The Role of the Immune System in Cutaneous Squamous Cell Carcinoma

Matthew J Bottomley, Jason Thomson, Catherine Harwood, Irene Leigh, Matthew J Bottomley, Jason Thomson, Catherine Harwood, Irene Leigh

Abstract

Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer. In immunosuppressed populations it is a source of considerable morbidity and mortality due to its enhanced recurrence and metastatic potential. In common with many malignancies, leucocyte populations are both protective against cancer development and also play a role in 'sculpting' the nascent tumor, leading to loss of immunogenicity and tumor progression. UV radiation and chronic viral carriage may represent unique risk factors for cSCC development, and the immune system plays a key role in modulating the response to both. In this review, we discuss the lessons learned from animal and ex vivo human studies of the role of individual leucocyte subpopulations in the development of cutaneous SCC. We then discuss the insights into cSCC immunity gleaned from studies in humans, particularly in populations receiving pharmacological immunosuppression such as transplant recipients. Similar insights in other malignancies have led to exciting and novel immune therapies, which are beginning to emerge into the cSCC clinical arena.

Keywords: SCC; cSCC; cancer; cutaneous; immunity; immunology; leucocyte; malignancy; skin; squamous cell carcinoma.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Mechanisms contributing to regulation of tumor clearance by effector cells. APC, antigen presenting cell. In this context, an APC may be a macrophage, dendritic cell (or Langerhans cell) or B cell. Regulatory cells may represent various populations, including Treg, B cell regulatory populations, and myeloid-derived suppressor cells (MDSCs). Effector cell relates predominantly to CD8+ T cells, but may also include natural killer (NK), natural killer T (NKT), gamma-delta T, and cytotoxic CD4+ T cells. The above mechanisms contribute to effector, particularly CD8+, cell dysfunction and lead to a failure of tumor clearance. Those mechanisms highlighted in blue represent mechanisms of immune escape for the tumor. Examples of relevant mediators for each pathway are provided in brackets. Solid arrows represent mechanisms directed against specific cells through cell contact, whilst dashed arrows represent nonspecific mechanisms through remodeling of the tumor microenvironment (TME).

References

    1. Rogers H.W., Weinstock M.A., Feldman S.R., Coldiron B.M. Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the U.S. Population, 2012. JAMA Dermatol. 2015;151:1081–1086. doi: 10.1001/jamadermatol.2015.1187.
    1. Mittal D., Gubin M.M., Schreiber R.D., Smyth M.J. New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Curr. Opin. Immunol. 2014;27:16–25. doi: 10.1016/j.coi.2014.01.004.
    1. Cela E.M., Friedrich A., Paz M.L., Vanzulli S.I., Leoni J., Gonzalez Maglio D.H. Time-course study of different innate immune mediators produced by UV-irradiated skin: Comparative effects of short and daily versus a single harmful UV exposure. Immunology. 2015;145:82–93. doi: 10.1111/imm.12427.
    1. Bald T., Quast T., Landsberg J., Rogava M., Glodde N., Lopez-Ramos D., Kohlmeyer J., Riesenberg S., van den Boorn-Konijnenberg D., Homig-Holzel C., et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature. 2014;507:109–113. doi: 10.1038/nature13111.
    1. Sontheimer C., Liggitt D., Elkon K.B. Ultraviolet B Irradiation Causes Stimulator of Interferon Genes-Dependent Production of Protective Type I Interferon in Mouse Skin by Recruited Inflammatory Monocytes. Arthritis Rheumatol. 2017;69:826–836. doi: 10.1002/art.39987.
    1. Kock A., Schwarz T., Kirnbauer R., Urbanski A., Perry P., Ansel J.C., Luger T.A. Human keratinocytes are a source for tumor necrosis factor alpha: Evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J. Exp. Med. 1990;172:1609–1614. doi: 10.1084/jem.172.6.1609.
    1. Fernandez T.L., Van Lonkhuyzen D.R., Dawson R.A., Kimlin M.G., Upton Z. Characterization of a human skin equivalent model to study the effects of ultraviolet B radiation on keratinocytes. Tissue Eng. Part C Methods. 2014;20:588–598. doi: 10.1089/ten.tec.2013.0293.
    1. Moore R.J., Owens D.M., Stamp G., Arnott C., Burke F., East N., Holdsworth H., Turner L., Rollins B., Pasparakis M., et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat. Med. 1999;5:828–831. doi: 10.1038/10552.
    1. Motwani M.P., Gilroy D.W. Macrophage development and polarization in chronic inflammation. Semin. Immunol. 2015;27:257–266. doi: 10.1016/j.smim.2015.07.002.
    1. Li B., Vincent A., Cates J., Brantley-Sieders D.M., Polk D.B., Young P.P. Low levels of tumor necrosis factor alpha increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site. Cancer Res. 2009;69:338–348. doi: 10.1158/0008-5472.CAN-08-1565.
    1. Baron-Bodo V., Doceur P., Lefebvre M.L., Labroquere K., Defaye C., Cambouris C., Prigent D., Salcedo M., Boyer A., Nardin A. Anti-tumor properties of human-activated macrophages produced in large scale for clinical application. Immunobiology. 2005;210:267–277. doi: 10.1016/j.imbio.2005.05.021.
    1. Boyer A., Andreu G., Romet-Lemonne J.L., Fridman W.H., Teillaud J.L. Generation of phagocytic MAK and MAC-DC for therapeutic use: Characterization and in vitro functional properties. Exp. Hematol. 1999;27:751–761. doi: 10.1016/S0301-472X(98)00070-8.
    1. Fidler I.J. Inhibition of pulmonary metastasis by intravenous injection of specifically activated macrophages. Cancer Res. 1974;34:1074–1078.
    1. Liotta L.A., Gattozzi C., Kleinerman J., Saidel G. Reduction of tumour cell entry into vessels by BCG-activated macrophages. Br. J. Cancer. 1977;36:639–641. doi: 10.1038/bjc.1977.242.
    1. Gentles A.J., Newman A.M., Liu C.L., Bratman S.V., Feng W., Kim D., Nair V.S., Xu Y., Khuong A., Hoang C.D., et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 2015;21:938–945. doi: 10.1038/nm.3909.
    1. Ponzoni M., Pastorino F., Di Paolo D., Perri P., Brignole C. Targeting Macrophages as a Potential Therapeutic Intervention: Impact on Inflammatory Diseases and Cancer. Int. J. Mol. Sci. 2018;19:1953. doi: 10.3390/ijms19071953.
    1. Nissinen L., Farshchian M., Riihila P., Kahari V.M. New perspectives on role of tumor microenvironment in progression of cutaneous squamous cell carcinoma. Cell Tissue Res. 2016;365:691–702. doi: 10.1007/s00441-016-2457-z.
    1. Antsiferova M., Piwko-Czuchra A., Cangkrama M., Wietecha M., Sahin D., Birkner K., Amann V.C., Levesque M., Hohl D., Dummer R., et al. Activin promotes skin carcinogenesis by attraction and reprogramming of macrophages. EMBO Mol. Med. 2017;9:27–45. doi: 10.15252/emmm.201606493.
    1. Pettersen J.S., Fuentes-Duculan J., Suarez-Farinas M., Pierson K.C., Pitts-Kiefer A., Fan L., Belkin D.A., Wang C.Q., Bhuvanendran S., Johnson-Huang L.M., et al. Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J. Investig. Dermatol. 2011;131:1322–1330. doi: 10.1038/jid.2011.9.
    1. Takahara M., Chen S., Kido M., Takeuchi S., Uchi H., Tu Y., Moroi Y., Furue M. Stromal CD10 expression, as well as increased dermal macrophages and decreased Langerhans cells, are associated with malignant transformation of keratinocytes. J. Cutan. Pathol. 2009;36:668–674. doi: 10.1111/j.1600-0560.2008.01139.x.
    1. Moussai D., Mitsui H., Pettersen J.S., Pierson K.C., Shah K.R., Suarez-Farinas M., Cardinale I.R., Bluth M.J., Krueger J.G., Carucci J.A. The human cutaneous squamous cell carcinoma microenvironment is characterized by increased lymphatic density and enhanced expression of macrophage-derived VEGF-C. J. Investig. Dermatol. 2011;131:229–236. doi: 10.1038/jid.2010.266.
    1. Audiger C., Rahman M.J., Yun T.J., Tarbell K.V., Lesage S. The Importance of Dendritic Cells in Maintaining Immune Tolerance. J. Immunol. 2017;198:2223–2231. doi: 10.4049/jimmunol.1601629.
    1. Otsuka M., Egawa G., Kabashima K. Uncovering the Mysteries of Langerhans Cells, Inflammatory Dendritic Epidermal Cells, and Monocyte-Derived Langerhans Cell-Like Cells in the Epidermis. Front. Immunol. 2018;9:1768. doi: 10.3389/fimmu.2018.01768.
    1. Haniffa M., Shin A., Bigley V., McGovern N., Teo P., See P., Wasan P.S., Wang X.N., Malinarich F., Malleret B., et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity. 2012;37:60–73. doi: 10.1016/j.immuni.2012.04.012.
    1. Hieronymus T., Zenke M., Baek J.H., Sere K. The clash of Langerhans cell homeostasis in skin: Should I stay or should I go? Semin. Cell Dev. Biol. 2015;41:30–38. doi: 10.1016/j.semcdb.2014.02.009.
    1. Tang A., Udey M.C. Doses of ultraviolet radiation that modulate accessory cell activity and ICAM-1 expression are ultimately cytotoxic for murine epidermal Langerhans cells. J. Investig. Dermatol. 1992;99:71S–73S. doi: 10.1111/1523-1747.ep12669789.
    1. Pradhan S., Kim H.K., Thrash C.J., Cox M.A., Mantena S.K., Wu J.H., Athar M., Katiyar S.K., Elmets C.A., Timares L. A critical role for the proapoptotic protein bid in ultraviolet-induced immune suppression and cutaneous apoptosis. J. Immunol. 2008;181:3077–3088. doi: 10.4049/jimmunol.181.5.3077.
    1. Lee C.H., Wu S.B., Hong C.H., Yu H.S., Wei Y.H. Molecular Mechanisms of UV-Induced Apoptosis and Its Effects on Skin Residential Cells: The Implication in UV-Based Phototherapy. Int. J. Mol. Sci. 2013;14:6414–6435. doi: 10.3390/ijms14036414.
    1. Furio L., Berthier-Vergnes O., Ducarre B., Schmitt D., Peguet-Navarro J. UVA radiation impairs phenotypic and functional maturation of human dermal dendritic cells. J. Investig. Dermatol. 2005;125:1032–1038. doi: 10.1111/j.0022-202X.2005.23904.x.
    1. Schade N., Esser C., Krutmann J. Ultraviolet B radiation-induced immunosuppression: Molecular mechanisms and cellular alterations. Photochem. Photobiol. Sci. 2005;4:699–708. doi: 10.1039/b418378a.
    1. Ravindran A., Mohammed J., Gunderson A.J., Cui X., Glick A.B. Tumor-promoting role of TGFbeta1 signaling in ultraviolet B-induced skin carcinogenesis is associated with cutaneous inflammation and lymph node migration of dermal dendritic cells. Carcinogenesis. 2014;35:959–966. doi: 10.1093/carcin/bgt486.
    1. Hamakawa M., Sugihara A., Okamoto H., Horio T. Ultraviolet B radiation suppresses Langerhans cell migration in the dermis by down-regulation of alpha4 integrin. Photodermatol. Photoimmunol. Photomed. 2006;22:116–123. doi: 10.1111/j.1600-0781.2006.00187.x.
    1. Nakagawa S., Koomen C.W., Bos J.D., Teunissen M.B. Differential modulation of human epidermal Langerhans cell maturation by ultraviolet B radiation. J. Immunol. 1999;163:5192–5200.
    1. Kaplan D.H. In vivo function of Langerhans cells and dermal dendritic cells. Trends Immunol. 2010;31:446–451. doi: 10.1016/j.it.2010.08.006.
    1. Wang W., Ollila H.M., Whittemore A.S., Demehri S., Ioannidis N.M., Jorgenson E., Mignot E., Asgari M.M. Genetic variants in the HLA class II region associated with risk of cutaneous squamous cell carcinoma. Cancer Immunol. Immunother. 2018;67:1123–1133. doi: 10.1007/s00262-018-2168-2.
    1. Schreiner T.U., Lischka G., Schaumburg-Lever G. Langerhans’ cells in skin tumors. Arch. Dermatol. 1995;131:187–190. doi: 10.1001/archderm.1995.01690140071011.
    1. Modi B.G., Neustadter J., Binda E., Lewis J., Filler R.B., Roberts S.J., Kwong B.Y., Reddy S., Overton J.D., Galan A., et al. Langerhans cells facilitate epithelial DNA damage and squamous cell carcinoma. Science. 2012;335:104–108. doi: 10.1126/science.1211600.
    1. Lewis J.M., Burgler C.D., Fraser J.A., Liao H., Golubets K., Kucher C.L., Zhao P.Y., Filler R.B., Tigelaar R.E., Girardi M. Mechanisms of chemical cooperative carcinogenesis by epidermal Langerhans cells. J. Investig. Dermatol. 2015;135:1405–1414. doi: 10.1038/jid.2014.411.
    1. Ortner D., Tripp C.H., Komenda K., Dubrac S., Zelger B., Hermann M., Doppler W., Tymoszuk P.Z., Boon L., Clausen B.E., et al. Langerhans cells and NK cells cooperate in the inhibition of chemical skin carcinogenesis. Oncoimmunology. 2017;6:e1260215. doi: 10.1080/2162402X.2016.1260215.
    1. Strid J., Roberts S.J., Filler R.B., Lewis J.M., Kwong B.Y., Schpero W., Kaplan D.H., Hayday A.C., Girardi M. Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat. Immunol. 2008;9:146–154. doi: 10.1038/ni1556.
    1. Hatakeyama M., Fukunaga A., Washio K., Taguchi K., Oda Y., Ogura K., Nishigori C. Anti-Inflammatory Role of Langerhans Cells and Apoptotic Keratinocytes in Ultraviolet-B-Induced Cutaneous Inflammation. J. Immunol. 2017;199:2937–2947. doi: 10.4049/jimmunol.1601681.
    1. Lewis J.M., Burgler C.D., Freudzon M., Golubets K., Gibson J.F., Filler R.B., Girardi M. Langerhans Cells Facilitate UVB-Induced Epidermal Carcinogenesis. J. Investig. Dermatol. 2015;135:2824–2833. doi: 10.1038/jid.2015.207.
    1. Fujita H., Suarez-Farinas M., Mitsui H., Gonzalez J., Bluth M.J., Zhang S., Felsen D., Krueger J.G., Carucci J.A. Langerhans cells from human cutaneous squamous cell carcinoma induce strong type 1 immunity. J. Investig. Dermatol. 2012;132:1645–1655. doi: 10.1038/jid.2012.34.
    1. Bluth M.J., Zaba L.C., Moussai D., Suarez-Farinas M., Kaporis H., Fan L., Pierson K.C., White T.R., Pitts-Kiefer A., Fuentes-Duculan J., et al. Myeloid dendritic cells from human cutaneous squamous cell carcinoma are poor stimulators of T-cell proliferation. J. Investig. Dermatol. 2009;129:2451–2462. doi: 10.1038/jid.2009.96.
    1. Safari E., Ghorghanlu S., Ahmadi-Khiavi H., Mehranfar S., Rezaei R., Motallebnezhad M. Myeloid-derived suppressor cells and tumor: Current knowledge and future perspectives. J. Cell. Physiol. 2019;234:9966–9981. doi: 10.1002/jcp.27923.
    1. Senovilla L., Vacchelli E., Galon J., Adjemian S., Eggermont A., Fridman W.H., Sautes-Fridman C., Ma Y., Tartour E., Zitvogel L., et al. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology. 2012;1:1323–1343. doi: 10.4161/onci.22009.
    1. Sumida K., Wakita D., Narita Y., Masuko K., Terada S., Watanabe K., Satoh T., Kitamura H., Nishimura T. Anti-IL-6 receptor mAb eliminates myeloid-derived suppressor cells and inhibits tumor growth by enhancing T-cell responses. Eur. J. Immunol. 2012;42:2060–2072. doi: 10.1002/eji.201142335.
    1. Smola S., Trimble C., Stern P.L. Human papillomavirus-driven immune deviation: Challenge and novel opportunity for immunotherapy. Ther. Adv. Vaccines. 2017;5:69–82. doi: 10.1177/2051013617717914.
    1. Yang J., Zhao L., Xu M., Xiong N. Establishment and function of tissue-resident innate lymphoid cells in the skin. Protein Cell. 2017;8:489–500. doi: 10.1007/s13238-017-0388-4.
    1. Hayakawa Y., Andrews D.M., Smyth M.J. Subset analysis of human and mouse mature NK cells. Methods Mol. Biol. 2010;612:27–38.
    1. Vivier E., Tomasello E., Baratin M., Walzer T., Ugolini S. Functions of natural killer cells. Nat. Immunol. 2008;9:503–510. doi: 10.1038/ni1582.
    1. Luci C., Reynders A., Ivanov II., Cognet C., Chiche L., Chasson L., Hardwigsen J., Anguiano E., Banchereau J., Chaussabel D., et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 2009;10:75–82. doi: 10.1038/ni.1681.
    1. Amor N.G., de Oliveira C.E., Gasparoto T.H., Vilas Boas V.G., Perri G., Kaneno R., Lara V.S., Garlet G.P., da Silva J.S., Martins G.A., et al. ST2/IL-33 signaling promotes malignant development of experimental squamous cell carcinoma by decreasing NK cells cytotoxicity and modulating the intratumoral cell infiltrate. Oncotarget. 2018;9:30894–30904. doi: 10.18632/oncotarget.25768.
    1. Ilyas M., Costello C.M., Sharma A. Exploring the relationship between natural killer cells and cutaneous squamous cell carcinoma development. JAAD Case Rep. 2017;3:364–366. doi: 10.1016/j.jdcr.2017.04.006.
    1. Carroll R.P., Segundo D.S., Hollowood K., Marafioti T., Clark T.G., Harden P.N., Wood K.J. Immune phenotype predicts risk for posttransplantation squamous cell carcinoma. J. Am. Soc. Nephrol. 2010;21:713–722. doi: 10.1681/ASN.2009060669.
    1. Hope C.M., Troelnikov A., Hanf W., Jesudason S., Coates P.T., Heeger P.S., Carroll R.P. Peripheral natural killer cell and allo-stimulated T-cell function in kidney transplant recipients associate with cancer risk and immunosuppression-related complications. Kidney Int. 2015;88:1374–1382. doi: 10.1038/ki.2015.237.
    1. Orange J.S. Natural killer cell deficiency. J. Allergy Clin. Immunol. 2013;132:515–525. doi: 10.1016/j.jaci.2013.07.020.
    1. Paust S., Blish C.A., Reeves R.K. Redefining Memory: Building the Case for Adaptive NK Cells. J. Virol. 2017;91 doi: 10.1128/JVI.00169-17.
    1. Fehniger T.A., Cooper M.A. Harnessing NK Cell Memory for Cancer Immunotherapy. Trends Immunol. 2016;37:877–888. doi: 10.1016/j.it.2016.09.005.
    1. van Beek J.J.P., Martens A.W.J., Bakdash G., de Vries I.J.M. Innate Lymphoid Cells in Tumor Immunity. Biomedicines. 2016;4:7. doi: 10.3390/biomedicines4010007.
    1. Vacca P., Munari E., Tumino N., Moretta F., Pietra G., Vitale M., Del Zotto G., Mariotti F.R., Mingari M.C., Moretta L. Human natural killer cells and other innate lymphoid cells in cancer: Friends or foes? Immunol. Lett. 2018;201:14–19. doi: 10.1016/j.imlet.2018.11.004.
    1. Kim B.S. Innate lymphoid cells in the skin. J. Investig. Dermatol. 2015;135:673–678. doi: 10.1038/jid.2014.401.
    1. Kalyan S., Kabelitz D. Defining the nature of human gammadelta T cells: A biographical sketch of the highly empathetic. Cell. Mol. Immunol. 2013;10:21–29. doi: 10.1038/cmi.2012.44.
    1. Pang D.J., Neves J.F., Sumaria N., Pennington D.J. Understanding the complexity of γδ T-cell subsets in mouse and human. Immunology. 2012;136:283–290. doi: 10.1111/j.1365-2567.2012.03582.x.
    1. Girardi M., Oppenheim D.E., Steele C.R., Lewis J.M., Glusac E., Filler R., Hobby P., Sutton B., Tigelaar R.E., Hayday A.C. Regulation of cutaneous malignancy by gammadelta T cells. Science. 2001;294:605–609. doi: 10.1126/science.1063916.
    1. Van Hede D., Polese B., Humblet C., Wilharm A., Renoux V., Dortu E., de Leval L., Delvenne P., Desmet C.J., Bureau F., et al. Human papillomavirus oncoproteins induce a reorganization of epithelial-associated gammadelta T cells promoting tumor formation. Proc. Natl. Acad. Sci. USA. 2017;114:E9056–E9065. doi: 10.1073/pnas.1712883114.
    1. Heller N.M., Berga-Bolanos R., Naler L., Sen J.M. Natural Killer T (NKT) Cells in Mice and Men. In: Soboloff J., Kappes D.J., editors. Signaling Mechanisms Regulating T Cell Diversity and Function. CRC Press; Boca Raton, FL, USA: 2018. pp. 119–146.
    1. Ryser S., Schuppli M., Gauthier B., Hernandez D.R., Roye O., Hohl D., German B., Holzwarth J.A., Moodycliffe A.M. UVB-induced skin inflammation and cutaneous tissue injury is dependent on the MHC class I-like protein, CD1d. J. Investig. Dermatol. 2014;134:192–202. doi: 10.1038/jid.2013.300.
    1. Matsumura Y., Moodycliffe A.M., Nghiem D.X., Ullrich S.E., Ananthaswamy H.N. Resistance of CD1d−/− mice to ultraviolet-induced skin cancer is associated with increased apoptosis. Am. J. Pathol. 2004;165:879–887. doi: 10.1016/S0002-9440(10)63350-0.
    1. Moodycliffe A.M., Nghiem D., Clydesdale G., Ullrich S.E. Immune suppression and skin cancer development: Regulation by NKT cells. Nat. Immunol. 2000;1:521–525. doi: 10.1038/82782.
    1. Chraa D., Naim A., Olive D., Badou A. T lymphocyte subsets in cancer immunity: Friends or foes. J. Leukoc. Biol. 2018 doi: 10.1002/JLB.MR0318-097R.
    1. Malik S., Awasthi A. Transcriptional Control of Th9 Cells: Role of Foxo1 in Interleukin-9 Induction. Front. Immunol. 2018;9:995. doi: 10.3389/fimmu.2018.00995.
    1. Asadzadeh Z., Mohammadi H., Safarzadeh E., Hemmatzadeh M., Mahdian-Shakib A., Jadidi-Niaragh F., Azizi G., Baradaran B. The paradox of Th17 cell functions in tumor immunity. Cell. Immunol. 2017;322:15–25. doi: 10.1016/j.cellimm.2017.10.015.
    1. Suwanpradid J., Holcomb Z.E., MacLeod A.S. Emerging Skin T-Cell Functions in Response to Environmental Insults. J. Investig. Dermatol. 2017;137:288–294. doi: 10.1016/j.jid.2016.08.013.
    1. Fazilleau N., Mark L., McHeyzer-Williams L.J., McHeyzer-Williams M.G. Follicular helper T cells: Lineage and location. Immunity. 2009;30:324–335. doi: 10.1016/j.immuni.2009.03.003.
    1. Loser K., Apelt J., Voskort M., Mohaupt M., Balkow S., Schwarz T., Grabbe S., Beissert S. IL-10 controls ultraviolet-induced carcinogenesis in mice. J. Immunol. 2007;179:365–371. doi: 10.4049/jimmunol.179.1.365.
    1. Girardi M., Oppenheim D., Glusac E.J., Filler R., Balmain A., Tigelaar R.E., Hayday A.C. Characterizing the protective component of the alphabeta T cell response to transplantable squamous cell carcinoma. J. Investig. Dermatol. 2004;122:699–706. doi: 10.1111/j.0022-202X.2004.22342.x.
    1. Nasti T.H., Iqbal O., Tamimi I.A., Geise J.T., Katiyar S.K., Yusuf N. Differential roles of T-cell subsets in regulation of ultraviolet radiation induced cutaneous photocarcinogenesis. Photochem. Photobiol. 2011;87:387–398. doi: 10.1111/j.1751-1097.2010.00859.x.
    1. Li H., Prasad R., Katiyar S.K., Yusuf N., Elmets C.A., Xu H. Interleukin-17 mediated inflammatory responses are required for ultraviolet radiation-induced immune suppression. Photochem. Photobiol. 2015;91:235–241. doi: 10.1111/php.12351.
    1. Yusuf N., Nasti T.H., Katiyar S.K., Jacobs M.K., Seibert M.D., Ginsburg A.C., Timares L., Xu H., Elmets C.A. Antagonistic roles of CD4+ and CD8+ T-cells in 7,12-dimethylbenz(a)anthracene cutaneous carcinogenesis. Cancer Res. 2008;68:3924–3930. doi: 10.1158/0008-5472.CAN-07-3059.
    1. Zhang S., Fujita H., Mitsui H., Yanofsky V.R., Fuentes-Duculan J., Pettersen J.S., Suarez-Farinas M., Gonzalez J., Wang C.Q., Krueger J.G., et al. Increased Tc22 and Treg/CD8 ratio contribute to aggressive growth of transplant associated squamous cell carcinoma. PLoS ONE. 2013;8:e62154. doi: 10.1371/journal.pone.0062154.
    1. Levin C., Bonduelle O., Nuttens C., Primard C., Verrier B., Boissonnas A., Combadiere B. Critical Role for Skin-Derived Migratory DCs and Langerhans Cells in TFH and GC Responses after Intradermal Immunization. J. Investig. Dermatol. 2017;137:1905–1913. doi: 10.1016/j.jid.2017.04.016.
    1. Hori S., Nomura T., Sakaguchi S. Control of Regulatory T Cell Development by the Transcription Factor Foxp3. Science. 2003;299:1057–1061. doi: 10.1126/science.1079490.
    1. Liu W., Putnam A.L., Xu-yu Z., Szot G.L., Lee M.R., Zhu S., Gottlieb P.A., Kapranov P., Gingeras T.R., de St. Groth B.F., et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 2006;203:1701–1711. doi: 10.1084/jem.20060772.
    1. Roncador G., Brown P.J., Maestre L., Hue S., Martínez-Torrecuadrada J.L., Ling K.-L., Pratap S., Toms C., Fox B.C., Cerundolo V., et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur. J. Immunol. 2005;35:1681–1691. doi: 10.1002/eji.200526189.
    1. Seddiki N., Santner-Nanan B., Martinson J., Zaunders J., Sasson S., Landay A., Solomon M., Selby W., Alexander S.I., Nanan R., et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 2006;203:1693–1700. doi: 10.1084/jem.20060468.
    1. Gao Q., Qiu S.-J., Fan J., Zhou J., Wang X.-Y., Xiao Y.-S., Xu Y., Li Y.-W., Tang Z.-Y. Intratumoral Balance of Regulatory and Cytotoxic T Cells Is Associated With Prognosis of Hepatocellular Carcinoma After Resection. J. Clin. Oncol. 2007;25:2586–2593. doi: 10.1200/JCO.2006.09.4565.
    1. Jie H.-B., Schuler P.J., Lee S.C., Srivastava R.M., Argiris A., Ferrone S., Whiteside T.L., Ferris R.L. CTLA-4+ Regulatory T Cells Increased in Cetuximab-Treated Head and Neck Cancer Patients Suppress NK Cell Cytotoxicity and Correlate with Poor Prognosis. Cancer Res. 2015;75:2200–2210. doi: 10.1158/0008-5472.CAN-14-2788.
    1. Liu F., Lang R., Zhao J., Zhang X., Pringle G., Fan Y., Yin D., Gu F., Yao Z., Fu L. CD8+ cytotoxic T cell and FOXP3+ regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res. Treat. 2011;130:645–655. doi: 10.1007/s10549-011-1647-3.
    1. Lin S.-Z., Chen K.-J., Xu Z.-Y., Chen H., Zhou L., Xie H.-Y., Zheng S.-S. Prediction of Recurrence and Survival in Hepatocellular Carcinoma Based on Two Cox Models Mainly Determined by FoxP3+ Regulatory T Cells. Cancer Prev. Res. 2013;6:594–602. doi: 10.1158/1940-6207.CAPR-12-0379.
    1. Azzimonti B., Zavattaro E., Provasi M., Vidali M., Conca A., Catalano E., Rimondini L., Colombo E., Valente G. Intense Foxp3(+) CD25(+) regulatory T-cell infiltration is associated with high-grade cutaneous squamous cell carcinoma and counterbalanced by CD8(+) /Foxp3(+) CD25(+) ratio. Br. J. Dermatol. 2015;172:64–73. doi: 10.1111/bjd.13172.
    1. Gorsch S.M., Memoli V.A., Stukel T.A., Gold L.I., Arrick B.A. Immunohistochemical Staining for Transforming Growth Factor β1 Associates with Disease Progression in Human Breast Cancer. Cancer Res. 1992;52:6949–6952.
    1. Cao X., Cai S.F., Fehniger T.A., Song J., Collins L.I., Piwnica-Worms D.R., Ley T.J. Granzyme B and Perforin Are Important for Regulatory T Cell-Mediated Suppression of Tumor Clearance. Immunity. 2007;27:635–646. doi: 10.1016/j.immuni.2007.08.014.
    1. Klebanoff C.A., Gattinoni L., Torabi-Parizi P., Kerstann K., Cardones A.R., Finkelstein S.E., Palmer D.C., Antony P.A., Hwang S.T., Rosenberg S.A. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc. Natl. Acad. Sci. USA. 2005;102:9571–9576. doi: 10.1073/pnas.0503726102.
    1. Qin Z., Schwartzkopff J., Pradera F., Kammertœns T., Seliger B., Pircher H., Blankenstein T. A Critical Requirement of Interferon γ-mediated Angiostasis for Tumor Rejection by CD8+ T Cells. Cancer Res. 2003;63:4095–4100.
    1. Daniel D., Meyer-Morse N., Bergsland E.K., Dehne K., Coussens L.M., Hanahan D. Immune enhancement of skin carcinogenesis by CD4+ T cells. J. Exp. Med. 2003;197:1017–1028. doi: 10.1084/jem.20021047.
    1. Linedale R., Schmidt C., King B.T., Ganko A.G., Simpson F., Panizza B.J., Leggatt G.R. Elevated frequencies of CD8 T cells expressing PD-1, CTLA-4 and Tim-3 within tumour from perineural squamous cell carcinoma patients. PLoS ONE. 2017;12:e0175755. doi: 10.1371/journal.pone.0175755.
    1. Slater N.A., Googe P.B. PD-L1 expression in cutaneous squamous cell carcinoma correlates with risk of metastasis. J. Cutan. Pathol. 2016;43:663–670. doi: 10.1111/cup.12728.
    1. Kwong B.Y., Roberts S.J., Silberzahn T., Filler R.B., Neustadter J.H., Galan A., Reddy S., Lin W.M., Ellis P.D., Langford C.F., et al. Molecular analysis of tumor-promoting CD8+ T cells in two-stage cutaneous chemical carcinogenesis. J. Investig. Dermatol. 2010;130:1726–1736. doi: 10.1038/jid.2009.362.
    1. Filaci G., Fenoglio D., Fravega M., Ansaldo G., Borgonovo G., Traverso P., Villaggio B., Ferrera A., Kunkl A., Rizzi M., et al. CD8+ CD28- T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J. Immunol. 2007;179:4323–4334. doi: 10.4049/jimmunol.179.7.4323.
    1. Meloni F., Morosini M., Solari N., Passadore I., Nascimbene C., Novo M., Ferrari M., Cosentino M., Marino F., Pozzi E., et al. Foxp3 expressing CD4+ CD25+ and CD8+CD28- T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Human Immunol. 2006;67:1–12. doi: 10.1016/j.humimm.2005.11.005.
    1. Janeway C.A., Ron J., Katz M.E. The B cell is the initiating antigen-presenting cell in peripheral lymph nodes. J. Immunol. 1987;138:1051–1055.
    1. Harris D.P., Haynes L., Sayles P.C., Duso D.K., Eaton S.M., Lepak N.M., Johnson L.L., Swain S.L., Lund F.E. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat. Immunol. 2000;1:475–482. doi: 10.1038/82717.
    1. Lund F.E., Randall T.D. Effector and regulatory B cells: Modulators of CD4(+) T cell immunity. Nat. Rev. 2010;10:236–247. doi: 10.1038/nri2729.
    1. Blair P.A., Norena L.Y., Flores-Borja F., Rawlings D.J., Isenberg D.A., Ehrenstein M.R., Mauri C. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity. 2010;32:129–140. doi: 10.1016/j.immuni.2009.11.009.
    1. Iwata Y., Matsushita T., Horikawa M., Dilillo D.J., Yanaba K., Venturi G.M., Szabolcs P.M., Bernstein S.H., Magro C.M., Williams A.D., et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood. 2011;117:530–541. doi: 10.1182/blood-2010-07-294249.
    1. Lindner S., Dahlke K., Sontheimer K., Hagn M., Kaltenmeier C., Barth T.F., Beyer T., Reister F., Fabricius D., Lotfi R., et al. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. Cancer Res. 2013;73:2468–2479. doi: 10.1158/0008-5472.CAN-12-3450.
    1. Liu J., Zhan W., Kim C.J., Clayton K., Zhao H., Lee E., Cao J.C., Ziegler B., Gregor A., Yue F.Y., et al. IL-10-producing B cells are induced early in HIV-1 infection and suppress HIV-1-specific T cell responses. PLoS ONE. 2014;9:e89236. doi: 10.1371/journal.pone.0089236.
    1. Zha B., Wang L., Liu X., Liu J., Chen Z., Xu J., Sheng L., Li Y., Chu Y. Decrease in proportion of CD19+ CD24(hi) CD27+ B cells and impairment of their suppressive function in Graves’ disease. PLoS ONE. 2012;7:e49835. doi: 10.1371/journal.pone.0049835.
    1. Sarvaria A., Madrigal J.A., Saudemont A. B cell regulation in cancer and anti-tumor immunity. Cell. Mol. Immunol. 2017;14:662–674. doi: 10.1038/cmi.2017.35.
    1. Andreu P., Johansson M., Affara N.I., Pucci F., Tan T., Junankar S., Korets L., Lam J., Tawfik D., DeNardo D.G., et al. FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010;17:121–134. doi: 10.1016/j.ccr.2009.12.019.
    1. de Visser K.E., Korets L.V., Coussens L.M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell. 2005;7:411–423. doi: 10.1016/j.ccr.2005.04.014.
    1. Schioppa T., Moore R., Thompson R.G., Rosser E.C., Kulbe H., Nedospasov S., Mauri C., Coussens L.M., Balkwill F.R. B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc. Natl. Acad. Sci. USA. 2011;108:10662–10667. doi: 10.1073/pnas.1100994108.
    1. Crawford G., Hayes M.D., Seoane R.C., Ward S., Dalessandri T., Lai C., Healy E., Kipling D., Proby C., Moyes C., et al. Epithelial damage and tissue gammadelta T cells promote a unique tumor-protective IgE response. Nat. Immunol. 2018;19:859–870. doi: 10.1038/s41590-018-0161-8.
    1. Hope C.M., Grace B.S., Pilkington K.R., Coates P.T., Bergmann I.P., Carroll R.P. The immune phenotype may relate to cancer development in kidney transplant recipients. Kidney Int. 2014;86:175–183. doi: 10.1038/ki.2013.538.
    1. Harwood C.A., Toland A.E., Proby C.M., Euvrard S., Hofbauer G.F.L., Tommasino M., Bouwes Bavinck J.N. The pathogenesis of cutaneous squamous cell carcinoma in organ transplant recipients. Br. J. Dermatol. 2017;177:1217–1224. doi: 10.1111/bjd.15956.
    1. Grulich A.E., van Leeuwen M.T., Falster M.O., Vajdic C.M. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: A meta-analysis. Lancet. 2007;370:59–67. doi: 10.1016/S0140-6736(07)61050-2.
    1. Harwood C.A., Mesher D., McGregor J.M., Mitchell L., Leedham-Green M., Raftery M., Cerio R., Leigh I.M., Sasieni P., Proby C.M. A surveillance model for skin cancer in organ transplant recipients: A 22-year prospective study in an ethnically diverse population. Am. J. Transplant. 2013;13:119–129. doi: 10.1111/j.1600-6143.2012.04292.x.
    1. Krynitz B., Edgren G., Lindelöf B., Baecklund E., Brattström C., Wilczek H., Smedby K.E. Risk of skin cancer and other malignancies in kidney, liver, heart and lung transplant recipients 1970 to 2008—A Swedish population-based study. Int. J. Cancer. 2013;132:1429–1438. doi: 10.1002/ijc.27765.
    1. Martinez J.-C., Otley C.C., Stasko T., Euvrard S., Brown C., Schanbacher C.F., Weaver A.L. Defining the clinical course of metastatic skin cancer in organ transplant recipients: A multicenter collaborative study. Arch. Dermatol. 2003;139:301–306. doi: 10.1001/archderm.139.3.301.
    1. Lott D.G., Manz R., Koch C., Lorenz R.R. Aggressive behavior of nonmelanotic skin cancers in solid organ transplant recipients. Transplantation. 2010;90:683–687. doi: 10.1097/TP.0b013e3181ec7228.
    1. Madeleine M.M., Patel N.S., Plasmeijer E.I., Engels E.A., Bouwes Bavinck J.N., Toland A.E., Green A.C. Epidemiology of keratinocyte carcinomas after organ transplantation. Br. J. Dermatol. 2017;177:1208–1216. doi: 10.1111/bjd.15931.
    1. Lanz J., Bavinck J.N.B., Westhuis M., Quint K.D., Harwood C.A., Nasir S., Van-de-Velde V., Proby C.M., Ferrándiz C., Genders R.E. Aggressive Squamous Cell Carcinoma in Organ Transplant Recipients. JAMA Dermatol. 2019;155:66–71. doi: 10.1001/jamadermatol.2018.4406.
    1. Otley C.C., Berg D., Ulrich C., Stasko T., Murphy G.M., Salasche S.J., Christenson L.J., Sengelmann R., Loss G.E., Garces J. Reduction of immunosuppression for transplant-associated skin cancer: Expert consensus survey. Br. J. Dermatol. 2006;154:395–400. doi: 10.1111/j.1365-2133.2005.07087.x.
    1. Collett D., Mumford L., Banner N.R., Neuberger J., Watson C. Comparison of the incidence of malignancy in recipients of different types of organ: A UK Registry audit. Am. J. Transplant. 2010;10:1889–1896. doi: 10.1111/j.1600-6143.2010.03181.x.
    1. Ramsay H.M., Fryer A.A., Reece S., Smith A.G., Harden P.N. Clinical risk factors associated with nonmelanoma skin cancer in renal transplant recipients. Am. J. Kidney Dis. 2000;36:167–176. doi: 10.1053/ajkd.2000.8290.
    1. Carroll R.P., Ramsay H.M., Fryer A.A., Hawley C.M., Nicol D.L., Harden P.N. Incidence and prediction of nonmelanoma skin cancer post-renal transplantation: A prospective study in Queensland, Australia. Am. J. Kidney Dis. 2003;41:676–683. doi: 10.1053/ajkd.2003.50130.
    1. Moloney F.J., Kelly P.O., Kay E.W., Conlon P., Murphy G.M. Maintenance versus reduction of immunosuppression in renal transplant recipients with aggressive squamous cell carcinoma. Dermatol. Surg. 2004;30:674–678.
    1. Silverberg M.J., Leyden W., Warton E.M., Quesenberry C.P., Jr., Engels E.A., Asgari M.M. HIV infection status, immunodeficiency, and the incidence of non-melanoma skin cancer. J. Natl. Cancer Inst. 2013;105:350–360. doi: 10.1093/jnci/djs529.
    1. Jensen A.O., Olesen A.B., Dethlefsen C., Sorensen H.T., Karagas M.R. Chronic diseases requiring hospitalization and risk of non-melanoma skin cancers—a population based study from Denmark. J. Investig. Dermatol. 2008;128:926–931. doi: 10.1038/sj.jid.5701094.
    1. Agnew K.L., Ruchlemer R., Catovsky D., Matutes E., Bunker C.B. Cutaneous findings in chronic lymphocytic leukaemia. Br. J. Dermatol. 2004;150:1129–1135. doi: 10.1111/j.1365-2133.2004.05982.x.
    1. Onajin O., Brewer J.D. Skin cancer in patients with chronic lymphocytic leukemia and non-Hodgkin lymphoma. Clin. Adv. Hematol. Oncol. 2012;10:571–576.
    1. Asgari M.M., Ray G.T., Quesenberry C.P., Katz K.A., Silverberg M.J. Association of Multiple Primary Skin Cancers With Human Immunodeficiency Virus Infection, CD4 Count, and Viral Load. JAMA Dermatol. 2017;153:892–896. doi: 10.1001/jamadermatol.2017.1716.
    1. Buchbinder R., Barber M., Heuzenroeder L., Wluka A.E., Giles G., Hall S., Harkness A., Lewis D., Littlejohn G., Miller M.H. Incidence of melanoma and other malignancies among rheumatoid arthritis patients treated with methotrexate. Arthritis Care Res. 2008;59:794–799. doi: 10.1002/art.23716.
    1. Hagen J.W., Pugliano-Mauro M.A. Nonmelanoma skin cancer risk in patients with inflammatory bowel disease undergoing thiopurine therapy: A systematic review of the literature. Dermatol. Surg. 2018;44:469–480. doi: 10.1097/DSS.0000000000001455.
    1. Jung J.-W., Overgaard N.H., Burke M.T., Isbel N., Frazer I.H., Simpson F., Wells J.W. Does the nature of residual immune function explain the differential risk of non-melanoma skin cancer development in immunosuppressed organ transplant recipients? Int. J. Cancer. 2015;138:281–292. doi: 10.1002/ijc.29450.
    1. Sherston S.N., Vogt K., Schlickeiser S., Sawitzki B., Harden P.N., Wood K.J. Demethylation of the TSDR Is a Marker of Squamous Cell Carcinoma in Transplant Recipients. Am. J. Transplant. 2014;14:2617–2622. doi: 10.1111/ajt.12899.
    1. Crespo E., Fernandez L., Lucia M., Melilli E., Lauzurica R., Penin R.M., Quer A., Luque S., Quero M., Manonelles A., et al. Effector Antitumor and Regulatory T Cell Responses Influence the Development of Nonmelanoma Skin Cancer in Kidney Transplant Patients. Transplantation. 2017;101:2102–2110. doi: 10.1097/TP.0000000000001759.
    1. Bottomley M.J., Harden P.N., Wood K.J. CD8+ Immunosenescence Predicts Post-Transplant Cutaneous Squamous Cell Carcinoma in High-Risk Patients. J. Am. Soc. Nephrol. 2016;27:1505. doi: 10.1681/ASN.2015030250.
    1. Ducloux D., Carron P.-L., Motte G., Ab A., Rebibou J.-M., Bresson-Vautrin C., Tiberghien P., Saint-Hillier Y., Chalopin J.-M. Lymphocyte subsets and assessment of cancer risk in renal transplant recipients. Transpl. Int. 2002;15:393–396. doi: 10.1111/j.1432-2277.2002.tb00187.x.
    1. Thibaudin D., Alamartine E., Mariat C., Absi L., Berthoux F. Long-term kinetic of T-lymphocyte subsets in kidney-transplant recipients: Influence of anti–T-cell antibodies and association with posttransplant malignancies. Transplantation. 2005;80:1514–1517. doi: 10.1097/01.tp.0000181193.98026.3f.
    1. Hanahan D., Weinberg R.A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Balkwill F.R., Capasso M., Hagemann T. The tumor microenvironment at a glance. J. Cell Sci. 2012;125:5591. doi: 10.1242/jcs.116392.
    1. Gajewski T.F., Schreiber H., Fu Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013;14:1014. doi: 10.1038/ni.2703.
    1. Whiteside T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27:5904. doi: 10.1038/onc.2008.271.
    1. Binnewies M., Roberts E.W., Kersten K., Chan V., Fearon D.F., Merad M., Coussens L.M., Gabrilovich D.I., Ostrand-Rosenberg S., Hedrick C.C., et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018;24:541–550. doi: 10.1038/s41591-018-0014-x.
    1. Strobel S.B., Safferling K., Lahrmann B., Hoffmann J.H., Enk A.H., Hadaschik E.N., Grabe N., Lonsdorf A.S. Altered density, composition and microanatomical distribution of infiltrating immune cells in cutaneous squamous cell carcinoma of organ transplant recipients. Br. J. Dermatol. 2018;179:405–412. doi: 10.1111/bjd.16477.
    1. Mühleisen B., Petrov I., Gächter T., Kurrer M., Schärer L., Dummer R., French L.E., Hofbauer G.F.L. Progression of cutaneous squamous cell carcinoma in immunosuppressed patients is associated with reduced CD123+ and FOXP3+ cells in the perineoplastic inflammatory infiltrate. Histopathology. 2009;55:67–76. doi: 10.1111/j.1365-2559.2009.03324.x.
    1. Lai C., August S., Albibas A., Behar R., Cho S.-Y., Polak M.E., Theaker J., Macleod A.S., French R.R., Glennie M.J., et al. OX40+ Regulatory T Cells in Cutaneous Squamous Cell Carcinoma Suppress Effector T-Cell Responses and Associate with Metastatic Potential. Clin. Cancer Res. 2016;22:4236. doi: 10.1158/1078-0432.CCR-15-2614.
    1. Kosmidis M., Dziunycz P., Suarez-Farinas M., Mühleisen B., Schärer L., Läuchli S., Hafner J., French L.E., Schmidt-Weber C., Carucci J.A. Immunosuppression affects CD4+ mRNA expression and induces Th2 dominance in the microenvironment of cutaneous squamous cell carcinoma in organ transplant recipients. J. Immunother. 2010;33:538–546. doi: 10.1097/CJI.0b013e3181cc2615.
    1. Ekberg H., Tedesco-Silva H., Demirbas A., Vitko S., Nashan B., Gurkan A., Margreiter R., Hugo C., Grinyo J.M., Frei U., et al. Reduced exposure to calcineurin inhibitors in renal transplantation. New Engl. J. Med. 2007;357:2562–2575. doi: 10.1056/NEJMoa067411.
    1. O’Donovan P., Perrett C.M., Zhang X., Montaner B., Xu Y.-Z., Harwood C.A., McGregor J.M., Walker S.L., Hanaoka F., Karran P. Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science. 2005;309:1871–1874. doi: 10.1126/science.1114233.
    1. Inman G.J., Wang J., Nagano A., Alexandrov L.B., Purdie K.J., Taylor R.G., Sherwood V., Thomson J., Hogan S., Spender L.C., et al. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat. Commun. 2018;9:3667. doi: 10.1038/s41467-018-06027-1.
    1. Pillans P. Immunosuppressants-mechanisms of action and monitoring. Aust. Prescriber. 2006;29:99–101. doi: 10.18773/austprescr.2006.064.
    1. Bennett W.M., Norman D.J. Action and toxicity of cyclosporine. Annu. Rev. Med. 1986;37:215–224. doi: 10.1146/annurev.me.37.020186.001243.
    1. Herman M., Weinstein T., Korzets A., Chagnac A., Ori Y., Zevin D., Malachi T., Gafter U. Effect of cyclosporin A on DNA repair and cancer incidence in kidney transplant recipients. J. Lab. Clin. Med. 2001;137:14–20. doi: 10.1067/mlc.2001.111469.
    1. Guba M., von Breitenbuch P., Steinbauer M., Koehl G., Flegel S., Hornung M., Bruns C.J., Zuelke C., Farkas S., Anthuber M. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: Involvement of vascular endothelial growth factor. Nat. Med. 2002;8:128. doi: 10.1038/nm0202-128.
    1. Hojo M., Morimoto T., Maluccio M., Asano T., Morimoto K., Lagman M., Shimbo T., Suthanthiran M. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature. 1999;397:530. doi: 10.1038/17401.
    1. Cara C.J., Pena A.S., Sans M., Rodrigo L., Guerrero-Esteo M., Hinojosa J., García-Paredes J., Guijarro L.G. Reviewing the mechanism of action of thiopurine drugs: Towards a new paradigm in clinical practice. Med. Sci. Monit. 2004;10:RA247–RA254.
    1. Belgi G., Friedmann P.S. Traditional therapies: Glucocorticoids, azathioprine, methotrexate, hydroxyurea. Clin. Exp. Dermatol. 2002;27:546–554. doi: 10.1046/j.1365-2230.2002.01146.x.
    1. Allison A.C., Eugui E.M. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47:85–118. doi: 10.1016/S0162-3109(00)00188-0.
    1. Thomson A.W., Turnquist H.R., Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat. Rev. Immunol. 2009;9:324–337. doi: 10.1038/nri2546.
    1. Harwood C.A., McGregor J.M., Proby C.M. Rook’s Textbook of Dermatology. 9th ed. Wiley-Blackwell; Hoboken, NJ, USA: 2016. Chapter 146: Skin cancer in the immunocompromised patient; pp. 1–29.
    1. Quint K.D., Genders R.E., de Koning M.N.C., Borgogna C., Gariglio M., Bouwes Bavinck J.N., Doorbar J., Feltkamp M.C. Human Beta-papillomavirus infection and keratinocyte carcinomas. J. Pathol. 2015;235:342–354. doi: 10.1002/path.4425.
    1. Howley P.M., Pfister H.J. Beta genus papillomaviruses and skin cancer. Virology. 2015;479:290–296. doi: 10.1016/j.virol.2015.02.004.
    1. Wang J., Aldabagh B., Yu J., Arron S.T. Role of human papillomavirus in cutaneous squamous cell carcinoma: A meta-analysis. J. Am. Acad. Dermatol. 2014;70:621–629. doi: 10.1016/j.jaad.2014.01.857.
    1. Arron S.T., Ruby J.G., Dybbro E., Ganem D., DeRisi J.L. Transcriptome sequencing demonstrates that human papillomavirus is not active in cutaneous squamous cell carcinoma. J. Investig. Dermatol. 2011;131:1745–1753. doi: 10.1038/jid.2011.91.
    1. Neale R.E., Weissenborn S., Abeni D., Bavinck J.N., Euvrard S., Feltkamp M.C., Green A.C., Harwood C., de Koning M., Naldi L., et al. Human papillomavirus load in eyebrow hair follicles and risk of cutaneous squamous cell carcinoma. Cancer Epidemiol. Biomark. Prev. 2013;22:719–727. doi: 10.1158/1055-9965.EPI-12-0917-T.
    1. Mellman I., Coukos G., Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480. doi: 10.1038/nature10673.
    1. Keir M.E., Butte M.J., Freeman G.J., Sharpe A.H. PD-1 and Its Ligands in Tolerance and Immunity. Annu. Rev. Immunol. 2008;26:677–704. doi: 10.1146/annurev.immunol.26.021607.090331.
    1. Hodi F.S., O’Day S.J., McDermott D.F., Weber R.W., Sosman J.A., Haanen J.B., Gonzalez R., Robert C., Schadendorf D., Hassel J.C. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010;363:711–723. doi: 10.1056/NEJMoa1003466.
    1. Webster R.M. The immune checkpoint inhibitors: Where are we now? Nat. Rev. Drug Discov. 2014;13:883. doi: 10.1038/nrd4476.
    1. McGranahan N., Furness A.J.S., Rosenthal R., Ramskov S., Lyngaa R., Saini S.K., Jamal-Hanjani M., Wilson G.A., Birkbak N.J., Hiley C.T. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–1469. doi: 10.1126/science.aaf1490.
    1. Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S., et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128. doi: 10.1126/science.aaa1348.
    1. South A.P., Purdie K.J., Watt S.A., Haldenby S., Den Breems N.Y., Dimon M., Arron S.T., Kluk M.J., Aster J.C., McHugh A. NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis. J. Investig. Dermatol. 2014;134:2630–2638. doi: 10.1038/jid.2014.154.
    1. Migden M.R., Rischin D., Schmults C.D., Guminski A., Hauschild A., Lewis K.D., Chung C.H., Hernandez-Aya L., Lim A.M., Chang A.L.S., et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018;379:341–351. doi: 10.1056/NEJMoa1805131.
    1. Varki V., Ioffe O.B., Bentzen S.M., Heath J., Cellini A., Feliciano J., Zandberg D.P. PD-L1, B7-H3, and PD-1 expression in immunocompetent vs. immunosuppressed patients with cutaneous squamous cell carcinoma. Cancer Immunol. Immunother. 2018;67:805–814. doi: 10.1007/s00262-018-2138-8.
    1. García-Díez I., Hernández-Ruiz E., Andrades E., Gimeno J., Ferrándiz-Pulido C., Yébenes M., García-Patos V., Pujol R.M., Hernández-Muñoz I., Toll A. PD-L1 Expression is Increased in Metastasizing Squamous Cell Carcinomas and Their Metastases. Am. J. Dermatopathol. 2018;40:647–654. doi: 10.1097/DAD.0000000000001164.
    1. Lipson E.J., Bagnasco S.M., Moore J., Jr., Jang S., Patel M.J., Zachary A.A., Pardoll D.M., Taube J.M., Drake C.G. Tumor Regression and Allograft Rejection after Administration of Anti-PD-1. N. Engl. J. Med. 2016;374:896–898. doi: 10.1056/NEJMc1509268.
    1. Owonikoko T.K., Kumar M., Yang S., Kamphorst A.O., Pillai R.N., Akondy R., Nautiyal V., Chatwal M.S., Book W.M., Sahu A. Cardiac allograft rejection as a complication of PD-1 checkpoint blockade for cancer immunotherapy: A case report. Cancer Immunol. Immunother. 2017;66:45–50. doi: 10.1007/s00262-016-1918-2.
    1. Spain L., Higgins R., Gopalakrishnan K., Turajlic S., Gore M., Larkin J. Acute renal allograft rejection after immune checkpoint inhibitor therapy for metastatic melanoma. Ann. Oncol. 2016;27:1135–1137. doi: 10.1093/annonc/mdw130.
    1. Zhang R., Zhang Z., Liu Z., Wei D., Wu X., Bian H., Chen Z. Adoptive cell transfer therapy for hepatocellular carcinoma. Front. Med. 2019 doi: 10.1007/s11684-019-0684-x.
    1. Newick K., O’Brien S., Moon E., Albelda S.M. CAR T Cell Therapy for Solid Tumors. Annu. Rev. Med. 2017;68:139–152. doi: 10.1146/annurev-med-062315-120245.

Source: PubMed

3
Subscribe