Genetic and epigenetic studies of atopic dermatitis

Lianghua Bin, Donald Y M Leung, Lianghua Bin, Donald Y M Leung

Abstract

Background: Atopic dermatitis (AD) is a chronic inflammatory disease caused by the complex interaction of genetic, immune and environmental factors. There have many recent discoveries involving the genetic and epigenetic studies of AD.

Methods: A retrospective PubMed search was carried out from June 2009 to June 2016 using the terms "atopic dermatitis", "association", "eczema", "gene", "polymorphism", "mutation", "variant", "genome wide association study", "microarray" "gene profiling", "RNA sequencing", "epigenetics" and "microRNA". A total of 132 publications in English were identified.

Results: To elucidate the genetic factors for AD pathogenesis, candidate gene association studies, genome-wide association studies (GWAS) and transcriptomic profiling assays have been performed in this period. Epigenetic mechanisms for AD development, including genomic DNA modification and microRNA posttranscriptional regulation, have been explored. To date, candidate gene association studies indicate that filaggrin (FLG) null gene mutations are the most significant known risk factor for AD, and genes in the type 2 T helper lymphocyte (Th2) signaling pathways are the second replicated genetic risk factor for AD. GWAS studies identified 34 risk loci for AD, these loci also suggest that genes in immune responses and epidermal skin barrier functions are associated with AD. Additionally, gene profiling assays demonstrated AD is associated with decreased gene expression of epidermal differentiation complex genes and elevated Th2 and Th17 genes. Hypomethylation of TSLP and FCER1G in AD were reported; and miR-155, which target the immune suppressor CTLA-4, was found to be significantly over-expressed in infiltrating T cells in AD skin lesions.

Conclusions: The results suggest that two major biologic pathways are responsible for AD etiology: skin epithelial function and innate/adaptive immune responses. The dysfunctional epidermal barrier and immune responses reciprocally affect each other, and thereby drive development of AD.

Keywords: Adaptive immunity; Atopic dermatitis; DNA methylation; Epigenetic; Genetic association; Genetics; Innate immunity; Skin barrier; miRNA.

Figures

Fig. 1
Fig. 1
Genes associated with AD in at least 1 publication. Genes are grouped based on the reported positive association studies (see Additional file 1: Table S1 in the supplemental materials for a complete summary of 91 published studies). The Y-axis indicates the number of genes. The X-axis indicates the corresponding number of positive association reported
Fig. 2
Fig. 2
The schematic illustration of AD etiology. Genetic and epigenetic reasons lead to the alteration of gene expression and function of AD associated genes. AD associated genes majorly belong to two pathways: skin barrier and innate/adaptive immunity. Dysregulation of innate/adaptive immune responses and impaired skin barrier reciprocally affect each other to drive AD development

References

    1. Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387(10023):1109–1122. doi: 10.1016/S0140-6736(15)00149-X.
    1. Spergel JM. From atopic dermatitis to asthma: the atopic march. Ann Allergy Asthma Immunol. 2010;105(2):99–106. doi: 10.1016/j.anai.2009.10.002.
    1. Sneddon IB. The management of infantile eczema. Med Press. 1951;226(14):329–333.
    1. Schaffer N. Atopic dermatitis in the older child. J Asthma Res. 1966;3(3):189–191. doi: 10.3109/02770906609106918.
    1. Edfors-Lubs ML. Allergy in 7000 twin pairs. Acta Allergol. 1971;26(4):249–285. doi: 10.1111/j.1398-9995.1971.tb01300.x.
    1. Schultz Larsen FV, Holm NV. Atopic dermatitis in a population based twin series. Concordance rates and heritability estimation. Acta dermato-venereologica. Suppl. 1985;114:159.
    1. Larsen FS, Holm NV, Henningsen K. Atopic dermatitis. A genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol. 1986;15(3):487–494. doi: 10.1016/S0190-9622(86)70198-9.
    1. Strachan DP, Wong HJ, Spector TD. Concordance and interrelationship of atopic diseases and markers of allergic sensitization among adult female twins. J Allergy Clin Immunol. 2001;108(6):901–907. doi: 10.1067/mai.2001.119408.
    1. van Beijsterveldt CE, Boomsma DI. Genetics of parentally reported asthma, eczema and rhinitis in 5-year-old twins. Euro Respir J. 2007;29(3):516–521. doi: 10.1183/09031936.00065706.
    1. Barnes KC. An update on the genetics of atopic dermatitis: scratching the surface in 2009. J Allergy Clin Immunol. 2010;125(1):16–29. doi: 10.1016/j.jaci.2009.11.008.
    1. Tamari M, Hirota T. Genome-wide association studies of atopic dermatitis. J Dermatol. 2014;41(3):213–220. doi: 10.1111/1346-8138.12321.
    1. Hoffjan S, Stemmler S. Unravelling the complex genetic background of atopic dermatitis: from genetic association results towards novel therapeutic strategies. Arch Dermatol Res. 2015;307(8):659–670. doi: 10.1007/s00403-015-1550-6.
    1. Peng W, Novak N. Recent developments in atopic dermatitis. Curr Opin Allergy Clin Immunol. 2014;14(5):417–422. doi: 10.1097/ACI.0000000000000094.
    1. Gao PS, Rafaels NM, Mu D, Hand T, Murray T, Boguniewicz M, Hata T, Schneider L, Hanifin JM, Gallo RL, Gao L. Genetic Variants in TSLP are Associated with Atopic Dermatitis and Eczema Herpeticum. J Allergy Clin Immunol. 2010;125(6):1403. doi: 10.1016/j.jaci.2010.03.016.
    1. Sokolowska-Wojdylo M, et al. The frequencies of haplotypes defined by three polymorphisms of the IL-31 gene: -1066, -2057, and IVS2 + 12 in Polish patients with atopic dermatitis. Int J Dermatol. 2015;54(1):62–67. doi: 10.1111/ijd.12666.
    1. Stemmler S, Parwez Q, Petrasch-Parwez E, Epplen JT, Hoffjan S. Association of variation in the LAMA3 gene, encoding the alpha-chain of laminin 5, with atopic dermatitis in a German case-control cohort. BMC Dermatol. 2014;14:17. doi: 10.1186/1471-5945-14-17.
    1. Margolis DJ, et al. Filaggrin-2 variation is associated with more persistent atopic dermatitis in African American subjects. J Allergy Clin Immunol. 2014;133(3):784–789. doi: 10.1016/j.jaci.2013.09.015.
    1. Trzeciak M, et al. Association of a Single Nucleotide Polymorphism in a Late Cornified Envelope-like Proline-rich 1 Gene (LELP1) with Atopic Dermatitis. Acta dermato-venereologica. 2016;96(4):459–463. doi: 10.2340/00015555-2301.
    1. Heine G, et al. Association of vitamin D receptor gene polymorphisms with severe atopic dermatitis in adults. Br J Dermatol. 2013;168(4):855–858. doi: 10.1111/bjd.12077.
    1. Kilic S, et al. Vitamin D receptor gene BSMI, FOKI, APAI, and TAQI polymorphisms and the risk of atopic dermatitis. J Investig Allergol Clin Immunol. 2016;26(2):106–110. doi: 10.18176/jiaci.0020.
    1. Suzuki H, et al. A rare variant in CYP27A1 and its association with atopic dermatitis with high serum total IgE. Allergy. 2016;71(10):1486–1489. doi: 10.1111/all.12950.
    1. Manolio TA. Genomewide association studies and assessment of the risk of disease. N Eng J Med. 2010;363(2):166–176. doi: 10.1056/NEJMra0905980.
    1. Esparza-Gordillo J, et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet. 2009;41(5):596–601. doi: 10.1038/ng.347.
    1. Sun LD, et al. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat Genet. 2011;43(7):690–694. doi: 10.1038/ng.851.
    1. Paternoster L, et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet. 2012;44(2):187–192. doi: 10.1038/ng.1017.
    1. Hirota T, et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat Genet. 2012;44(11):1222–1226. doi: 10.1038/ng.2438.
    1. Ellinghaus D, et al. High-density genotyping study identifies four new susceptibility loci for atopic dermatitis. Nat Genet. 2013;45(7):808–812. doi: 10.1038/ng.2642.
    1. Esparza-Gordillo J, et al. A functional IL-6 receptor (IL6R) variant is a risk factor for persistent atopic dermatitis. J Allergy Clin Immunol. 2013;132(2):371–377. doi: 10.1016/j.jaci.2013.01.057.
    1. Schaarschmidt H, et al. A genome-wide association study reveals 2 new susceptibility loci for atopic dermatitis. J Allergy Clin Immunol. 2015;136(3):802–806. doi: 10.1016/j.jaci.2015.01.047.
    1. Kim KW, Myers RA, et al. Genome-wide association study of recalcitrant atopic dermatitis in Korean children. J Allergy Clin Immunol. 2015;136(3):678–684. doi: 10.1016/j.jaci.2015.03.030.
    1. Genetics EA, et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat Genet. 2015;47(12):1449–1456. doi: 10.1038/ng.3424.
    1. Malissen B, Tamoutounour S, Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol. 2014;14(6):417–428. doi: 10.1038/nri3683.
    1. de Jong MA, Geijtenbeek TB. Langerhans cells in innate defense against pathogens. Trends Immunol. 2010;31(12):452–459. doi: 10.1016/j.it.2010.08.002.
    1. Uehira M, Matsuda H, Nakamura A, Nishimoto H. Immunologic abnormalities exhibited in IL-7 transgenic mice with dermatitis. J Investig Dermatol. 1998;110(5):740–745. doi: 10.1046/j.1523-1747.1998.00179.x.
    1. Steward-Tharp SM, et al. A mouse model of HIES reveals pro- and anti-inflammatory functions of STAT3. Blood. 2014;123(19):2978–2987. doi: 10.1182/blood-2013-09-523167.
    1. Hinds DA, et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat Genet. 2013;45(8):907–911. doi: 10.1038/ng.2686.
    1. Spergel JM, Paller AS. Atopic dermatitis and the atopic march. J Allergy Clin Immunol. 2003;112(6 Suppl):S118–S127. doi: 10.1016/j.jaci.2003.09.033.
    1. Weidinger S, et al. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Hum Mol Genet. 2013;22(23):4841–4856. doi: 10.1093/hmg/ddt317.
    1. Marenholz I, et al. Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat Commun. 2015;6:8804. doi: 10.1038/ncomms9804.
    1. Tamari M, et al. An association study of 36 psoriasis susceptibility loci for psoriasis vulgaris and atopic dermatitis in a Japanese population. J Dermatol Sci. 2014;76(2):156–157. doi: 10.1016/j.jdermsci.2014.08.005.
    1. Baurecht H, et al. Genome-wide comparative analysis of atopic dermatitis and psoriasis gives insight into opposing genetic mechanisms. Am J Human Gen. 2015;96(1):104–120. doi: 10.1016/j.ajhg.2014.12.004.
    1. Guttman YE, Suárez FM, Chiricozzi A, et al. Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. J Allergy Clin Immunol. 2009;124(6):1235–1244. doi: 10.1016/j.jaci.2009.09.031.
    1. Sugiura H, et al. Large-scale DNA microarray analysis of atopic skin lesions shows overexpression of an epidermal differentiation gene cluster in the alternative pathway and lack of protective gene expression in the cornified envelope. Br J Dermatol. 2005;152(1):146–149. doi: 10.1111/j.1365-2133.2005.06352.x.
    1. Suarez-Farinas M, et al. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. J Allergy Clin Immunol. 2015;135(5):1218–1227. doi: 10.1016/j.jaci.2015.03.003.
    1. Esaki H, et al. Identification of novel immune and barrier genes in atopic dermatitis by means of laser capture microdissection. J Aller Clin Immunol. 2015;135(1):153–163. doi: 10.1016/j.jaci.2014.10.037.
    1. Cole C, et al. Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis. J Allergy Clin Immunol. 2014;134(1):82–91. doi: 10.1016/j.jaci.2014.04.021.
    1. Bin L, et al. Identification of novel gene signatures in patients with atopic dermatitis complicated by eczema herpeticum. J Allergy Clin Immunol. 2014;134(4):848–855. doi: 10.1016/j.jaci.2014.07.018.
    1. Jurakic Toncic R, Marinovic B. What is new and hot in genetics of human atopic dermatitis: shifting paradigms in the landscape of allergic skin diseases. Acta dermatovenerologica Croatica: ADC. 2014;22(4):313–315.
    1. Ahn K. The role of air pollutants in atopic dermatitis. J Allergy Clin Immunol. 2014;134(5):993–999. doi: 10.1016/j.jaci.2014.09.023.
    1. Amarasekera M, Prescott SL, Palmer DJ. Nutrition in early life, immune-programming and allergies: the role of epigenetics. Asian Pac J Allergy Immunol. 2013;31(3):175–182.
    1. Liu J, et al. Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxic Sci. 2008;102(1):76–81. doi: 10.1093/toxsci/kfm290.
    1. Al-Daghri NM, et al. Increased IL-4 mRNA expression and poly-aromatic hydrocarbon concentrations from children with asthma. BMC Pediatr. 2014;14:17. doi: 10.1186/1471-2431-14-17.
    1. Wilson VL, Jones PA. Inhibition of DNA methylation by chemical carcinogens in vitro. Cell. 1983;32(1):239–246. doi: 10.1016/0092-8674(83)90514-7.
    1. Zhang N, et al. Methylation of cytosine at C5 in a CpG sequence context causes a conformational switch of a benzo[a]pyrene diol epoxide-N2-guanine adduct in DNA from a minor groove alignment to intercalation with base displacement. J Mol Biol. 2005;346(4):951–965. doi: 10.1016/j.jmb.2004.12.027.
    1. Weisenberger DJ, Romano LJ. Cytosine methylation in a CpG sequence leads to enhanced reactivity with Benzo[a]pyrene diol epoxide that correlates with a conformational change. J Biol Chem. 1999;274(34):23948–23955. doi: 10.1074/jbc.274.34.23948.
    1. Breton CV, et al. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med. 2009;180(5):462–467. doi: 10.1164/rccm.200901-0135OC.
    1. Luo Y, Zhou B, Zhao M, Tang J, Lu Q. Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol. 2014;39(1):48–53. doi: 10.1111/ced.12206.
    1. Liang Y, et al. Demethylation of the FCER1G promoter leads to FcepsilonRI overexpression on monocytes of patients with atopic dermatitis. Allergy. 2012;67(3):424–430. doi: 10.1111/j.1398-9995.2011.02760.x.
    1. Rodriguez E, et al. An integrated epigenetic and transcriptomic analysis reveals distinct tissue-specific patterns of DNA methylation associated with atopic dermatitis. J Investig Dermatol. 2014;134(7):1873–1883. doi: 10.1038/jid.2014.87.
    1. Tan HT, et al. Methylation of the filaggrin gene promoter does not affect gene expression and allergy. Pediatr Allergy Immunol. 2014;25(6):608–610.
    1. Ziyab AH, et al. DNA methylation of the filaggrin gene adds to the risk of eczema associated with loss-of-function variants. J Eur Acad Dermatol Venereol. 2013;27(3):e420–e423. doi: 10.1111/jdv.12000.
    1. Dai R, Ahmed SA. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res. 2011;157(4):163–179. doi: 10.1016/j.trsl.2011.01.007.
    1. Sonkoly E, Janson P, Majuri ML, Savinko T, Fyhrquist N, Eidsmo L, Xu N, Meisgen F, Wei T, Bradley M, Stenvang J. MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte–associated antigen 4. J Allergy Clin Immunol. 2010;126(3):581–589. doi: 10.1016/j.jaci.2010.05.045.
    1. Quinn SR, et al. The role of Ets2 transcription factor in the induction of microRNA-155 (miR-155) by lipopolysaccharide and its targeting by interleukin-10. J Biol Chem. 2014;289(7):4316–4325. doi: 10.1074/jbc.M113.522730.
    1. Lv Y, et al. Profiling of serum and urinary microRNAs in children with atopic dermatitis. PLoS ONE. 2014;9(12):e115448. doi: 10.1371/journal.pone.0115448.
    1. Mathias RA, Chavan S, Iyer KR, Rafaels NM, Boorgula M, Potee J, et al. Identifying genetic determinants of atopic dermatitis and bacterial colonization using whole genome sequencing. J Allergy Clin Immunol. 2015;135(2):AB391. doi: 10.1016/j.jaci.2014.12.1903.
    1. Czarnowicki T, Krueger JG, Guttman YE. Skin barrier and immune dysregulation in atopic dermatitis: an evolving story with important clinical implications. J Allergy Clin Immunol. 2014;2(4):371–379. doi: 10.1016/j.jaip.2014.03.006.
    1. O’Regan GM, Sandilands A, McLean WH, Irvine AD. Filaggrin in atopic dermatitis. J Allergy Clin Immunol. 2008;122(4):689–693. doi: 10.1016/j.jaci.2008.08.002.
    1. Gao PS, Rafaels NM, Hand T, Murray T, Boguniewicz M, Hata T, et al. Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum. J Allergy Clin Immunol. 2009;124(3):507–513. doi: 10.1016/j.jaci.2009.07.034.
    1. Wang IJ, Lin TJ. FLG P478S polymorphisms and environmental risk factors for the atopic march in Taiwanese children: a prospective cohort study. Ann Allergy Asthma Immunol. 2015;114(1):52–57. doi: 10.1016/j.anai.2014.10.019.
    1. Meng L, et al. Filaggrin gene mutation c.3321delA is associated with various clinical features of atopic dermatitis in the Chinese Han population. PLoS ONE. 2014;9(5):e98235. doi: 10.1371/journal.pone.0098235.
    1. Kim SY, et al. Association between P478S polymorphism of the filaggrin gene & atopic dermatitis. Indian J Med Res. 2013;138(6):922–927.
    1. Yu HS, et al. Mutations in the filaggrin are predisposing factor in korean children with atopic dermatitis. Allergy Asthma Immunol Res. 2013;5(4):211–215. doi: 10.4168/aair.2013.5.4.211.
    1. Li M, et al. Interactions between FLG mutations and allergens in atopic dermatitis. Arch Dermatol Res. 2012;304(10):787–793. doi: 10.1007/s00403-012-1282-9.
    1. Cai SC, et al. Filaggrin mutations are associated with recurrent skin infection in Singaporean Chinese patients with atopic dermatitis. Br J Dermatol. 2012;166(1):200–203. doi: 10.1111/j.1365-2133.2011.10541.x.
    1. Wang IJ, et al. Filaggrin polymorphism P478S, IgE level, and atopic phenotypes. Br J Dermatol. 2011;164(4):791–796. doi: 10.1111/j.1365-2133.2011.10212.x.
    1. Brown SJ, McLean WH. One remarkable molecule: filaggrin. J Investig Dermatol. 2012;132(3 Pt 2):751–762. doi: 10.1038/jid.2011.393.
    1. Akiyama M. FLG mutations in ichthyosis vulgaris and atopic eczema: spectrum of mutations and population genetics. Br J Dermatol. 2010;162(3):472–477. doi: 10.1111/j.1365-2133.2009.09582.x.
    1. Margolis DJ, et al. The persistence of atopic dermatitis and filaggrin (FLG) mutations in a US longitudinal cohort. J Allergy Clin Immunol. 2012;130(4):912–917. doi: 10.1016/j.jaci.2012.07.008.
    1. Winge MC, et al. Novel filaggrin mutation but no other loss-of-function variants found in Ethiopian patients with atopic dermatitis. Br J Dermatol. 2011;165(5):1074–1080. doi: 10.1111/j.1365-2133.2011.10475.x.
    1. Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Eng J Med. 2011;365(14):1315–1327. doi: 10.1056/NEJMra1011040.
    1. Brown SJ, et al. Intragenic copy number variation within filaggrin contributes to the risk of atopic dermatitis with a dose-dependent effect. J Investig Dermatol. 2012;132(1):98–104. doi: 10.1038/jid.2011.342.
    1. Esparza-Gordillo J, et al. Maternal filaggrin mutations increase the risk of atopic dermatitis in children: an effect independent of mutation inheritance. PLoS Genet. 2015;11(3):e1005076. doi: 10.1371/journal.pgen.1005076.
    1. Wang IJ, Karmaus WJ. The effect of phthalate exposure and filaggrin gene variants on atopic dermatitis. Environ Res. 2015;136:213–218. doi: 10.1016/j.envres.2014.09.032.
    1. Wang IJ, Lin CC, Lin YJ, Hsieh WS, Chen PC. Early life phthalate exposure and atopic disorders in children: a prospective birth cohort study. Environ Int. 2014;62:48–54. doi: 10.1016/j.envint.2013.09.002.
    1. Morar N, Cookson WO, Harper JI, Moffatt MF. Filaggrin mutations in children with severe atopic dermatitis. J Investig Dermatol. 2007;127(7):1667–1672. doi: 10.1038/sj.jid.5700739.
    1. Marenholz I, et al. Association screening in the Epidermal Differentiation Complex (EDC) identifies an SPRR3 repeat number variant as a risk factor for eczema. J Investig Dermatol. 2011;131(8):1644–1649. doi: 10.1038/jid.2011.90.
    1. Bergboer JG, et al. Deletion of late cornified envelope 3B and 3C genes is not associated with atopic dermatitis. J Investig Dermatol. 2010;130(8):2057–2061. doi: 10.1038/jid.2010.88.
    1. Sugawara T, et al. Tight junction dysfunction in the stratum granulosum leads to aberrant stratum corneum barrier function in claudin-1-deficient mice. J Dermatol Sci. 2013;70(1):12–18. doi: 10.1016/j.jdermsci.2013.01.002.
    1. Kirschner N, et al. Contribution of tight junction proteins to ion, macromolecule, and water barrier in keratinocytes. J Investig Dermatol. 2013;133(5):1161–1169. doi: 10.1038/jid.2012.507.
    1. De Benedetto A, et al. Tight junction defects in patients with atopic dermatitis. J Aller Clin Immunol. 2011;127(3):773–786. doi: 10.1016/j.jaci.2010.10.018.
    1. De Benedetto A, et al. Reductions in claudin-1 may enhance susceptibility to herpes simplex virus 1 infections in atopic dermatitis. J Allergy Clin Immunol. 2011;128(1):242–246. doi: 10.1016/j.jaci.2011.02.014.
    1. Desai BV, Harmon RM, Green KJ. Desmosomes at a glance. J Cell Sci. 2009;122(Pt 24):4401–4407. doi: 10.1242/jcs.037457.
    1. Samuelov L, et al. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat Genet. 2013;45(10):1244–1248. doi: 10.1038/ng.2739.
    1. Sasaki T, et al. A homozygous nonsense mutation in the gene for Tmem79, a component for the lamellar granule secretory system, produces spontaneous eczema in an experimental model of atopic dermatitis. J Allergy Clin Immunol. 2013;132(5):1111–1120. doi: 10.1016/j.jaci.2013.08.027.
    1. Saunders SP, et al. Tmem79/Matt is the matted mouse gene and is a predisposing gene for atopic dermatitis in human subjects. J Allergy Clin Immunol. 2013;132(5):1121–1129. doi: 10.1016/j.jaci.2013.08.046.
    1. Sprecher E, Leung DY. Atopic dermatitis: scratching through the complexity of barrier dysfunction. J Allergy Clin Immunol. 2013;132(5):1130–1131. doi: 10.1016/j.jaci.2013.09.026.
    1. Lepre T, et al. Association of KIF3A, but not OVOL1 and ACTL9, with atopic eczema in Italian patients. Br J Dermatol. 2013;168(5):1106–1108. doi: 10.1111/bjd.12178.
    1. Kang Z, et al. Correlation of KIF3A and OVOL1, but not ACTL9, with atopic dermatitis in Chinese pediatric patients. Gene. 2015;571(2):249–251. doi: 10.1016/j.gene.2015.06.068.
    1. Chavanas S, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet. 2000;25(2):141–142. doi: 10.1038/75977.
    1. Nishio Y, et al. Association between polymorphisms in the SPINK5 gene and atopic dermatitis in the Japanese. Genes Immun. 2003;4(7):515–517. doi: 10.1038/sj.gene.6363889.
    1. Briot A, et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med. 2009;206(5):1135–1147. doi: 10.1084/jem.20082242.
    1. Fortugno P, et al. The 420 K LEKTI variant alters LEKTI proteolytic activation and results in protease deregulation: implications for atopic dermatitis. Human Mol Genet. 2012;21(19):4187–4200. doi: 10.1093/hmg/dds243.
    1. Kezic S, O’Regan GM, Lutter R, Jakasa I, et al. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. J Allergy Clin Immunol. 2012;129(4):1031–1039. doi: 10.1016/j.jaci.2011.12.989.
    1. Lee KH, et al. Filaggrin knockdown and Toll-like receptor 3 (TLR3) stimulation enhanced the production of thymic stromal lymphopoietin (TSLP) from epidermal layers. Exp Dermatol. 2011;20(2):149–151. doi: 10.1111/j.1600-0625.2010.01203.x.
    1. Hummelshoj T, et al. Association between an interleukin-13 promoter polymorphism and atopy. Euro J Immunogenet. 2003;30(5):355–359. doi: 10.1046/j.1365-2370.2003.00416.x.
    1. Liu X, et al. An IL13 coding region variant is associated with a high total serum IgE level and atopic dermatitis in the German multicenter atopy study (MAS-90) J Allergy Clin Immunol. 2000;106(1 Pt 1):167–170. doi: 10.1067/mai.2000.107935.
    1. Namkung JH, et al. Association of polymorphisms in genes encoding IL-4, IL-13 and their receptors with atopic dermatitis in a Korean population. Exp Dermatol. 2011;20(11):915–919. doi: 10.1111/j.1600-0625.2011.01357.x.
    1. de Guia RM, Ramos JD. The -590C/TIL4 single-nucleotide polymorphism as a genetic factor of atopic allergy. Int J Mol Epidemiol Genet. 2010;1(1):67–73.
    1. He JQ, et al. Genetic variants of the IL13 and IL4 genes and atopic diseases in at-risk children. Genes Immun. 2003;4(5):385–389. doi: 10.1038/sj.gene.6363985.
    1. Kawashima T, et al. Linkage and association of an interleukin 4 gene polymorphism with atopic dermatitis in Japanese families. J Med Genet. 1998;35(6):502–504. doi: 10.1136/jmg.35.6.502.
    1. Oiso N, Fukai K, Ishii M. Interleukin 4 receptor alpha chain polymorphism Gln551Arg is associated with adult atopic dermatitis in Japan. Br J Dermatol. 2000;142(5):1003–1006. doi: 10.1046/j.1365-2133.2000.03485.x.
    1. Casaca VI, et al. STAT6 polymorphisms are associated with neonatal regulatory T cells and cytokines and atopic diseases at 3 years. Allergy. 2013;68(10):1249–1258. doi: 10.1111/all.12220.
    1. Tamura K, et al. Novel dinucleotide repeat polymorphism in the first exon of the STAT-6 gene is associated with allergic diseases. Clin Exp Allergy. 2001;31(10):1509–1514. doi: 10.1046/j.1365-2222.2001.01191.x.
    1. Tamura K, Suzuki M, Arakawa H, Tokuyama K, Morikawa A. Linkage and association studies of STAT6 gene polymorphisms and allergic diseases. Int Arch Allergy Immunol. 2003;131(1):33–38. doi: 10.1159/000070432.
    1. Niwa Y, et al. FcepsilonRIalpha gene (FCER1A) promoter polymorphisms and total serum IgE levels in Japanese atopic dermatitis patients. Int J Immunogenet. 2010;37(2):139–141. doi: 10.1111/j.1744-313X.2010.00901.x.
    1. Takaoka A, et al. Involvement of IL-31 on scratching behavior in NC/Nga mice with atopic-like dermatitis. Exp Dermatol. 2006;15(3):161–167. doi: 10.1111/j.1600-0625.2006.00405.x.
    1. Sonkoly E, et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol. 2006;117(2):411–417. doi: 10.1016/j.jaci.2005.10.033.
    1. Neis MM, et al. Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis. J Allergy Clin Immunol. 2006;118(4):930–937. doi: 10.1016/j.jaci.2006.07.015.
    1. Raap U, et al. Correlation of IL-31 serum levels with severity of atopic dermatitis. J Allergy Clin Immunol. 2008;122(2):421–423. doi: 10.1016/j.jaci.2008.05.047.
    1. Szegedi K, et al. Increased frequencies of IL-31-producing T cells are found in chronic atopic dermatitis skin. Exp Dermatol. 2012;21(6):431–436. doi: 10.1111/j.1600-0625.2012.01487.x.
    1. Danso MO, et al. TNF-alpha and Th2 cytokines induce atopic dermatitis-like features on epidermal differentiation proteins and stratum corneum lipids in human skin equivalents. J Investig Dermatol. 2014;134(7):1941–1950. doi: 10.1038/jid.2014.83.
    1. van Drongelen V, Haisma EM, Out-Luiting JJ, Nibbering PH, El Ghalbzouri A. Reduced filaggrin expression is accompanied by increased Staphylococcus aureus colonization of epidermal skin models. Clin Exp Allergy. 2014;44(12):1515–1524. doi: 10.1111/cea.12443.
    1. Gruber R, et al. Diverse Regulation of Claudin-1 and Claudin-4 in Atopic Dermatitis. Am J Pathol. 2015;185(10):2777–2789. doi: 10.1016/j.ajpath.2015.06.021.
    1. Arai I, Tsuji M, Takeda H, Akiyama N, Saito S. A single dose of interleukin-31 (IL-31) causes continuous itch-associated scratching behaviour in mice. Exp Dermatol. 2013;22(10):669–671. doi: 10.1111/exd.12222.
    1. Kato A, et al. Distribution of IL-31 and its receptor expressing cells in skin of atopic dermatitis. J Dermatol Sci. 2014;74(3):229–235. doi: 10.1016/j.jdermsci.2014.02.009.
    1. Grimstad O, et al. Anti-interleukin-31-antibodies ameliorate scratching behaviour in NC/Nga mice: a model of atopic dermatitis. Exp Dermatol. 2009;18(1):35–43. doi: 10.1111/j.1600-0625.2008.00766.x.
    1. Nemoto O, Furue M, Nakagawa H, Shiramoto M, Hanada R, et al. The first trial of CIM331, a humanized antihuman interleukin-31 receptor A antibody, in healthy volunteers and patients with atopic dermatitis to evaluate safety, tolerability and pharmacokinetics of a single dose in a randomized, double-blind, placebo-controlled study. Br J Dermatol. 2016;174(2):296–304. doi: 10.1111/bjd.14207.
    1. Lan CC, et al. Distinct SPINK5 and IL-31 polymorphisms are associated with atopic eczema and non-atopic hand dermatitis in Taiwanese nursing population. Exp Dermatol. 2011;20(12):975–979. doi: 10.1111/j.1600-0625.2011.01374.x.
    1. Sokolowska-Wojdylo M, et al. Association of distinct IL-31 polymorphisms with pruritus and severity of atopic dermatitis. J Euro Acad Dermatol Venereol. 2013;27(5):662–664. doi: 10.1111/j.1468-3083.2012.04649.x.
    1. Takai T. TSLP expression: cellular sources, triggers, and regulatory mechanisms. Allergol Int. 2012;61(1):3–17. doi: 10.2332/allergolint.11-RAI-0395.
    1. Hoffjan S, et al. Analysis of variation in the IL7RA and IL2RA genes in atopic dermatitis. J Dermatol Sci. 2009;55(2):138–140. doi: 10.1016/j.jdermsci.2009.05.001.
    1. Salimi M, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210(13):2939–2950. doi: 10.1084/jem.20130351.
    1. Divekar R, Kita H. Recent advances in epithelium-derived cytokines (IL-33, IL-25, and thymic stromal lymphopoietin) and allergic inflammation. Curr Opin Allergy Clin Immunol. 2015;15(1):98–103. doi: 10.1097/ACI.0000000000000133.
    1. Manetti R, et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J Exp Med. 1993;177(4):1199–1204. doi: 10.1084/jem.177.4.1199.
    1. Trinchieri G. Interleukin-12 and its role in the generation of TH1 cells. Immunol Today. 1993;14(7):335–338. doi: 10.1016/0167-5699(93)90230-I.
    1. Xu D, et al. Selective expression and functions of interleukin 18 receptor on T helper (Th) type 1 but not Th2 cells. J Exp Med. 1998;188(8):1485–1492. doi: 10.1084/jem.188.8.1485.
    1. Tsunemi Y, et al. Interleukin-12 p40 gene (IL12B) 3′-untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris. J Dermatol Sci. 2002;30(2):161–166. doi: 10.1016/S0923-1811(02)00072-5.
    1. Takahashi N, et al. Association of the IL12RB1 promoter polymorphisms with increased risk of atopic dermatitis and other allergic phenotypes. Human Mol Genet. 2005;14(21):3149–3159. doi: 10.1093/hmg/ddi347.
    1. Novak N, et al. Single nucleotide polymorphisms of the IL18 gene are associated with atopic eczema. J Allergy Clin Immunol. 2005;115(4):828–833. doi: 10.1016/j.jaci.2005.01.030.
    1. Kim E, et al. Association of the single-nucleotide polymorphism and haplotype of the interleukin 18 gene with atopic dermatitis in Koreans. Clin Exp Allergy. 2007;37(6):865–871. doi: 10.1111/j.1365-2222.2007.02717.x.
    1. Carow B, Rottenberg ME. SOCS3, a major regulator of infection and inflammation. Front Immunol. 2014;5:58. doi: 10.3389/fimmu.2014.00058.
    1. Mosmann TR, Moore KW. The role of IL-10 in crossregulation of TH1 and TH2 responses. Immunol Today. 1991;12(3):A49–A53. doi: 10.1016/S0167-5699(05)80015-5.
    1. Ekelund E, et al. Elevated expression and genetic association links the SOCS3 gene to atopic dermatitis. Am J Human Genet. 2006;78(6):1060–1065. doi: 10.1086/504272.
    1. Sohn MH, et al. Association of interleukin-10 gene promoter polymorphism in children with atopic dermatitis. J Pediatr. 2007;150(1):106–108. doi: 10.1016/j.jpeds.2006.08.065.
    1. Beck LA, Boguniewicz M, Hata T, Schneider LC, Hanifin J, et al. Phenotype of atopic dermatitis subjects with a history of eczema herpeticum. J Allergy Clin Immunol. 2009;124(2):260–269. doi: 10.1016/j.jaci.2009.05.020.
    1. McGirt LY, Beck LA. Innate immune defects in atopic dermatitis. J Allergy Clin Immunol. 2006;118(1):202–208. doi: 10.1016/j.jaci.2006.04.033.
    1. De Benedetto A, Agnihothri R, McGirt LY, Bankova LG, Beck LA. Atopic dermatitis: a disease caused by innate immune defects? J Investig Dermatol. 2009;129(1):14–30. doi: 10.1038/jid.2008.259.
    1. An Y, et al. Genetic variations in MyD88 adaptor-like are associated with atopic dermatitis. Int J Mol Med. 2011;27(6):795–801.
    1. Howell MD, et al. Mechanism of HBD-3 deficiency in atopic dermatitis. Clin Immunol. 2006;121(3):332–338. doi: 10.1016/j.clim.2006.08.008.
    1. Howell MD, et al. Cytokine milieu of atopic dermatitis skin subverts the innate immune response to vaccinia virus. Immunity. 2006;24(3):341–348. doi: 10.1016/j.immuni.2006.02.006.
    1. Beck LA, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Eng J Med. 2014;371(2):130–139. doi: 10.1056/NEJMoa1314768.
    1. Nemoto O, et al. The first trial of CIM331, a humanized antihuman interleukin-31 receptor A antibody, in healthy volunteers and patients with atopic dermatitis to evaluate safety, tolerability and pharmacokinetics of a single dose in a randomized, double-blind, placebo-controlled study. Br J Dermatol. 2016;174(2):296–304. doi: 10.1111/bjd.14207.

Source: PubMed

3
Subscribe