The genetics of pre-eclampsia and other hypertensive disorders of pregnancy

Paula J Williams, Fiona Broughton Pipkin, Paula J Williams, Fiona Broughton Pipkin

Abstract

Hypertension is the most frequent medical complication occurring during pregnancy. In this chapter, we aim to address the genetic contribution to these disorders, with specific focus on pre-eclampsia. The pathogenic mechanisms underlying pre-eclampsia remain to be elucidated; however, immune maladaptation, inadequate placental development and trophoblast invasion, placental ischaemia, oxidative stress and thrombosis are all thought to represent key factors in the development of disease. Furthermore, all of these components have genetic factors that may be involved in the pathogenic changes occurring. The familial nature of pre-eclampsia has been known for many years and, as such, extensive genetic research has been carried out in this area using strategies that include candidate gene studies and linkage analysis. Interactions between fetal and maternal genotypes, the effect of environmental factors, and epistasis will also be considered.

Copyright © 2011 Elsevier Ltd. All rights reserved.

References

    1. Brown M.A., Lindheimer M.D., de Swiet M. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP) Hypertens Pregnancy. 2001;20:IX–XIV.
    1. Chesley L.C., Annitto J.E., Cosgrove R.A. The familial factor in toxemia of pregnancy. Obstet Gynecol. 1968;32:303–311.
    1. Thornton J.G., Macdonald A.M. Twin mothers, pregnancy hypertension and pre-eclampsia. Br J Obstet Gynaecol. 1999;106:570–575.
    1. O’Shaughnessy K.M., Ferraro F., Fu B. Identification of monozygotic twins that are concordant for preeclampsia. Am J Obstet Gynecol. 2000;182:1156–1157.
    1. Chappell S., Morgan L. Searching for genetic clues to the causes of pre-eclampsia. Clin Sci (Lond) 2006;110:443–458.
    1. Cnattingius S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob Res. 2004;6(Suppl. 2):S125–140.
    1. Salonen Ros H., Lichtenstein P., Lipworth L. Genetic effects on the liability of developing pre-eclampsia and gestational hypertension. Am J Med Genet. 2000;91:256–260.
    1. Redman C.W., Sargent I.L. Latest advances in understanding preeclampsia. Science. 2005;308:1592–1594.
    1. Cooper D.W., Brennecke S.P., Wilton A.N. Genetics of pre-eclampsia. Hypertens Pregnancy. 1993;12:1–23.
    1. Esplin M.S., Fausett M.B., Fraser A. Paternal and maternal components of the predisposition to preeclampsia. N Engl J Med. 2001;344:867–872.
    1. Skjaerven R., Vatten L.J., Wilcox A.J. Recurrence of pre-eclampsia across generations: exploring fetal and maternal genetic components in a population based cohort. BMJ. 2005;331:877.
    1. Haig D. Genetic conflicts in human pregnancy. Q Rev Biol. 1993;68:495–532.
    1. GOPEC Disentangling fetal and maternal susceptibility for pre-eclampsia: a British multicenter candidate-gene study. Am J Hum Genet. 2005;77:127–131.
    1. Mutze S., Rudnik-Schoneborn S., Zerres K. Genes and the preeclampsia syndrome. J Perinat Med. 2008;36:38–58.
    1. Colhoun H., McKeigue P., Davey Smith G. Problems of reporting genetic associations with comlex outcomes. Lancet. 2003;361:865–872.
    1. Wacholder S., Chanock S., Garcia-Closas M. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96:434–442.
    1. Isermann B., Sood R., Pawlinski R. The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nat Med. 2003;9:331–337.
    1. Brenner B. Thrombophilia and pregnancy loss. Thromb Res. 2002;108:197–202.
    1. Lin J., August P. Genetic thrombophilias and preeclampsia: a meta-analysis. Obstet Gynecol. 2005;105:182–192.
    1. Dalmaz C.A., Santos K.G., Botton M.R. Relationship between polymorphisms in thrombophilic genes and preeclampsia in a Brazilian population. Blood Cells Mol Dis. 2006;37:107–110.
    1. Fabbro D., D’Elia A.V., Spizzo R. Association between plasminogen activator inhibitor 1 gene polymorphisms and preeclampsia. Gynecol Obstet Invest. 2003;56:17–22.
    1. Gerhardt A., Goecke T.W., Beckmann M.W. The G20210A prothrombin-gene mutation and the plasminogen activator inhibitor (PAI-1) 5G/5G genotype are associated with early onset of severe preeclampsia. J Thromb Haemost. 2005;3:686–691.
    1. Shah N.C., Pringle S., Struthers A. Aldosterone blockade over and above ACE-inhibitors in patients with coronary artery disease but without heart failure. J Renin Angiotensin Aldosterone Syst. 2006;7:20–30.
    1. Medica I., Kastrin A., Peterlin B. Genetic polymorphisms in vasoactive genes and preeclampsia: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2007;131:115–126.
    1. Inoue I., Rohrwasser A., Helin C. A mutation of angiotensinogen in a patient with preeclampsia leads to altered kinetics of the renin-angiotensin system. J Biol Chem. 1995;270:11430–11436.
    1. Brennecke S.P., Gude N.M., Di Iulio J.L. Reduction of placental nitric oxide synthase activity in pre-eclampsia. Clin Sci (Lond) 1997;93:51–55.
    1. Banyasz I., Bokodi G., Vannay A. Genetic polymorphisms of vascular endothelial growth factor and angiopoietin 2 in retinopathy of prematurity. Curr Eye Res. 2006;31:685–690.
    1. Papazoglou D., Galazios G., Koukourakis M.I. Vascular endothelial growth factor gene polymorphisms and pre-eclampsia. Mol Hum Reprod. 2004;10:321–324.
    1. Foidart J., Hustin J., Dubois M. The human placenta becomes haemochorial at the 13th week of pregnancy. Int J Dev Biol. 1992;36:451–453.
    1. Jauniaux E., Watson A., Hempstock J. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am J Pathol. 2000;157:2111–2122.
    1. Perkins A.V. Endogenous anti-oxidants in pregnancy and preeclampsia. Aust N Z J Obstet Gynaecol. 2006;46:77–83.
    1. Wickens D., Wilkins M.H., Lunec J. Free radical oxidation (peroxidation)products in plasma in normal and abnormal pregnancy. Ann Clin Biochem. 1981;18:158–162.
    1. Canto P., Canto-Cetina T., Juarez-Velazquez R. Methylenetetrahydrofolate reductase C677T and glutathione S-transferase P1 A313G are associated with a reduced risk of preeclampsia in Maya-Mestizo women. Hypertens Res. 2008;31:1015–1019.
    1. Gebhardt G.S., Peters W.H., Hillermann R. Maternal and fetal single nucleotide polymorphisms in the epoxide hydrolase and gluthatione S-transferase P1 genes are not associated with pre-eclampsia in the Coloured population of the Western Cape, South Africa. J Obstet Gynaecol. 2004;24:866–872.
    1. Laasanen J., Romppanen E.L., Hiltunen M. Two exonic single nucleotide polymorphisms in the microsomal epoxide hydrolase gene are jointly associated with preeclampsia. Eur J Hum Genet. 2002;10:569–573.
    1. Ohta K., Kobashi G., Hata A. Association between a variant of the glutathione S-transferase P1 gene (GSTP1) and hypertension in pregnancy in Japanese: interaction with parity, age, and genetic factors. Semin Thromb Hemost. 2003;29:653–659.
    1. Descamps O.S., Bruniaux M., Guilmot P.F. Lipoprotein metabolism of pregnant women is associated with both their genetic polymorphisms and those of their newborn children. J Lipid Res. 2005;46:2405–2414.
    1. Kim Y.J., Williamson R.A., Chen K. Lipoprotein lipase gene mutations and the genetic susceptibility of preeclampsia. Hypertension. 2001;38:992–996.
    1. Atkinson K.R., Blumenstein M., Black M.A. An altered pattern of circulating apolipoprotein E3 isoforms is implicated in preeclampsia. J Lipid Res. 2009;50:71–80.
    1. Hubel C.A., Roberts J.M., Ferrell R.E. Association of pre-eclampsia with common coding sequence variations in the lipoprotein lipase gene. Clin Genet. 1999;56:289–296.
    1. Zhang C., Austin M.A., Edwards K.L. Functional variants of the lipoprotein lipase gene and the risk of preeclampsia among non-Hispanic Caucasian women. Clin Genet. 2006;69:33–39.
    1. Roberts J.M., Pearson G., Cutler J. Summary of the NHLBI Working Group on Research on Hypertension During Pregnancy. Hypertension. 2003;41:437–445.
    1. Wang J.X., Knottnerus A.M., Schuit G. Surgically obtained sperm, and risk of gestational hypertension and pre-eclampsia. Lancet. 2002;359:673–674.
    1. Hiby S.E., Walker J.J., O’Shaughnessy K.M. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med. 2004;200:957–965.
    1. Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005;5:201–214.
    1. Moreau P., Contu L., Alba F. HLA-G gene polymorphism in human placentas: possible association of G*0106 allele with preeclampsia and miscarriage. Biol Reprod. 2008;79:459–467.
    1. Tan C.Y., Ho J.F., Chong Y.S. Paternal contribution of HLA-G*0106 significantly increases risk for pre-eclampsia in multigravid pregnancies. Mol Hum Reprod. 2008;14:317–324.
    1. LaMarca B.D., Ryan M.J., Gilbert J.S. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep. 2007;9:480–485.
    1. Alexander B.T., Cockrell K.L., Massey M.B. Tumor necrosis factor-alpha-induced hypertension in pregnant rats results in decreased renal neuronal nitric oxide synthase expression. Am J Hypertens. 2002;15:170–175.
    1. Sharma A., Satyam A., Sharma J.B. Leptin, IL-10 and inflammatory markers (TNF-alpha, IL-6 and IL-8) in pre-eclamptic, normotensive pregnant and healthy non-pregnant women. Am J Reprod Immunol. 2007;58:21–30.
    1. Elahi M.M., Asotra K., Matata B.M. Tumor necrosis factor alpha -308 gene locus promoter polymorphism: an analysis of association with health and disease. Biochim Biophys Acta. 2009;1792:163–172.
    1. Saarela T., Hiltunen M., Helisalmi S. Tumour necrosis factor-alpha gene haplotype is associated with pre-eclampsia. Mol Hum Reprod. 2005;11:437–440.
    1. Bombell S., McGuire W. Tumour necrosis factor (-308A) polymorphism in pre-eclampsia: meta-analysis of 16 case-control studies. Aust N Z J Obstet Gynaecol. 2008;48:547–551.
    1. Renaud S.J., Macdonald-Goodfellow S.K., Graham C.H. Coordinated regulation of human trophoblast invasiveness by macrophages and interleukin 10. Biol Reprod. 2007;76:448–454.
    1. Makris A., Xu B., Yu B. Placental deficiency of interleukin-10 (IL-10) in preeclampsia and its relationship to an IL10 promoter polymorphism. Placenta. 2006;27:445–451.
    1. Daher S., Sass N., Oliveira L.G. Cytokine genotyping in preeclampsia. Am J Reprod Immunol. 2006;55:130–135.
    1. Goddard K.A., Tromp G., Romero R. Candidate-gene association study of mothers with pre-eclampsia, and their infants, analyzing 775 SNPs in 190 genes. Hum Hered. 2007;63:1–16.
    1. Kamali-Sarvestani E., Kiany S., Gharesi-Fard B. Association study of IL-10 and IFN-gamma gene polymorphisms in Iranian women with preeclampsia. J Reprod Immunol. 2006;72:118–126.
    1. Faisel F., Romppanen E.L., Hiltunen M. Polymorphism in the interleukin 1 receptor antagonist gene in women with preeclampsia. J Reprod Immunol. 2003;60:61–70.
    1. Haggerty C.L., Ferrell R.E., Hubel C.A. Association between allelic variants in cytokine genes and preeclampsia. Am J Obstet Gynecol. 2005;193:209–215.
    1. Zusterzeel P.L., Peters W.H., Burton G.J. Susceptibility to pre-eclampsia is associated with multiple genetic polymorphisms in maternal biotransformation enzymes. Gynecol Obstet Invest. 2007;63:209–213.
    1. Buimer M., Keijser R., Jebbink J.M. Seven placental transcripts characterize HELLP-syndrome. Placenta. 2008;29:444–453.
    1. Raijmakers M.T., Roes E.M., Steegers E.A. The C242T-polymorphism of the NADPH/NADH oxidase gene p22phox subunit is not associated with pre-eclampsia. J Hum Hypertens. 2002;16:423–425.
    1. Rosta K., Molvarec A., Enzsoly A. Association of extracellular superoxide dismutase (SOD3) Ala40Thr gene polymorphism with pre-eclampsia complicated by severe fetal growth restriction. Eur J Obstet Gynecol Reprod Biol. 2009;142:134–138.
    1. Arngrimsson R., Sigurardo-ttir S., Frigge M.L. A genome-wide scan reveals a maternal susceptibility locus for pre-eclampsia on chromosome 2p13. Hum Mol Genet. 1999;8:1799–1805.
    1. Laivuori H., Lahermo P., Ollikainen V. Susceptibility loci for preeclampsia on chromosomes 2p25 and 9p13 in Finnish families. Am J Hum Genet. 2003;72:168–177.
    1. Moses E.K., Lade J.A., Guo G. A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2. Am J Hum Genet. 2000;67:1581–1585.
    1. Lachmeijer A.M., Arngrimsson R., Bastiaans E.J. A genome-wide scan for preeclampsia in the Netherlands. Eur J Hum Genet. 2001;9:758–764.
    1. Lander E., Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995;11:241–247.
    1. Zintzaras E., Kitsios G., Harrison G.A. Heterogeneity-based genome search meta-analysis for preeclampsia. Hum Genet. 2006;120:360–370.
    1. Akolekar R., Etchegaray A., Zhou Y. Maternal serum activin a at 11-13 weeks of gestation in hypertensive disorders of pregnancy. Fetal Diagn Ther. 2009;25:320–327.
    1. Roten L.T., Johnson M.P., Forsmo S. Association between the candidate susceptibility gene ACVR2A on chromosome 2q22 and pre-eclampsia in a large Norwegian population-based study (the HUNT study) Eur J Hum Genet. 2009;17:250–257.
    1. Fitzpatrick E., Johnson M.P., Dyer T.D. Genetic association of the activin A receptor gene (ACVR2A) and pre-eclampsia. Mol Hum Reprod. 2009;15:195–204.
    1. Riento K., Ridley A.J. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 2003;4:446–456.
    1. Kandabashi T., Shimokawa H., Miyata K. Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1beta. Circulation. 2000;101:1319–1323.
    1. Ark M., Yilmaz N., Yazici G. Rho-associated protein kinase II (rock II) expression in normal and preeclamptic human placentas. Placenta. 2005;26:81–84.
    1. Johnson M.P., Roten L.T., Dyer T.D. The ERAP2 gene is associated with preeclampsia in Australian and Norwegian populations. Human Genetics. 2009;126(5):655–666. PMCID: PMC2783187.
    1. WTCCC Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678.
    1. Bezerra P.C., Leao M.D., Queiroz J.W. Family history of hypertension as an important risk factor for the development of severe preeclampsia. Acta Obstet Gynecol Scand. 2010;89:612–617.
    1. Hatada I., Mukai T. Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat Genet. 1995;11:204–206.
    1. Oudejans C.B., Mulders J., Lachmeijer A.M. The parent-of-origin effect of 10q22 in pre-eclamptic females coincides with two regions clustered for genes with down-regulated expression in androgenetic placentas. Mol Hum Reprod. 2004;10:589–598.
    1. Rigourd V., Chauvet C., Chelbi S.T. STOX1 overexpression in choriocarcinoma cells mimics transcriptional alterations observed in preeclamptic placentas. PLoS One. 2008;3:e3905.
    1. Berends A.L., Bertoli-Avella A.M., de Groot C.J. STOX1 gene in pre-eclampsia and intrauterine growth restriction. BJOG. 2007;114:1163–1167.
    1. Iglesias-Platas I., Monk D., Jebbink J. STOX1 is not imprinted and is not likely to be involved in preeclampsia. Nat Genet. 2007;39:279–280. author reply 280–271.
    1. Kivinen K., Peterson H., Hiltunen L. Evaluation of STOX1 as a preeclampsia candidate gene in a population-wide sample. Eur J Hum Genet. 2007;15:494–497.
    1. Yu L., Chen M., Zhao D. The H19 gene imprinting in normal pregnancy and pre-eclampsia. Placenta. 2009;30:443–447.
    1. Nussbaum R.L., McInnes R.R., Willard H.F. In: Genetics in medicine. 6th ed. Thompson and Thompson, editor. Saunders; Philadelphia: 2004. pp. 289–309.
    1. Treloar S.A., Cooper D.W., Brennecke S.P. An Australian twin study of the genetic basis of preeclampsia and eclampsia. Am J Obstet Gynecol. 2001;184:374–381.
    1. Ronningen K.S., Paltiel L., Meltzer H.M. The biobank of the Norwegian mother and child cohort study: a resource for the next 100 years. Eur J Epidemiol. 2006;21:619–625.
    1. Kho E.M., McCowan L.M., North R.A. Duration of sexual relationship and its effect on preeclampsia and small for gestational age perinatal outcome. J Reprod Immunol. 2009;82:66–73.

Source: PubMed

3
Subscribe