The Pocket-4-Life project, bioavailability and beneficial properties of the bioactive compounds of espresso coffee and cocoa-based confectionery containing coffee: study protocol for a randomized cross-over trial

Pedro Mena, Michele Tassotti, Daniela Martini, Alice Rosi, Furio Brighenti, Daniele Del Rio, Pedro Mena, Michele Tassotti, Daniela Martini, Alice Rosi, Furio Brighenti, Daniele Del Rio

Abstract

Background: Coffee is an important source of bioactive compounds, including caffeine, phenolic compounds (mainly chlorogenic acids), trigonelline, and diterpenes. Several studies have highlighted the preventive effects of coffee consumption on major cardiometabolic diseases, but the impact of coffee dosage on markers of cardiometabolic risk is not well understood. Moreover, the pool of coffee-derived circulating metabolites and the contribution of each metabolite to disease prevention still need to be evaluated in real-life settings. The aim of this study will be to define the bioavailability and beneficial properties of coffee bioactive compounds on the basis of different levels of consumption, by using an innovative experimental design. The contribution of cocoa-based products containing coffee to the pool of circulating metabolites and their putative bioactivity will also be investigated.

Methods: A three-arm, crossover, randomized trial will be conducted. Twenty-one volunteers will be randomly assigned to consume three treatments in a random order for 1 month: 1 cup of espresso coffee/day, 3 cups of espresso coffee/day, and 1 cup of espresso coffee plus 2 cocoa-based products containing coffee twice per day. The last day of each treatment, blood and urine samples will be collected at specific time points, up to 24 hours following the consumption of the first product. At the end of each treatment the same protocol will be repeated, switching the allocation group. Besides the bioavailability of the coffee/cocoa bioactive compounds, the effect of the coffee/cocoa consumption on several cardiometabolic risk factors (anthropometric measures, blood pressure, inflammatory markers, trimethylamine N-oxide, nitric oxide, blood lipids, fasting indices of glucose/insulin metabolism, DNA damage, eicosanoids, and nutri-metabolomics) will be investigated.

Discussion: Results will provide information on the bioavailability of the main groups of phytochemicals in coffee and on their modulation by the level of consumption. Findings will also show the circulating metabolites and their bioactivity when coffee consumption is substituted with the intake of cocoa-based products containing coffee. Finally, the effect of different levels of 1-month coffee consumption on cardiometabolic risk factors will be elucidated, likely providing additional insights on the role of coffee in the protection against chronic diseases.

Trial registration: ClinicalTrials.gov, NCT03166540 . Registered on May 21, 2017.

Keywords: Bioavailability; Caffeine; Caffeoylquinic acid; Cardiometabolic risk factors; Cocoa; Coffee; Diterpenes; Flavan-3-ols; Pharmacokinetic; Trigonelline.

Conflict of interest statement

Ethics approval and consent to participate

The Ethics Committee of the University of Parma approved the study on October 12, 2016 (AZOSPR/0036174/6.2.2.). The protocol was modified to include further analysis and the ethical approval for these amendments was granted on April 19, 2017 (AZOSPR/0015693/6.2.2.). All trial participants will provide full written informed consent.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study design and sampling day (in the blue box) scheme. HC high consumers, LC low consumers, MC medium consumers, SD sampling day
Fig. 2
Fig. 2
SPIRIT figure: summarizes the allocation, interventions, and outcomes of the study
Fig. 3
Fig. 3
Modelled pharmacokinetic profile recorded after repeated consumption of coffee along the day. Cmax maximum concentration, Cavg average concentration, Cmin minimum concentration, SD sampling day

References

    1. Tresserra-Rimbau A, Rimm EB, Medina-Remón A, Martínez-González MA, de la Torre R, Corella D, et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr Metab Cardiovasc Dis. 2014;24:639–47. doi: 10.1016/j.numecd.2013.12.014.
    1. Ludwig IA, Clifford MN, Lean MEJ, Ashihara H, Crozier A. Coffee: biochemistry and potential impact on health. Food Funct. 2014;5:1695–717. doi: 10.1039/C4FO00042K.
    1. Van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. J Am Med Assoc. 2005;294:97–104. doi: 10.1001/jama.294.1.97.
    1. Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation. 2013;129:643–59. doi: 10.1161/CIRCULATIONAHA.113.005925.
    1. Malerba S, Turati F, Galeone C, Pelucchi C, Verga F, La Vecchia C, Tavani A. A meta-analysis of prospective studies of coffee consumption and mortality for all causes, cancers and cardiovascular diseases. Eur J Epidemiol. 2013;28:527–39. doi: 10.1007/s10654-013-9834-7.
    1. Huxley R, Lee CMY, Barzi F, Timmermeister L, Czernichow S, Perkovic V, et al. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: A systematic review with meta-analysis. Arch Intern Med. 2009;169:2053–63. doi: 10.1001/archinternmed.2009.439.
    1. Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr. 2017;37:131–56. doi: 10.1146/annurev-nutr-071816-064941.
    1. Grosso G, Micek A, Godos J, Sciacca S, Pajak A, Martinez-Gonzalez MA, et al. Coffee consumption and risk of all-cause, cardiovascular, and cancer mortality in smokers and non-smokers: a dose-response meta-analysis. Eur J Epidemiol. 2016;31:1191–205. doi: 10.1007/s10654-016-0202-2.
    1. Marventano S, Salomone F, Godos J, Pluchinotta F, Del Rio D, Mistretta A, Grosso G. Coffee and tea consumption in relation with non-alcoholic fatty liver and metabolic syndrome: a systematic review and meta-analysis of observational studies. Clin Nutr. 2016;35:1269–81. doi: 10.1016/j.clnu.2016.03.012.
    1. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5:525–35. doi: 10.1016/S1474-4422(06)70471-9.
    1. Lindsay J, Laurin D, Verreault R, Hébert R, Helliwell B, Hill GB, McDowell I. Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol. 2002;156:445–53. doi: 10.1093/aje/kwf074.
    1. Bidel S, Tuomilehto J. The emerging health benefits of coffee with an emphasis on type 2 diabetes and cardiovascular disease. Eur Endocrinol. 2013;9:99–106. doi: 10.17925/EE.2013.09.02.99.
    1. Larsson SC. Coffee, tea, and cocoa and risk of stroke. Stroke. 2014;45:309–14. doi: 10.1161/STROKEAHA.113.003131.
    1. Mostofsky E, Rice MS, Levitan EB, Mittleman MA. Habitual coffee consumption and risk of heart failure a dose-response meta-analysis. Circ Heart Fail. 2012;5:401–5. doi: 10.1161/CIRCHEARTFAILURE.112.967299.
    1. Nordestgaard AT, Thomsen M, Nordestgaard BG. Coffee intake and risk of obesity, metabolic syndrome and type 2 diabetes: a Mendelian randomization study. Int J Epidemiol. 2015;44:551–65. doi: 10.1093/ije/dyv083.
    1. Shang F, Li X, Jiang X. Coffee consumption and risk of the metabolic syndrome: A meta-analysis. Diabetes Metab. 2016;42:80–7. doi: 10.1016/j.diabet.2015.09.001.
    1. Kempf K, Kolb H, Gärtner B, Bytof G, Stiebitz H, Lantz I, et al. Cardiometabolic effects of two coffee blends differing in content for major constituents in overweight adults: a randomized controlled trial. Eur J Nutr. 2015;54:845–54. doi: 10.1007/s00394-014-0763-3.
    1. Gavrieli A, Fragopoulou E, Mantzoros CS, Yannakoulia M. Gender and body mass index modify the effect of increasing amounts of caffeinated coffee on postprandial glucose and insulin concentrations; a randomized, controlled, clinical trial. Metabolism. 2013;62:1099–106. doi: 10.1016/j.metabol.2013.02.003.
    1. Rakvaag E, Dragsted LO. Acute effects of light and dark roasted coffee on glucose tolerance: a randomized, controlled crossover trial in healthy volunteers. Eur J Nutr. 2016;55:2221–30. doi: 10.1007/s00394-015-1032-9.
    1. Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, et al. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol. 2014;88:1803–53. doi: 10.1007/s00204-014-1330-7.
    1. Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013;18:1818–92. doi: 10.1089/ars.2012.4581.
    1. Landberg R, Sun Q, Rimm EB, Cassidy A, Scalbert A, Mantzoros CS, et al. Selected dietary flavonoids are associated with markers of inflammation and endothelial dysfunction in U.S. women. J Nutr. 2011;141:618–25. doi: 10.3945/jn.110.133843.
    1. Chiva-Blanch G, Badimon L, Estruch R. Latest evidence of the effects of the Mediterranean diet in prevention of cardiovascular disease. Curr Atheroscler Rep. 2014;16:446. doi: 10.1007/s11883-014-0446-9.
    1. Zamora-Ros R, Forouhi NG, Sharp SJ, González CA, Buijsse B, Guevara M, et al. Dietary intakes of individual flavanols and flavonols are inversely associated with incident type 2 diabetes in European populations. J Nutr. 2014;144:335–43. doi: 10.3945/jn.113.184945.
    1. Rodriguez-Mateos A, Cifuentes-Gomez T, Gonzalez-Salvador I, Ottaviani JI, Schroeter H, Kelm M, et al. Influence of age on the absorption, metabolism, and excretion of cocoa flavanols in healthy subjects. Mol Nutr Food Res. 2015;59:1504–12. doi: 10.1002/mnfr.201500091.
    1. Vogiatzoglou A, Mulligan AA, Bhaniani A, Lentjes MAH, McTaggart A, Luben RN, et al. Associations between flavan-3-ol intake and CVD risk in the Norfolk cohort of the European Prospective Investigation into Cancer (EPIC-Norfolk) Free Radic Biol Med. 2015;84:1–10. doi: 10.1016/j.freeradbiomed.2015.03.005.
    1. Sansone R, Rodriguez-Mateos A, Heuel J, Falk D, Schuler D, Wagstaff R, et al. Cocoa flavanol intake improves endothelial function and Framingham Risk Score in healthy men and women: a randomised, controlled, double-masked trial: the Flaviola Health Study. Br J Nutr. 2015;114:1246–55. doi: 10.1017/S0007114515002822.
    1. EFSA. Scientific Opinion on the substantiation of a health claim related to cocoa flavanols and maintenance of normal endothelium-dependent vasodilation pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. 2012;10:2809–29.
    1. Kwok CS, Boekholdt SM, Lentjes MAH, Loke YK, Luben RN, Yeong JK, et al. Habitual chocolate consumption and risk of cardiovascular disease among healthy men and women. Heart. 2015;101:1279–87. doi: 10.1136/heartjnl-2014-307050.
    1. Kim J, Shim J, Lee CY, Lee KW, Lee HJ. Cocoa phytochemicals: recent advances in molecular mechanisms on health. Crit Rev Food Sci Nutr. 2014;54:1458–72. doi: 10.1080/10408398.2011.641041.
    1. Welch RW, Antoine JM, Berta JL, Bub A, de Vries J, Guarner F, et al. Guidelines for the design, conduct and reporting of human intervention studies to evaluate the health benefits of foods. Br J Nutr. 2011;106(Suppl 2):S3–15. doi: 10.1017/S0007114511003606.
    1. Bianco G, Abate S, Labella C, Cataldi TRI. Identification and fragmentation pathways of caffeine metabolites in urine samples via liquid chromatography with positive electrospray ionization coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:1065–74. doi: 10.1002/rcm.3969.
    1. Lang R, Dieminger N, Beusch A, Lee YM, Dunkel A, Suess B, et al. Bioappearance and pharmacokinetics of bioactives upon coffee consumption. Anal Bioanal Chem. 2013;405:8487–503. doi: 10.1007/s00216-013-7288-0.
    1. Marmet C, Actis-Goretta L, Renouf M, Giuffrida F. Quantification of phenolic acids and their methylates, glucuronides, sulfates and lactones metabolites in human plasma by LC-MS/MS after oral ingestion of soluble coffee. J Pharm Biomed Anal. 2014;88:617–25. doi: 10.1016/j.jpba.2013.10.009.
    1. Van Cruchten STJ, De Waart DR, Kunne C, Hooiveld GJEJ, Boekschoten MV, Katan MB, et al. Absorption, distribution, and biliary excretion of cafestol, a potent cholesterol-elevating compound in unfiltered coffees, in mice. Drug Metab Dispos. 2010;38:635–40. doi: 10.1124/dmd.109.030213.
    1. Renouf M, Marmet C, Giuffrida F, Lepage M, Barron D, Beaumont M, et al. Dose-response plasma appearance of coffee chlorogenic and phenolic acids in adults. Mol Nutr Food Res. 2014;58:301–9. doi: 10.1002/mnfr.201300349.
    1. Pellegrini N, Salvatore S, Valtueña S, Bedogni G, Porrini M, Pala V, et al. Development and validation of a food frequency questionnaire for the assessment of dietary total antioxidant capacity. J Nutr. 2007;137:93–8.
    1. Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–95. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. Zhang Y, Mehrotra N, Budha NR, Christensen ML, Meibohm B. A tandem mass spectrometry assay for the simultaneous determination of acetaminophen, caffeine, phenytoin, ranitidine, and theophylline in small volume pediatric plasma specimens. Clin Chim Acta. 2008;398:105–12. doi: 10.1016/j.cca.2008.08.023.
    1. Curti C, Brindani N, Battistini L, Sartori A, Pelosi G, Mena P, et al. Catalytic, enantioselective vinylogous mukaiyama aldol reaction of furan-based dienoxy silanes: a chemodivergent approach to γ-valerolactone flavan-3-ol metabolites and δ-lactone analogues. Adv Synt Catal. 2015;357:4082–92. doi: 10.1002/adsc.201500705.
    1. Brindani N, Mena P, Calani L, Benzie I, Choi SW, Brighenti F, et al. Synthetic and analytical strategies for the quantification of phenyl-gamma-valerolactone conjugated metabolites in human urine. Mol Nutr Food Res. 2017. doi: 10.1002/mnfr.201700077.
    1. Klick DE, Hines RN. Mechanisms regulating human FMO3 transcription. Drug Metab Rev. 2007;39:419–42. doi: 10.1080/03602530701498612.
    1. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922.
    1. Miller CA, Corbin KD, da Costa KA, Zhang S, Zhao X, Galanko JA, et al. Effect of egg ingestion on trimethylamine-N-oxide production in humans: a randomized, controlled, dose-response study. Am J Clin Nutr. 2014;100:778–86. doi: 10.3945/ajcn.114.087692.
    1. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113:1708–14. doi: 10.1161/CIRCULATIONAHA.105.602532.
    1. Pacini G, Mari A. Methods for clinical assessment of insulin sensitivity and beta-cell function. Best Pract Res Clin Endocrinol Metab. 2003;17:305–22. doi: 10.1016/S1521-690X(03)00042-3.
    1. Stadler M, Pacini G, Petrie J, Luger A, Anderwald C. Beta cell (dys)function in non-diabetic offspring of diabetic patients. Diabetologia. 2009;52:2435–44. doi: 10.1007/s00125-009-1520-7.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9. doi: 10.1007/BF00280883.
    1. Del Bo C, Fracassetti D, Lanti C, Porrini M, Riso P. Comparison of DNA damage by the comet assay in fresh versus cryopreserved peripheral blood mononuclear cells obtained following dietary intervention. Mutagenesis. 2015;30:29–35. doi: 10.1093/mutage/geu058.
    1. Garcia-Flores LA, Medina S, Cejuela-Anta R, Martinez-Sanz JM, Abellan A, Genieser HG, et al. DNA catabolites in triathletes: effects of supplementation with an aronia-citrus juice (polyphenols-rich juice) Food Funct. 2016;7:2084–93. doi: 10.1039/C6FO00252H.
    1. Medina S, Domínguez-Perles R, Moreno DA, García-Viguera C, Ferreres F, Gil JI, Gil-Izquierdo Á. The intake of broccoli sprouts modulates the inflammatory and vascular prostanoids but not the oxidative stress-related isoprostanes in healthy humans. Food Chem. 2015;173:1187–94. doi: 10.1016/j.foodchem.2014.10.152.
    1. Llorach R, Urpi-Sarda M, Tulipani S, Garcia-Aloy M, Monagas M, Andres-Lacueva C. Metabolomic fingerprint in patients at high risk of cardiovascular disease by cocoa intervention. Mol Nutr Food Res. 2013;57:962–73. doi: 10.1002/mnfr.201200736.
    1. Urpi-Sarda M, Boto-Ordóñez M, Queipo-Ortuño MI, Tulipani S, Corella D, Estruch R, et al. Phenolic and microbial-targeted metabolomics to discovering and evaluating wine intake biomarkers in human urine and plasma. Electrophoresis. 2015;36:2259–68. doi: 10.1002/elps.201400506.
    1. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-terf-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49:1137–46. doi: 10.1194/jlr.D700041-JLR200.
    1. Lenth RV. Some practical guidelines for effective sample size determination. Am Stat. 2001;55:187–93. doi: 10.1198/000313001317098149.
    1. Stalmach A, Mullen W, Barron D, Uchida K, Yokota T, Cavin C, et al. Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: identification of biomarkers of coffee consumption. Drug Metab Dispos. 2009;37:1749–58. doi: 10.1124/dmd.109.028019.
    1. Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. Association of coffee drinking with total and cause-specific mortality. New Eng J Med. 2012;366:1891–904. doi: 10.1056/NEJMoa1112010.
    1. Saito E, Inoue M, Sawada N, Shimazu T, Yamaji T, Iwasaki M, et al. Association of coffee intake with total and cause-specific mortality in a Japanese population: the Japan Public Health Center-based Prospective Study. Am J Clin Nutr. 2015;101:1029–37. doi: 10.3945/ajcn.114.104273.
    1. Andersen LF, Jacobs DR, Jr, Carlsen MH, Blomhoff R. Consumption of coffee is associated with reduced risk of death attributed to inflammatory and cardiovascular diseases in the Iowa Women’s Health Study. Am J Clin Nutr. 2006;83:1039–46.
    1. Jiang X, Zhang D, Jiang W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr. 2014;53:25–38. doi: 10.1007/s00394-013-0603-x.
    1. Sartorelli DS, Fagherazzi G, Balkau B, Touillaud MS, Boutron-Ruault MC, De Lauzon-Guillain B, Clavel-Chapelon F. Differential effects of coffee on the risk of type 2 diabetes according to meal consumption in a French cohort of women: The E3N/EPIC cohort study. Am J Clin Nutr. 2010;91:1002–12. doi: 10.3945/ajcn.2009.28741.
    1. Pereira MA, Parker ED, Folsom AR. Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women. Arch Intern Med. 2006;166:1311–6. doi: 10.1001/archinte.166.12.1311.
    1. Salazar-Martinez E, Willett WC, Ascherio A, Manson JE, Leitzmann MF, Stampfer MJ, Hu FB. Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med. 2004;140:1–8. doi: 10.7326/0003-4819-140-1-200401060-00005.
    1. Grosso G, Stepaniak U, Micek A, Topor-Madry R, Pikhart H, Szafraniec K, Pajak A. Association of daily coffee and tea consumption and metabolic syndrome: results from the Polish arm of the HAPIEE study. Eur J Nutr. 2015;54:1129–37. doi: 10.1007/s00394-014-0789-6.
    1. Koloverou E, Panagiotakos DB, Pitsavos C, Chrysohoou C, Georgousopoulou EN, Laskaris A, Stefanadis C. The evaluation of inflammatory and oxidative stress biomarkers on coffee-diabetes association: results from the 10-year follow-up of the ATTICA Study (2002-2012) Eur J Clin Nutr. 2015;69:1220–5. doi: 10.1038/ejcn.2015.98.
    1. Crippa A, Discacciati A, Larsson SC, Wolk A, Orsini N. Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: a dose-response meta-analysis. Am J Epidemiol. 2014;180:763–75. doi: 10.1093/aje/kwu194.
    1. Zhao Y, Wu K, Zheng J, Zuo R, Li D. Association of coffee drinking with all-cause mortality: a systematic review and meta-analysis. Public Health Nutr. 2015;18:1282–91. doi: 10.1017/S1368980014001438.
    1. Boekschoten MV, Engberink MF, Katan MB, Schouten EG. Reproducibility of the serum lipid response to coffee oil in healthy volunteers. Nutr J. 2003;2:1–8. doi: 10.1186/1475-2891-2-8.
    1. De Roos B, Meyboom S, Kosmeijer-Schuil TG, Katan MB. Absorption and urinary excretion of the coffee diterpenes cafestol and kahweol in healthy ileostomy volunteers. J Intern Med. 1998;244:451–60. doi: 10.1111/j.1365-2796.1998.00386.x.
    1. Guertin KA, Loftfield E, Boca SM, Sampson JN, Moore SC, Xiao Q, et al. Serum biomarkers of habitual coffee consumption may provide insight into the mechanism underlying the association between coffee consumption and colorectal cancer. Am J Clin Nutr. 2015;101:1000–11. doi: 10.3945/ajcn.114.096099.
    1. Lof M, Sandin S, Yin L, Adami HO, Weiderpass E. Prospective study of coffee consumption and all-cause, cancer, and cardiovascular mortality in Swedish women. Eur J Epidemiol. 2015;30:1027–34. doi: 10.1007/s10654-015-0052-3.
    1. Cornelis MC, Byrne EM, Esko T, Nalls MA, Ganna A, Paynter N, et al. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol Psychiatry. 2015;20:647–56. doi: 10.1038/mp.2014.107.
    1. Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA. 2006;295:1135–41. doi: 10.1001/jama.295.10.1135.
    1. Salonen JT, Happonen P, Salonen R, Korhonen H, Nissinen A, Puska P, et al. Interdependence of associations of physical activity, smoking, and alcohol and coffee consumption with serum high-density lipoprotein and non-high-density lipoprotein cholesterol--a population study in eastern Finland. Prev Med. 1987;16:647–58. doi: 10.1016/0091-7435(87)90048-X.
    1. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–8. doi: 10.1038/nature12480.
    1. Anhe FF, Varin TV, Le Barz M, Desjardins Y, Levy E, Roy D, Marette A. Gut microbiota dysbiosis in obesity-linked metabolic diseases and prebiotic potential of polyphenol-rich extracts. Curr Obes Rep. 2015;4:389–400. doi: 10.1007/s13679-015-0172-9.
    1. Wong JM. Gut microbiota and cardiometabolic outcomes: influence of dietary patterns and their associated components. Am J Clin Nutr. 2014;100(Suppl 1):369S–77S. doi: 10.3945/ajcn.113.071639.
    1. Mills CE, Tzounis X, Oruna-Concha MJ, Mottram DS, Gibson GR, Spencer JP. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br J Nutr. 2015;113:1220–7. doi: 10.1017/S0007114514003948.
    1. Neves AL, Chilloux J, Sarafian MH, Rahim MB, Boulange CL, Dumas ME. The microbiome and its pharmacological targets: therapeutic avenues in cardiometabolic diseases. Curr Opin Pharmacol. 2015;25:36–44. doi: 10.1016/j.coph.2015.09.013.
    1. Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr. 2015;114:999–1012. doi: 10.1017/S0007114515002093.
    1. Tomas-Barberan F, García-Villalba R, Quartieri A, Raimondi S, Amaretti A, Leonardi A, Rossi M. In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res. 2013;58:1122–31. doi: 10.1002/mnfr.201300441.
    1. Ludwig IA, Paz De Peña M, Concepción C, Alan C. Catabolism of coffee chlorogenic acids by human colonic microbiota. BioFactors. 2013;39:623–32. doi: 10.1002/biof.1124.
    1. Cowan TE, Palmnas MS, Yang J, Bomhof MR, Ardell KL, Reimer RA, et al. Chronic coffee consumption in the diet-induced obese rat: impact on gut microbiota and serum metabolomics. J Nutr Biochem. 2014;25:489–95. doi: 10.1016/j.jnutbio.2013.12.009.

Source: PubMed

3
Subscribe