasnier, Jean-Yves Hogrel, Thomas Voit, David Vissière, Laurent Servais

Abstract

Measurement of muscle strength and activity of upper limbs of non-ambulant patients with neuromuscular diseases is a major challenge. ActiMyo® is an innovative device that uses magneto-inertial sensors to record angular velocities and linear accelerations that can be used over long periods of time in the home environment. The device was designed to insure long-term stability and good signal to noise ratio, even for very weak movements. In order to determine relevant and pertinent clinical variables with potential for use as outcome measures in clinical trials or to guide therapy decisions, we performed a pilot study in non-ambulant neuromuscular patients. We report here data from seven Duchenne Muscular Dystrophy (DMD) patients (mean age 18.5 ± 5.5 years) collected in a clinical setting. Patients were assessed while wearing the device during performance of validated tasks (MoviPlate, Box and Block test and Minnesota test) and tasks mimicking daily living. The ActiMyo® sensors were placed on the wrists during all the tests. Software designed for use with the device computed several variables to qualify and quantify muscular activity in the non-ambulant subjects. Four variables representative of upper limb activity were studied: the rotation rate, the ratio of the vertical component in the overall acceleration, the hand elevation rate, and an estimate of the power of the upper limb. The correlations between clinical data and physical activity and the ActiMyo® movement parameters were analyzed. The mean of the rotation rate and mean of the elevation rate appeared promising since these variables had the best reliability scores and correlations with task scores. Parameters could be computed even in a patient with a Brooke functional score of 6. The variables chosen are good candidates as potential outcome measures in non-ambulant patients with Duchenne Muscular Dystrophy and use of the ActiMyo® is currently being explored in home environment.

Trial registration: ClinicalTrials.gov NCT01611597.

Conflict of interest statement

Competing Interests: JYH is inventor of the MyoGrip. JYH and AM are co-inventors of the MyoPinch. JYH, LS, and TV are co-inventors of the MoviPlate. DV, LS, JYH, and AM are co-inventors of the ActiMyo®. We declare the following patents/patent applications (Vissière, David; Servais, Laurent. Actimyo—Couple contra-gravitaire. France. Brevet FR 1650652. 27 Janvier 2016). Eric Dorveaux and David Vissière are employed by the commercial company SYSNAV. There are no further patents, products in development or marketed products to declare. This does not alter our adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Fig 1. The tools.
Fig 1. The tools.
(A) First version of ActiMyo®, used in the current study. (B) Box and Block test. (C) Minnesota test with five discs.
Fig 2. Patient flow-chart.
Fig 2. Patient flow-chart.
Fig 3. Reliability between test and retest…
Fig 3. Reliability between test and retest for all the tasks evaluated for each ActiMyo® variable.
MoviPlate; BBT; Minnesota test; Writing;× PC typing.
Fig 4. Correlation between the ActiMyo ®…
Fig 4. Correlation between the ActiMyo® variables and the functional tests’ scores.
Patient 1; ■ Patient 2; ▲ Patient 3; × Patient 4; * Patient 5; ● Patient 6; + Patient 7. Correlations between ‖Ω‖ and scores for the tasks (A) Moviplate, (B) Box and Block test, and (C) Minnesota. Correlation between dθ and scores for the tasks (D) Moviplate, (E) Box and Block test, and (F) Minnesota.

References

    1. Santoso F, Redmond SJ (2015) Indoor location-aware medical systems for smart homecare and telehealth monitoring: state-of-the-art. Physiol Meas 36: R53–R87. 10.1088/0967-3334/36/10/R53
    1. Zimetbaum P, Goldman A (2010) Ambulatory arrhythmia monitoring: choosing the right device. Circulation 122: 1629–1636. 10.1161/CIRCULATIONAHA.109.925610
    1. Dash D, Hernandez-Ronquillo L, Moien-Afshari F, Tellez-Zenteno JF (2012) Ambulatory EEG: a cost-effective alternative to inpatient video-EEG in adult patients. Epileptic Disord 14: 290–297. 10.1684/epd.2012.0529
    1. McDonald CM, Widman L, Abresch RT, Walsh SA, Walsh DD (2005) Utility of a step activity monitor for the measurement of daily ambulatory activity in children. Arch Phys Med Rehabil 86: 793–801.
    1. Clanchy KM, Tweedy SM, Boyd RN, Trost SG (2011) Validity of accelerometry in ambulatory children and adolescents with cerebral palsy. Eur J Appl Physiol 111: 2951–2959. 10.1007/s00421-011-1915-2
    1. Gorter JW, Noorduyn SG, Obeid J, Timmons BW (2012) Accelerometry: a feasible method to quantify physical activity in ambulatory and nonambulatory adolescents with cerebral palsy. Int J Pediatr 2012: 329284 10.1155/2012/329284
    1. Carpinella I, Cattaneo D, Ferrarin M (2014) Quantitative assessment of upper limb motor function in Multiple Sclerosis using an instrumented Action Research Arm Test. J Neuroeng Rehabil 11: 67 10.1186/1743-0003-11-67
    1. Sosnoff JJ, Goldman MD, Motl RW (2010) Real-life walking impairment in multiple sclerosis: preliminary comparison of four methods for processing accelerometry data. Mult Scler 16: 868–877. 10.1177/1352458510373111
    1. Nijsen TM, Aarts RM, Cluitmans PJ, Griep PA (2010) Time-frequency analysis of accelerometry data for detection of myoclonic seizures. IEEE Trans Inf Technol Biomed 14: 1197–1203. 10.1109/TITB.2010.2058123
    1. Nijsen TM, Cluitmans PJ, Arends JB, Griep PA (2007) Detection of subtle nocturnal motor activity from 3-D accelerometry recordings in epilepsy patients. IEEE Trans Biomed Eng 54: 2073–2081.
    1. Schulc E, Unterberger I, Saboor S, Hilbe J, Ertl M, Ammenwerth E et al. (2011) Measurement and quantification of generalized tonic-clonic seizures in epilepsy patients by means of accelerometry—an explorative study. Epilepsy Res 95: 173–183. 10.1016/j.eplepsyres.2011.02.010
    1. Van de Vel A, Cuppens K, Bonroy B, Milosevic M, Van Huffel S, Vanrumste B et al. (2013) Long-term home monitoring of hypermotor seizures by patient-worn accelerometers. Epilepsy Behav 26: 118–125. 10.1016/j.yebeh.2012.10.006
    1. Lan KC, Shih WY (2013) On calibrating the sensor errors of a PDR-based indoor localization system. Sensors (Basel) 13: 4781–4810.
    1. Grimpampi E, Bonnet V, Taviani A, Mazza C (2013) Estimate of lower trunk angles in pathological gaits using gyroscope data. Gait Posture 38: 523–527. 10.1016/j.gaitpost.2013.01.031
    1. El-Zayat BF, Efe T, Heidrich A, Anetsmann R, Timmesfeld N, Fuchs-Winkelmann S et al. (2013) Objective assessment, repeatability, and agreement of shoulder ROM with a 3D gyroscope. BMC Musculoskelet Disord 14: 72 10.1186/1471-2474-14-72
    1. Mancini M, Horak FB, Zampieri C, Carlson-Kuhta P, Nutt JG, Chiari L (2011) Trunk accelerometry reveals postural instability in untreated Parkinson's disease. Parkinsonism Relat Disord 17: 557–562. 10.1016/j.parkreldis.2011.05.010
    1. El-Gohary M, Pearson S, McNames J, Mancini M, Horak F, Mellone S et al. (2013) Continuous monitoring of turning in patients with movement disability. Sensors (Basel) 14: 356–369.
    1. Zampieri C, Salarian A, Carlson-Kuhta P, Nutt JG, Horak FB (2011) Assessing mobility at home in people with early Parkinson's disease using an instrumented Timed Up and Go test. Parkinsonism Relat Disord 17: 277–280. 10.1016/j.parkreldis.2010.08.001
    1. Paulis WD, Horemans HL, Brouwer BS, Stam HJ (2011) Excellent test-retest and inter-rater reliability for Tardieu Scale measurements with inertial sensors in elbow flexors of stroke patients. Gait Posture 33: 185–189. 10.1016/j.gaitpost.2010.10.094
    1. Ganea R, Jeannet PY, Paraschiv-Ionescu A, Goemans NM, Piot C, Van den Hauwe M et al. (2012) Gait assessment in children with duchenne muscular dystrophy during long-distance walking. J Child Neurol 27: 30–38. 10.1177/0883073811413581
    1. Jeannet PY, Aminian K, Bloetzer C, Najafi B, Paraschiv-Ionescu A (2011) Continuous monitoring and quantification of multiple parameters of daily physical activity in ambulatory Duchenne muscular dystrophy patients. Eur J Paediatr Neurol 15: 40–47. 10.1016/j.ejpn.2010.07.002
    1. Petit N, Praly N, Vissière D, Laurent-Varin J (2013) Engin spatial muni d'un dispositif d'estimation de son vecteur vitesse par rapport à un référentiel inertiel et procédé d'estimation correspondant. Google Patents.
    1. Becq G, Bonnet S, Minotti L, Antonakios M, Guillemaud R, Kahane P (2011) Classification of epileptic motor manifestations using inertial and magnetic sensors. Comput Biol Med 41: 46–55. 10.1016/j.compbiomed.2010.11.005
    1. Ricci L, Formica D, Sparaci L, Lasorsa FR, Taffoni F, Tamilia E et al. (2014) A new calibration methodology for thorax and upper limbs motion capture in children using magneto and inertial sensors. Sensors (Basel) 14: 1057–1072.
    1. Taffoni F, Focaroli V, Keller F, Iverson JM (2014) A technological approach to studying motor planning ability in children at high risk for ASD. Conf Proc IEEE Eng Med Biol Soc 2014: 3638–3641. 10.1109/EMBC.2014.6944411
    1. Emery AE (1991) Population frequencies of inherited neuromuscular diseases—a world survey. Neuromuscul Disord 1: 19–29.
    1. Mah JK, Korngut L, Dykeman J, Day L, Pringsheim T, Jette N (2014) A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord 24: 482–491. 10.1016/j.nmd.2014.03.008
    1. Muntoni F, Torelli S, Ferlini A (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2: 731–740.
    1. McDonald CM (2002) Physical activity, health impairments, and disability in neuromuscular disease. Am J Phys Med Rehabil 81: S108–120.
    1. Emery AE (2002) The muscular dystrophies. Lancet 359: 687–695.
    1. Grootenhuis MA, de Boone J, van der Kooi AJ (2007) Living with muscular dystrophy: health related quality of life consequences for children and adults. Health Qual Life Outcomes 5: 31
    1. Aartsma-Rus A, Bremmer-Bout M, Janson AA, den Dunnen JT, van Ommen GJ, van Deutekom JC (2002) Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy. Neuromuscul Disord 12 Suppl 1: S71–77.
    1. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K et al. (2011) Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378: 595–605. 10.1016/S0140-6736(11)60756-3
    1. Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N et al. (2011) Systemic administration of PRO051 in Duchenne's muscular dystrophy. N Engl J Med 364: 1513–1522. 10.1056/NEJMoa1011367
    1. Voit T, Topaloglu H, Straub V, Muntoni F, Deconinck N, Campion G et al. (2014) Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol 13: 987–996. 10.1016/S1474-4422(14)70195-4
    1. Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP et al. (2013) Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 74: 637–647. 10.1002/ana.23982
    1. McDonald CM, Henricson EK, Han JJ, Abresch RT, Nicorici A, Elfring GL et al. (2010) The 6-minute walk test as a new outcome measure in Duchenne muscular dystrophy. Muscle Nerve 41: 500–510. 10.1002/mus.21544
    1. Hiller LB, Wade CK (1992) Upper extremity functional assessment scales in children with Duchenne muscular dystrophy: a comparison. Arch Phys Med Rehabil 73: 527–534.
    1. Connolly AM, Malkus EC, Mendell JR, Flanigan KM, Miller JP, Schierbecker JR et al. (2015) Outcome reliability in non-ambulatory boys/men with Duchenne muscular dystrophy. Muscle Nerve 51: 522–532. 10.1002/mus.24346
    1. Mazzone ES, Vasco G, Palermo C, Bianco F, Galluccio C, Ricotti V et al. (2012) A critical review of functional assessment tools for upper limbs in Duchenne muscular dystrophy. Dev Med Child Neurol 54: 879–885. 10.1111/j.1469-8749.2012.04345.x
    1. Berard C, Payan C, Fermanian J, Girardot F, Groupe d'Etude MFM (2006) [A motor function measurement scale for neuromuscular diseases—description and validation study]. Rev Neurol (Paris) 162: 485–493.
    1. Servais L, Deconinck N, Moraux A, Benali M, Canal A, Van Parys F et al. (2013) Innovative methods to assess upper limb strength and function in non-ambulant Duchenne patients. Neuromuscul Disord 23: 139–148. 10.1016/j.nmd.2012.10.022
    1. Mayhew A, Mazzone ES, Eagle M, Duong T, Ash M, Decostre V et al. (2013) Development of the Performance of the Upper Limb module for Duchenne muscular dystrophy. Dev Med Child Neurol 55: 1038–1045. 10.1111/dmcn.12213
    1. Kurillo G, Han JJ, Abresch RT, Nicorici A, Yan P, Banjcsy R (2012) Development and application of stereo camera-based upper extremity workspace evaluation in patients with neuromuscular diseases. PLoS One 7: e45341 10.1371/journal.pone.0045341
    1. Han JJ, Kurillo G, Abresch RT, Nicorici A, Bajcsy R (2013) Validity, Reliability, and Sensitivity of a 3D Vision Sensor-based Upper Extremity Reachable Workspace Evaluation in Neuromuscular Diseases. PLoS Curr 5.
    1. Lowes LP, Alfano LN, Crawfis R, Berry K, Yin H, Dvorchik I et al. (2015) Reliability and validity of active-seated: An outcome in dystrophinopathy. Muscle Nerve 52: 356–362. 10.1002/mus.24557
    1. Prahm KP, Witting N, Vissing J (2014) Decreased variability of the 6-minute walk test by heart rate correction in patients with neuromuscular disease. PLoS One 9: e114273 10.1371/journal.pone.0114273
    1. Seferian AM, Moraux A, Canal A, Decostre V, Diebate O, Le Moing AG et al. (2015) Upper limb evaluation and one-year follow up of non-ambulant patients with spinal muscular atrophy: an observational multicenter trial. PLoS One 10: e0121799 10.1371/journal.pone.0121799
    1. Seferian AM, Moraux A, Annoussamy M, Canal A, Decostre V, Diebate O et al. (2015) Upper limb strength and function changes during a one-year follow-up in non-ambulant patients with Duchenne Muscular Dystrophy: an observational multicenter trial. PLoS One 10: e0113999 10.1371/journal.pone.0113999
    1. Hogrel JY, Wary C, Moraux A, Azzabou N, Decostre V, Ollivier G et al. (2016) Longitudinal functional and NMR assessment of upper limbs in Duchenne muscular dystrophy. Neurology 86: 1022–1030. 10.1212/WNL.0000000000002464
    1. Mathiowetz V, Volland G, Kashman N, Weber K (1985) Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther 39: 386–391.
    1. Gloss DS, Wardle MG (1982) Use of the Minnesota Rate of Manipulation Test for disability evaluation. Percept Mot Skills 55: 527–532.
    1. Dorveaux E, Vissière D, Martin A, Petit N (2009) Iterative calibration method for inertial and magnetic sensors. Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference CDC/CCC 2009 Proceedings of the 48th IEEE Conference on, Shanghai: 8296–8303.
    1. Foster CC, Elkaim GH (2008) Extension of a two-step calibration methodology to include nonorthogonal sensor axes. IEEE Transactions on Aerospace and Electronic Systems Volume:44: 1070–1078.
    1. Crassidis JL, Landis MF, Yang Cheng (2007) Survey of Nonlinear Attitude Estimation Methods. Journal of Guidance, Control, and Dynamics 30: 12–28.
    1. Hamel T, Mahony R (2006) Attitude estimation on SO(3) based on direct inertial measurements. Robotics and Automation, 2006 ICRA 2006 Proceedings 2006 IEEE International Conference on: 2170–2175.
    1. Wahba G (1965) Problem 65-1- A least squares estimate of spacecraft attitude. SIAM Review 7: 409.
    1. Vissière D, Martin A, Petit N (2007) Using magnetic disturbances to improve IMU-based position estimation. Control Conference (ECC), 2007 European: 2853–2858.
    1. Mattar FL, Sobreira C (2008) Hand weakness in Duchenne muscular dystrophy and its relation to physical disability. Neuromuscul Disord 18: 193–198. 10.1016/j.nmd.2007.11.004
    1. Brooke MH, Griggs RC, Mendell JR, Fenichel GM, Shumate JB, Pellegrino RJ (1981) Clinical trial in Duchenne dystrophy. I. The design of the protocol. Muscle Nerve 4: 186–197.
    1. Bartels B, Pangalila RF, Bergen MP, Cobben NA, Stam HJ, Roebroeck ME (2011) Upper limb function in adults with Duchenne muscular dystrophy. J Rehabil Med 43: 770–775. 10.2340/16501977-0841
    1. Escolar DM, Henricson EK, Mayhew J, Florence J, Leshner R, Patel KM et al. (2001) Clinical evaluator reliability for quantitative and manual muscle testing measures of strength in children. Muscle Nerve 24: 787–793.
    1. Lord JP, Portwood MM, Fowler WM, Lieberman JS, Carson R (1987) Upper vs lower extremity functional loss in neuromuscular disease. Arch Phys Med Rehabil 68: 8–9.
    1. Main M, Kairon H, Mercuri E, Muntoni F (2003) The Hammersmith functional motor scale for children with spinal muscular atrophy: a scale to test ability and monitor progress in children with limited ambulation. Eur J Paediatr Neurol 7: 155–159.
    1. Glanzman AM, Mazzone E, Main M, Pelliccioni M, Wood J, Swoboda KJ et al. (2010) The Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): test development and reliability. Neuromuscul Disord 20: 155–161. 10.1016/j.nmd.2009.11.014
    1. Penta M, Thonnard JL, Tesio L (1998) ABILHAND: a Rasch-built measure of manual ability. Arch Phys Med Rehabil 79: 1038–1042.
    1. Vincent KA, Carr AJ, Walburn J, Scott DL, Rose MR (2007) Construction and validation of a quality of life questionnaire for neuromuscular disease (INQoL). Neurology 68: 1051–1057.
    1. Schoeppe S, Duncan MJ, Badland HM, Alley S, Williams S, Rebar AL et al. (2015) Socio-demographic factors and neighbourhood social cohesion influence adults' willingness to grant children greater independent mobility: A cross-sectional study. BMC Public Health 15: 690 10.1186/s12889-015-2053-2
    1. Dencker M, Andersen LB (2008) Health-related aspects of objectively measured daily physical activity in children. Clin Physiol Funct Imaging 28: 133–144. 10.1111/j.1475-097X.2008.00788.x

Source: PubMed

3
Subscribe