Gut microbiota profile in children affected by atopic dermatitis and evaluation of intestinal persistence of a probiotic mixture

Sofia Reddel, Federica Del Chierico, Andrea Quagliariello, Simona Giancristoforo, Pamela Vernocchi, Alessandra Russo, Alessandro Fiocchi, Paolo Rossi, Lorenza Putignani, May El Hachem, Sofia Reddel, Federica Del Chierico, Andrea Quagliariello, Simona Giancristoforo, Pamela Vernocchi, Alessandra Russo, Alessandro Fiocchi, Paolo Rossi, Lorenza Putignani, May El Hachem

Abstract

Atopic dermatitis (AD) has been hypothesised to be associated with gut microbiota (GM) composition. We performed a comparative study of the GM profile of 19 AD children and 18 healthy individuals aimed at identifying bacterial biomarkers associated with the disease. The effect of probiotic intake (Bifidobacterium breve plus Lactobacillus salivarius) on the modulation of GM and the probiotic persistence in the GM were also evaluated. Faecal samples were analysed by real-time PCR and 16S rRNA targeted metagenomics. Although the probiotics, chosen for this study, did not shape the entire GM profile, we observed the ability of these species to pass through the gastrointestinal tract and to persist (only B. breve) in the GM. Moreover, the GM of patients compared to CTRLs showed a dysbiotic status characterised by an increase of Faecalibacterium, Oscillospira, Bacteroides, Parabacteroides and Sutterella and a reduction of short-chain fatty acid (SCFA)-producing bacteria (i.e., Bifidobacterium, Blautia, Coprococcus, Eubacterium and Propionibacterium). Taken togheter these results show an alteration in AD microbiota composition with the depletion or absence of some species, opening the way to future probiotic intervention studies.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Beta-diversity analysis of AD and CTRL groups. The plots show the first two principal axes for PCoA using Bray-Curtis (A), unweighted UniFrac (B) and weighted UniFrac (C) algorithms. P-values were obtained by PERMANOVA.
Figure 2
Figure 2
Alpha-diversity measures of Observed, Chao1 and Shannon indexes. Boxes represent the median, 25th and 75th percentiles for AD (time points are indicated) and CTRL groups.
Figure 3
Figure 3
Mann–Whitney-based OTU distribution. The bar graphs represent the average distribution of the OTUs by phylum (A), family (B) and genus/species (C) levels. Only statistically significant OTUs are plotted (p-values were corrected by the Holm method).
Figure 4
Figure 4
ROC curve plots. The areas under the ROC curves (AUROC) represent the specificity and sensitivity of the 17 selected OTUs to discriminate the T0 AD and CTRL groups.
Figure 5
Figure 5
Histograms of B. breve and L. salivarius levels at different time points. Median values differences between B. breve (blue bar) and L. salivarius (green bar) levels expressed as molecules/ul at each point of the time-course. P-values were obtained using the Mann–Whitney U test.

References

    1. Tan THT, Ellis JA, Saffery R, Allen KJ. The role of genetics and environment in the rise of childhood food allergy. Clin. Exp. Allergy. 2012;42:20–29. doi: 10.1111/j.1365-2222.2011.03823.x.
    1. Flohr C, Mann J. New insights into the epidemiology of childhood atopic dermatitis. Allergy. 2014;69:3–16. doi: 10.1111/all.12270.
    1. Cuello-Garcia, C. A. et al. World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): Prebiotics. World Allergy Organ. J. 9 (2016).
    1. Fiocchi, A. et al. World Allergy Organization-McMaster University Guidelines for Allergic Disease Prevention (GLAD-P): Probiotics. World Allergy Organ. J. 8 (2015).
    1. Noverr MC, Huffnagle GB. The ‘microflora hypothesis’ of allergic diseases. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2005;35:1511–1520. doi: 10.1111/j.1365-2222.2005.02379.x.
    1. Round JL, Mazmanian SK. Inducible Foxp(3+) regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl. Acad. Sci. USA. 2010;107:12204–12209. doi: 10.1073/pnas.0909122107.
    1. Vernocchi P, et al. Understanding probiotics’ role in allergic children: the clue of gut microbiota profiling. Curr. Opin. Allergy Clin. Immunol. 2015;15:495–503. doi: 10.1097/ACI.0000000000000203.
    1. Cosmi L, Liotta F, Maggi E, Rornagnani S, Annunziato F. Th17 and Non-Classic Th1 Cells in Chronic Inflammatory Disorders: Two Sides of the Same Coin. Int. Arch. Allergy Immunol. 2014;164:171–177. doi: 10.1159/000363502.
    1. Elazab N, et al. Probiotic Administration in Early Life, Atopy, and Asthma: A Meta-analysis of Clinical Trials. Pediatrics. 2013;132:E666–E676. doi: 10.1542/peds.2013-0246.
    1. Hardy H, Harris J, Lyon E, Beal J, Foey AD. Probiotics, Prebiotics and Immunomodulation of Gut Mucosal Defences: Homeostasis and Immunopathology. Nutrients. 2013;5:1869–1912. doi: 10.3390/nu5061869.
    1. Probiotics in food: health and nutritional properties and guidelines for evaluation. (Food and Agriculture Organization of the United Nations: World Health Organization, 2006).
    1. Winkler P, Ghadimi D, Schrezenmeir J, Kraehenbuhl JP. Molecular and cellular basis of microflora-host interactions. J. Nutr. 2007;137:756S–772S. doi: 10.1093/jn/137.3.756S.
    1. Huang R, et al. Probiotics for the Treatment of Atopic Dermatitis in Children: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Cell. Infect. Microbiol. 2017;7:392. doi: 10.3389/fcimb.2017.00392.
    1. Kim S-O, et al. Effects of probiotics for the treatment of atopic dermatitis: a meta-analysis of randomized controlled trials. Ann. Allergy Asthma Immunol. Off. Publ. Am. Coll. Allergy Asthma Immunol. 2014;113:217–226. doi: 10.1016/j.anai.2014.05.021.
    1. Putignani L, et al. MALDI-TOF mass spectrometry proteomic phenotyping of clinically relevant fungi. Mol Biosyst. 2011;7:620–9. doi: 10.1039/C0MB00138D.
    1. Ying YX, Ding WL, Li Y. Characterization of Soil Bacterial Communities in Rhizospheric and Nonrhizospheric Soil of Panax ginseng. Biochem. Genet. 2012;50:848–859. doi: 10.1007/s10528-012-9525-1.
    1. Ercolini D, De Filippis F, La Storia A, Iacono M. ‘Remake’ by high-throughput sequencing of the microbiota involved in the production of water buffalo mozzarella cheese. Appl Env. Microbiol. 2012;78:8142–5. doi: 10.1128/AEM.02218-12.
    1. Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. in. Nat Methods. 2010;7:335–6. doi: 10.1038/nmeth.f.303.
    1. Reeder J, Knight R. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. in Nat Methods. 2010;7:668–9. doi: 10.1038/nmeth0910-668b.
    1. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1. doi: 10.1093/bioinformatics/btq461.
    1. Rapid Cycle Real-Time PCR, 10.1007/978-3-642-59524-0 (Springer Berlin Heidelberg, 2001).
    1. McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One. 2013;8:e61217. doi: 10.1371/journal.pone.0061217.
    1. Segata N, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60.
    1. Holm S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979;6:65–70.
    1. Toh ZQ, Anzela A, Tang ML, Licciardi PV. Probiotic therapy as a novel approach for allergic disease. Front Pharmacol. 2012;3:171. doi: 10.3389/fphar.2012.00171.
    1. Nylund L, Satokari R, Salminen S, de Vos WM. Intestinal microbiota during early life - impact on health and disease. Proc. Nutr. Soc. 2014;73:457–469. doi: 10.1017/S0029665114000627.
    1. Abrahamsson TR, et al. Low diversity of the gut microbiota in infants with atopic eczema. J. Allergy Clin. Immunol. 2012;129:434–U244. doi: 10.1016/j.jaci.2011.10.025.
    1. Marrs T, Flohr C. How do Microbiota Influence the Development and Natural History of Eczema and Food Allergy? Pediatr Infect J. 2016;35:1258–1261. doi: 10.1097/INF.0000000000001314.
    1. Nylund L, et al. Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria. Allergy. 2015;70:241–244. doi: 10.1111/all.12549.
    1. West CE, Jenmalm MC, Prescott SL. The gut microbiota and its role in the development of allergic disease: a wider perspective. Clin Exp Allergy. 2015;45:43–53. doi: 10.1111/cea.12332.
    1. Rodriguez JM, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050.
    1. Berni Canani R, et al. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. Isme J. 2016;10:742–50. doi: 10.1038/ismej.2015.151.
    1. Candela M, et al. Unbalance of intestinal microbiota in atopic children. BMC Microbiol. 2012;12:95. doi: 10.1186/1471-2180-12-95.
    1. Nylund, L. et al. Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. Bmc Microbiol. 13 (2013).
    1. Watanabe S, et al. Differences in fecal microflora between patients with atopic dermatitis and healthy control subjects. J Allergy Clin Immunol. 2003;111:587–91. doi: 10.1067/mai.2003.105.
    1. Miquel S, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16:255–61. doi: 10.1016/j.mib.2013.06.003.
    1. Song H, Yoo Y, Hwang J, Na YC, Kim HS. Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis. J Allergy Clin Immunol. 2016;137:852–60. doi: 10.1016/j.jaci.2015.08.021.
    1. Sokol H, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U A. 2008;105:16731–6. doi: 10.1073/pnas.0804812105.
    1. Gophna U, Konikoff T, Nielsen HB. Oscillospira and related bacteria - From metagenomic species to metabolic features. Env. Microbiol. 2017;19:835–841. doi: 10.1111/1462-2920.13658.
    1. Konikoff T, Gophna U. Oscillospira: a Central, Enigmatic Component of the Human Gut Microbiota. Trends Microbiol. 2016;24:523–524. doi: 10.1016/j.tim.2016.02.015.
    1. Hua X, Goedert JJ, Pu A, Yu G, Shi J. Allergy associations with the adult fecal microbiota: Analysis of the American Gut Project. EBioMedicine. 2016;3:172–179. doi: 10.1016/j.ebiom.2015.11.038.
    1. Odamaki T, et al. Distribution of different species of the Bacteroides fragilis group in individuals with Japanese cedar pollinosis. Appl. Environ. Microbiol. 2008;74:6814–6817. doi: 10.1128/AEM.01106-08.
    1. Kirjavainen PV, Arvola T, Salminen SJ, Isolauri E. Aberrant composition of gut microbiota of allergic infants: a target of bifidobacterial therapy at weaning? Gut. 2002;51:51–55. doi: 10.1136/gut.51.1.51.
    1. Sipka S, Bruckner G. The immunomodulatory role of bile acids. Int Arch Allergy Immunol. 2014;165:1–8. doi: 10.1159/000366100.
    1. Curtis MM, et al. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe. 2014;16:759–769. doi: 10.1016/j.chom.2014.11.005.
    1. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJO. Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J. Clin. Microbiol. 2006;44:4136–4141. doi: 10.1128/JCM.01004-06.
    1. Li M, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl. Acad. Sci. USA. 2008;105:2117–2122. doi: 10.1073/pnas.0712038105.
    1. Moore WE, Moore LV. The bacteria of periodontal diseases. Periodontol 2000. 1994;5:66–77. doi: 10.1111/j.1600-0757.1994.tb00019.x.
    1. Rajilic-Stojanovic M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014;38:996–1047. doi: 10.1111/1574-6976.12075.
    1. Cho GS, et al. Quantification of Slackia and Eggerthella spp. in Human Feces and Adhesion of Representatives Strains to Caco-2 Cells. Front Microbiol. 2016;7:658.
    1. Morinaga S, Sakamoto K, Konishi K. Antitumor activity and its properties of Eubacterium lentum. Jpn. J. Cancer Res. Gann. 1988;79:117–124. doi: 10.1111/j.1349-7006.1988.tb00018.x.
    1. Haiser HJ, et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science. 2013;341:295–8. doi: 10.1126/science.1235872.
    1. Reichardt N, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. Isme J. 2014;8:1323–35. doi: 10.1038/ismej.2014.14.
    1. Shu M, et al. Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus. PloS One. 2013;8:e55380. doi: 10.1371/journal.pone.0055380.
    1. Macia L, et al. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol Rev. 2012;245:164–76. doi: 10.1111/j.1600-065X.2011.01080.x.
    1. De Benedetto A, et al. Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol. 2011;127:773-86.e1–7.
    1. Parvez S, Malik KA, Ah Kang S, Kim HY. Probiotics and their fermented food products are beneficial for health. J Appl Microbiol. 2006;100:1171–85. doi: 10.1111/j.1365-2672.2006.02963.x.
    1. Vitali B, et al. Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiol. 2010;10:4. doi: 10.1186/1471-2180-10-4.
    1. Inoue Y, Iwabuchi N, Xiao J-Z, Yaeshima T, Iwatsuki K. Suppressive effects of bifidobacterium breve strain M-16V on T-helper type 2 immune responses in a murine model. Biol. Pharm. Bull. 2009;32:760–763. doi: 10.1248/bpb.32.760.
    1. Drago L, De Vecchi E, Gabrieli A, De Grandi R, Toscano M. Immunomodulatory Effects of Lactobacillus salivarius LS01 and Bifidobacterium breve BR03, Alone and in Combination, on Peripheral Blood Mononuclear Cells of Allergic Asthmatics. Allergy Asthma Immunol. Res. 2015;7:409–413. doi: 10.4168/aair.2015.7.4.409.
    1. Kalliomaki M, et al. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet. 2001;357:1076–9. doi: 10.1016/S0140-6736(00)04259-8.
    1. Fiocchi A, et al. Clinical Use of Probiotics in Pediatric Allergy (CUPPA): A World Allergy Organization Position Paper. World Allergy Organ J. 2012;5:148–67. doi: 10.1097/WOX.0b013e3182784ee0.
    1. Kim JY, et al. Effect of probiotic mix (Bifidobacterium bifidum, Bifidobacterium lactis, Lactobacillus acidophilus) in the primary prevention of eczema: a double-blind, randomized, placebo-controlled trial. Pediatr. Allergy Immunol. Off. Publ. Eur. Soc. Pediatr. Allergy Immunol. 2010;21:e386–393. doi: 10.1111/j.1399-3038.2009.00958.x.
    1. Licari, A. et al. Atopic dermatitis: is there a role for probiotics? J. Biol. Regul. Homeost. Agents. 29, 18–24 (2015).
    1. Kirjavainen, P. V., Salminen, S. J. & Isolauri, E. Probiotic bacteria in the management of atopic disease: underscoring the importance of viability. J. Pediatr. Gastroenterol. Nutr. 36, 223–227, 10.1097/00005176-200302000-00012 (2003).

Source: PubMed

3
Subscribe