Molecular determinants of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum in Nigeria and the regional emergence of dhps 431V

Mary C Oguike, Catherine O Falade, Elvis Shu, Izehiuwa G Enato, Ismaila Watila, Ebenezer S Baba, Jane Bruce, Jayne Webster, Prudence Hamade, Sylvia Meek, Daniel Chandramohan, Colin J Sutherland, David Warhurst, Cally Roper, Mary C Oguike, Catherine O Falade, Elvis Shu, Izehiuwa G Enato, Ismaila Watila, Ebenezer S Baba, Jane Bruce, Jayne Webster, Prudence Hamade, Sylvia Meek, Daniel Chandramohan, Colin J Sutherland, David Warhurst, Cally Roper

Abstract

There are few published reports of mutations in dihydropteroate synthetase (dhps) and dihydrofolate reductase (dhfr) genes in P. falciparum populations in Nigeria, but one previous study has recorded a novel dhps mutation at codon 431 among infections imported to the United Kingdom from Nigeria. To assess how widespread this mutation is among parasites in different parts of the country and consequently fill the gap in sulfadoxine-pyrimethamine (SP) resistance data in Nigeria, we retrospectively analysed 1000 filter paper blood spots collected in surveys of pregnant women and children with uncomplicated falciparum malaria between 2003 and 2015 from four sites in the south and north. Genomic DNA was extracted from filter paper blood spots and placental impressions. Point mutations at codons 16, 50, 51, 59, 108, 140 and 164 of the dhfr gene and codons 431, 436, 437, 540, 581 and 613 of the dhps gene were evaluated by nested PCR amplification followed by direct sequencing. The distribution of the dhps-431V mutation was widespread throughout Nigeria with the highest prevalence in Enugu (46%). In Ibadan where we had sequential sampling, its prevalence increased from 0% to 6.5% between 2003 and 2008. Although there were various combinations of dhps mutations with 431V, the combination 431V + 436A + 437G+581G+613S was the most common. All these observations support the view that dhps-431V is on the increase. In addition, P. falciparum DHPS crystal structure modelling shows that the change from Isoleucine to Valine (dhps-431V) could alter the effects of both S436A/F and A437G, which closely follow the 2nd β-strand. Consequently, it is now a research priority to assess the implications of dhps-VAGKGS mutant haplotype on continuing use of SP in seasonal malaria chemoprevention (SMC) and intermittent preventive treatment in pregnancy (IPTp). Our data also provides surveillance data for SP resistance markers in Nigeria between 2003 and 2015.

Keywords: Nigeria; Sulfadoxine-pyrimethamine; dhfr; dhps; mutations.

Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Prevalence of dhps 431 mutation haplotypes between 2003 and 2014 in Nigeria. A map of Nigeria showing the study locations and the prevalence of the various combinations of the dhps-431V haplotypes between 2003 and 2014/2015. The prevalence of dhps-431V haplotypes in Yaounde, Cameroon (2015) is also shown.
Fig. 2
Fig. 2
Full model PfDHPS showing H-bonded parallel β-strands 1 and 2. At the C-terminus of β-2 is loop 2 containing substrate-binding mutable residues Ser436 and Ala437.
Fig. 3
Fig. 3
Clustal-0 alignment of DHPS sequences to locate structural features. This is largely from Pemble et al. (2010) but sequences used, apart from P. falciparum, are from FASTA Texts published with the crystal structures.

References

    1. Aziken M.E., Akubuo K.K., Gharoro E.P. Efficacy of intermittent preventive treatment with sulfadoxine-pyrimethamine on placental parasitemia in pregnant women in midwestern Nigeria. Int. J. Gynaecol. Obstet. 2011;112:30–33.
    1. Benkert P., Künzli M., Schwede T. QMEAN server for protein model quality estimation. Nucleic Acids Res. 2009;37:W510–W514.
    1. Blakeley, R.L. 1984. p 191-253, In Blakeley RL, Benkovics SJ (ed), Folates and Pteridines, vol. 1, Wiley, New York, NY.
    1. Brooks D.R., Wang P., Read M., Watkins W.M., Sims P.F., Hyde J.E. Sequence variation of the hydroxymethyldihydropterin pyrophosphokinase: dihydropteroate synthase gene in lines of the human malaria parasite, Plasmodium falciparum, with differing resistance to sulfadoxine. Eur. J. Biochem. 1994;224:397–405.
    1. Bwakura-Dangarembizi M., Kendall L., Bakeera-Kitaka S., Nahirya-Ntege P., Keishanyu R., Nathoo K., Spyer M.J., Kekitiinwa A., Lutaakome J., Mhute T., Kasirye P., Munderi P., Musiime V., Gibb D.M., Walker A.S., Prendergast A.J., Antiretroviral Research for Watoto (ARROW) Trial Team A randomized trial of prolonged co-trimoxazole in HIV-infected children in Africa. N. Engl. J. Med. 2014;370:41–53.
    1. Chauvin P., Menard S., Iriart X., Nsango S.E., Tchioffo M.T., Abate L., Awono-Ambéné P.H., Morlais I., Berry A. Prevalence of Plasmodium falciparum parasites resistant to sulfadoxine/pyrimethamine in pregnant women in Yaoundé, Cameroon: emergence of highly resistant pfdhfr/pfdhps alleles. J. Antimicrob. Chemother. 2015;70:2566–2571.
    1. Cowman A.F., Morry M.J., Biggs B.A., Cross G.A., Foote S.J. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc. Natl. Acad. Sci. U. S. A. 1988;85:9109–9113.
    1. de Beer T.A., Louw A.I., Joubert F. Elucidation of sulfadoxine resistance with structural models of the bifunctional Plasmodium falciparum dihydropterin pyrophosphokinase-dihydropteroate synthase. Bioorg. Med. Chem. 2006;14:4433–4443.
    1. Diala C.C., Pennas T., Marin C., Belay K.A. Perceptions of intermittent preventive treatment of malaria in pregnancy (IPTp) and barriers to adherence in Nasarawa and Cross River States in Nigeria. Malar. J. 2013;12:342.
    1. Drug resistance maps. Accessed 17 March 2015. Mapping the Distribution of Resistance Genes of Malaria in Africa. .
    1. Ekanem O.J., Weisfeld J.S., Salako L.A., Nahlen B.L., Ezedinachi E.N., Walker O., Breman J.G., Laoye O.J., Hedberg K. Sensitivity of Plasmodium falciparum to chloroquine and sulfadoxine/pyrimethamine in Nigerian children. Bull. World Health Organ. 1990;68:45–52.
    1. Falade C.O., Yusuf B.O., Fadero F.F., Mokuolu O.A., Hamer D.H., Salako L.A. Intermittent preventive treatment with sulphadoxine-pyrimethamine is effective in preventing maternal and placental malaria in Ibadan, south-western Nigeria. Malar. J. 2007;6:88.
    1. Falade C.O., Dada-Adegbola H.O., Ogunkunle O.O., Oguike M.C., Nash O., Ademowo O.G. Evaluation of the comparative efficacy and safety of artemether-lumefantrine, artesunate-amodiaquine and artesunate-amodiaquine-chlorpheniramine (Artemoclo™) for the treatment of acute uncomplicated malaria in Nigerian children. Med. Princ. Pract. 2014;23:204–211.
    1. FMOH . 2005. Federal ministry of health, Nigeria; pp. 1–27. National Malaria Control Programme in Nigeria. Annual Report.
    1. Gesase S., Gosling R.D., Hashim R., Ord R., Naidoo I., Madebe R., Mosha J.F., Joho A., Mandia V., Mrema H., Mapunda E., Savael Z., Lemnge M., Mosha F.W., Greenwood B., Roper C., Chandramohan D. High resistance of Plasmodium falciparum to sulphadoxine/pyrimethamine in northern Tanzania and the emergence of dhps resistance mutation at Codon 581. PLoS One. 2009;4:e4569.
    1. Happi C.T., Gbotosho G.O., Folarin O.A., Akinboye D.O., Yusuf B.O., Ebong O.O., Sowunmi A., Kyle D.E., Milhous W., Wirth D.F., Oduola A.M. Polymorphisms in Plasmodium falciparum dhfr and dhps genes and age related in vivo sulfadoxine-pyrimethamine resistance in malaria-infected patients from Nigeria. Acta Trop. 2005;95:183–193.
    1. Jelinek T., Kilian A.H., Curtis J., Duraisingh M.T., Kabagambe G., von Sonnenburg F., Warhurst D.C. Plasmodium falciparum: selection of serine 108 of dihydrofolate reductase during treatment of uncomplicated malaria with co-trimoxazole in Ugandan children. Am. J. Trop. Med. Hyg. 1999;61:125–130.
    1. Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015;10:845–858.
    1. Lawrence M.C., Iliades P., Fernley R.T., Berglez J., Pilling P.A., Macreadie I.G. The three-dimensional structure of the bifunctional 6-hydroxymethyl-7, 8-dihydropterin pyrophosphokinase/dihydropteroate synthase of Saccharomyces cerevisiae. J. Mol. Biol. 2005;348:655–670.
    1. Menendez C. Malaria during pregnancy: a priority area of malaria research and control. Parasitol. Today. 1995;11:178–183.
    1. Menendez C., Bardaji A., Sigauque B., Sanz S., Aponte J.J., Mabunda S., Alonso P.L. Malaria prevention with IPTp during pregnancy reduces neonatal mortality. PLoS One. 2010;5:e9438.
    1. Minja D.T., Schmiegelow C., Mmbando B., Boström S., Oesterholt M., Magistrado P., Pehrson C., John D., Salanti A., Luty A.J., Lemnge M., Theander T., Lusingu J., Alifrangis M. Plasmodium falciparum mutant haplotype infection during pregnancy associated with reduced birthweight, Tanzania. Emerg. Infect. Dis. 2013;19
    1. Mockenhaupt F.P., Bedu-Addo G., Eggelte T.A., Hommerich L., Holmberg V., von Oertzen C., Bienzle U. Rapid increase in the prevalence of sulphadoxine-pyrimethamine resistance among Plasmodium falciparum isolated from pregnant women in Ghana. J. Infect. Dis. 2008;198:1545–1549.
    1. Naidoo I., Roper C. Drug resistance maps to guide intermittent preventive treatment of malaria in African infants. Parasitology. 2011;138:1469–1479.
    1. Naidoo I., Roper C. Mapping ‘partially resistant’, fully resistant’ and ‘super resistant’ malaria. Trends Parasitol. 2013;29:505–515.
    1. Omar S.A., Bakari A., Owiti A., Adagu I.S., Warhurst D.C. Co-trimoxazole compared with sulfadoxine-pyrimethamine in the treatment of uncomplicated malaria in Kenyan children. Trans. R. Soc. Trop. Med. Hyg. 2001;95:657–660.
    1. Onoka C.A., Hanson K., Onwujekwe O.E. Low coverage of intermittent preventive treatment for malaria in pregnancy in Nigeria: demand-side influences. Malar. J. 2012;11:82.
    1. Onwujekwe O.C., Soremekun R.O., Uzochukwu B., Shu E., Onwujekwe O. Patterns of case management and chemoprevention for malaria-in-pregnancy by public and private sector health providers in Enugu state, Nigeria. BMC Res. Notes. 2012;5:211.
    1. Oyibo W.A., Agomo C.O. Scaling up of intermittent preventive treatment of malaria in pregnancy using sulphadoxine-pyrimethamine: prospects and challenges. Matern. Child. Health J. 2011;15:542–552.
    1. Pearce R., Pota H., Evehe M.B., Bâ el H., Mombo-Ngoma G., Malisa A.L., Ord R., Inojosa W., Matondo A., Diallo D.A., Mbacham W., van den Broek I.V., Swarthout T.D., Getachew A., Dejene S., Grobusch M.P., Njie F., Dunyo S., Kweku M., Owusu-Agyei S., Chandramohan D., Bonnet M., Guthmann J.P., Clarke S., Barnes K.I., Streat E., Katokele S.T., Uusiku P., Agboghoroma C.O., Elegba O.Y., Cissé B., A-Elbasit I.E., Giha H.A., Kachur S.P., Lynch C., Rwakimari J.B., Chanda P., Hawela M., Sharp B., Naidoo I., Roper C. Multiple origins and regional dispersal of resistant dhps in African P. falciparum malaria. PLoS Med. 2009;6:e1000055.
    1. Pearce R.J., Drakeley C., Chandramohan D., Mosha F., Roper C. Molecular determination of point mutation haplotypes in the dihydrofolate reductase and dihydropteroate synthase of Plasmodium falciparum in three districts of northern Tanzania. Antimicrob. Agents Chemother. 2003;47:1347–1354.
    1. Pemble C.W., 4th, Mehta P.K., Mehra S., Li Z., Nourse A., Lee R.E., White S.W. Crystal structure of the 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase•dihydropteroate synthase bifunctional enzyme from Francisella tularensis. PLoS One. 2010;5(11):e14165.
    1. Pires D.E., Ascher D.B., Blundell T.L. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 2014;42:W314–W319.
    1. Plasmoview. Accessed 3 September 2015. .
    1. Plowe C.V., Djimde A., Bouare M., Doumbo O., Wellems T.E. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am. J. Trop. Med. Hyg. 1995;52:565–568.
    1. Plowe C.V., Cortese J.F., Djimde A., Nwanyanwu O.C., Watkins W.M., Winstanley P.A., Estrada-Franco J.G., Mollinedo R.E., Avila J.C., Cespedes J.L., Carter D., Doumbo O.K. Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase and epidemiologic patterns of pyrimethamine-sulfadoxine use and resistance. J. Infect. Dis. 1997;176:1590–1596.
    1. Shulman C.E., Dorman E.K., Cutts F., Kawuondo K., Bulmer J.N., Peshu N., Marsh K. Intermittent sulphadoxine-pyrimethamine to prevent severe anaemia secondary to malaria in pregnancy: a randomised placebo-controlled trial. Lancet. 1999;353:632–636.
    1. Snounou G., Viriyakosol S., Zhu X.P., Jarra W., Pinheiro L., do Rosario V.E., Thaithong S., Brown K.N. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol. Biochem. Parasitol. 1993;61:315–320.
    1. Sutherland C.J., Fifer H., Pearce R.J., bin Reza F., Nicholas M., Haustein T., Njimgye-Tekumafor N.E., Doherty J.F., Gothard P., Polley S.D., Chiodini P.L. Novel pfdhps haplotypes among imported cases of Plasmodium falciparum malaria in the United Kingdom. Antimicrob. Agents Chemother. 2009;53:3405–3410.
    1. Tahar R., Basco L.K. Molecular epidemiology of malaria in Cameroon XXVII. Clinical and parasitological response to sulfadoxine-pyrimethamine treatment and Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase alleles in Cameroonian children. Acta Trop. 2007;103:81–98.
    1. Triglia T., Cowman A.F. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc. Natl. Acad. Sci. U. S. A. 1994;91:7149–7153.
    1. Triglia T., Menting J.G.T., Wilson C., Cowman A.F. Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. U. S. A. 1997;94:13944–13949.
    1. Triglia T., Wang P., Sims P.F.G., Hyde J.E., Cowman A.F. Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine-resistant malaria. EMBO J. 1998;17:3807–3815.
    1. Ugwu E.O., Iferikigwe E.S., Obi S.N., Ugwu A.O., Agu P.U., Okezie O.A. Anti-malaria prescription in pregnancy among general practitioners in Enugu state, south east Nigeria. Niger. Med. J. 2013;54:96–99.
    1. Walter R.D. Folate metabolism as a target for chemotherapy of malaria. In: Coombs G.H., North M.J., editors. Biochemical Protozoology. Taylor Francis; London: 1991. pp. 560–568.
    1. Wang P., Lee C.S., Bayoumi R., Djimde A., Doumbo O., Swedberg G., Dao L.D., Mshinda H., Tanner M., Watkins W.M., Sims P.F., Hyde J.E. Resistance to antifolates in Plasmodium falciparum monitored by sequence analysis of dihydropteroate synthetase and dihydrofolate reductase alleles in a large number of field samples of diverse origins. Mol. Biochem. Parasitol. 1997;89:161–177.
    1. WHO . World Health Organization; Geneva, Switzerland: 2000. The African Summit on Roll Back Malaria, Abuja Nigeria (WHO/CDS/RBM/2000.17)
    1. WHO . Afr/Mal/04/01. World Health Organization; Geneva: 2004. A strategic framework for malaria prevention and control during pregnancy in the Africa region.
    1. WHO . World Health Organisation; Geneva, Switzerland: 2009. World Malaria Report.
    1. WHO . 2012. WHO Policy Recommendation: Seasonal Malaria Chemoprevention (SMC) for Plasmodium Falciparum Malaria Control in Highly Seasonal Transmission Areas of the Sahel Sub-region in Africa.
    1. WHO . 2013. WHO Evidence Review Group on Intermittent Preventive Treatment (IPT) of Malaria in Pregnancy.
    1. WHO . World Health Organisation; Geneva, Switzerland.: 2013. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach.
    1. WHO . 2014. WHO Policy Brief for the Implementation of IPTp-SP.
    1. WHO . third edition. World Health Organization; Geneva, Switzerland: 2015. Guidelines for the Treatment of Malaria.

Source: PubMed

3
Subscribe