Virtual Reality as a Vehicle to Empower Motor-Cognitive Neurorehabilitation

Daniel Perez-Marcos, Mélanie Bieler-Aeschlimann, Andrea Serino, Daniel Perez-Marcos, Mélanie Bieler-Aeschlimann, Andrea Serino

Abstract

In this paper, we advocate the combination of four key ingredients that we believe are necessary to design long-lasting effective treatments for neurorehabilitation: (i) motor-cognitive training, (ii) evidence-based neuroscience principles, in particular those related to body perception, (iii) motivational games, and (iv) empowerment techniques. Then, we propose virtual reality (VR) as the appropriate medium to encompass all the requirements mentioned above. VR is arguably one of the most suitable technologies for neurorehabilitation able to integrate evidence-based neurorehabilitation techniques and neuroscience principles into motivating training approaches that promote self-management by empowering patients to own their recovery process. We discuss the advantages and challenges of such an approach on several exemplary applications and outline directions for future developments. We strongly believe that the combination of positive psychology and positive technology mediated by VR-based interventions can heavily impact the rehabilitation outcomes of motor-cognitive functions along all the stages of the rehabilitation path.

Keywords: empowerment; motivation; motor-cognitive training; neurorehabilitation; neuroscience; stroke; virtual reality.

References

    1. Adamovich S. V., August K., Merians A., Tunik E. (2009). A virtual reality-based system integrated with fMRI to study neural mechanisms of action observation-execution: a proof of concept study. Restor. Neurol. Neurosci. 27 209–223. 10.3233/RNN-2009-0471
    1. Aman J. E., Elangovan N., Yeh I.-L., Konczak J. (2015). The effectiveness of proprioceptive training for improving motor function: a systematic review. Front. Hum. Neurosci. 8:1075. 10.3389/fnhum.2014.01075
    1. Anguera J. A., Boccanfuso J., Rintoul J. L., Al-Hashimi O., Faraji F., Janowich J., et al. (2013). Video game training enhances cognitive control in older adults. Nature 501 97–101. 10.1038/nature12486
    1. Ballester B. R., Maier M., San Segundo Mozo R. M., Castañeda V., Duff A., Verschure P. F. M. J. (2016). Counteracting learned non-use in chronic stroke patients with reinforcement-induced movement therapy. J. Neuroeng. Rehabil. 13:74. 10.1186/s12984-016-0178-x
    1. Ballester B. R., Nirme J., Duarte E., Cuxart A., Rodriguez S., Verschure P., et al. (2015). The visual amplification of goal-oriented movements counteracts acquired non-use in hemiparetic stroke patients. J. Neuroeng. Rehabil. 12:50. 10.1186/s12984-015-0039-z
    1. Baranowski T., Buday R., Thompson D. I., Baranowski J. (2008). Playing for real: video games and stories for health-related behavior change. Am. J. Prev. Med. 34 74–82.e10. 10.1016/j.amepre.2007.09.027
    1. Barker-Collo S., Feigin V. L., Parag V., Lawes C. M. M., Senior H. (2010). Auckland stroke outcomes study. Neurology 75 1608–1616. 10.1212/WNL.0b013e3181fb44c8
    1. Bediou B., Adams D. M., Mayer R. E., Tipton E., Green C. S., Bavelier D. (2018). Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychol. Bull. 144 77–110. 10.1037/bul0000130
    1. Belleville S., Mellah S., de Boysson C., Demonet J.-F., Bier B. (2014). The pattern and loci of training-induced brain changes in healthy older adults are predicted by the nature of the intervention. PLoS One 9:e102710. 10.1371/journal.pone.0102710
    1. Benjamin E. J., Blaha M. J., Chiuve S. E., Cushman M., Das S. R., Deo R., et al. (2017). Heart disease and stroke statistics—2017 update: a report from the American heart association. Circulation 135 e146–e603. 10.1161/CIR.0000000000000485
    1. Buccino G. (2014). Action observation treatment: a novel tool in neurorehabilitation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130185. 10.1098/rstb.2013.0185
    1. Cameirão M. S., Pereira F., Badia S. B. I. (2017). “Virtual reality with customized positive stimuli in a cognitive-motor rehabilitation task,” in Proceedings of the 2017 International Conference on Virtual Rehabilitation (ICVR), Montreal, QC:, 1–7. 10.1109/ICVR.2017.8007543
    1. Cano Porras D., Siemonsma P., Inzelberg R., Zeilig G., Plotnik M. (2018). Advantages of virtual reality in the rehabilitation of balance and gait: systematic review. Neurology 90 1017–1025. 10.1212/WNL.0000000000005603
    1. Corbetta D., Imeri F., Gatti R. (2015). Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. J. Physiother. 61 117–124. 10.1016/j.jphys.2015.05.017
    1. Csikszentmihalyi M. (1990). Flow: The Psychology of Optimal Experience. New York, NY: Harper & Row.
    1. Cumming T. B., Tyedin K., Churilov L., Morris M. E., Bernhardt J. (2012). The effect of physical activity on cognitive function after stroke: a systematic review. Int. Psychogeriatr. 24 557–567. 10.1017/S1041610211001980
    1. Deconinck F. J. A., Smorenburg A. R. P., Benham A., Ledebt A., Feltham M. G., Savelsbergh G. J. P. (2015). Reflections on mirror therapy: a systematic review of the effect of mirror visual feedback on the brain. Neurorehabil. Neural Repair 29 349–361. 10.1177/1545968314546134
    1. Demain S., Wiles R., Roberts L., McPherson K. (2006). Recovery plateau following stroke: fact or fiction? Disabil. Rehabil. 28 815–821. 10.1080/09638280500534796
    1. Dennis A., Bosnell R., Dawes H., Howells K., Cockburn J., Kischka U., et al. (2011). Cognitive context determines premotor and prefrontal brain activity during hand movement in patients after stroke. Stroke 42 1056–1061. 10.1161/STROKEAHA.110.597880
    1. Dockx K., Bekkers E. M., Van den Bergh V., Ginis P., Rochester L., Hausdorff J. M., et al. (2016). Virtual reality for rehabilitation in Parkinson’s disease. Cochrane Database Syst. Rev. 12:CD010760. 10.1002/14651858.CD010760.pub2
    1. Faria A. L., Andrade A., Soares L., Badia S. B. I. (2016). Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: a randomized controlled trial with stroke patients. J. Neuroeng. Rehabil. 13:96. 10.1186/s12984-016-0204-z
    1. Faria A. L., Cameirão M. S., Couras J. F., Aguiar J. R. O., Costa G. M., Bermúdez i Badia S. (2018). Combined cognitive-motor rehabilitation in virtual reality improves motor outcomes in chronic stroke – a pilot study. Front. Psychol. 9:854. 10.3389/fpsyg.2018.00854
    1. Fetta J., Starkweather A., Gill J. M. (2017). Computer-based cognitive rehabilitation interventions for traumatic brain injury: a critical review of the literature. J. Neurosci. Nurs. 49 235–240. 10.1097/JNN.0000000000000298
    1. Foloppe D. A., Richard P., Yamaguchi T., Etcharry-Bouyx F., Allain P. (2018). The potential of virtual reality-based training to enhance the functional autonomy of Alzheimer’s disease patients in cooking activities: a single case study. Neuropsychol. Rehabil. 28 709–733. 10.1080/09602011.2015.1094394
    1. Frank M. J., Seeberger L. C., O’Reilly R. C. (2004). By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306 1940–1943. 10.1126/science.1102941
    1. Fryer C. E., Luker J. A., McDonnell M. N., Hillier S. L. (2016). Self management programmes for quality of life in people with stroke. Cochrane Database Syst. Rev. 8:CD010442. 10.1002/14651858.CD010442.pub2
    1. Garrison K. A., Winstein C. J., Aziz-Zadeh L. (2010). The mirror neuron system: a neural substrate for methods in stroke rehabilitation. Neurorehabil. Neural Repair 24 404–412. 10.1177/1545968309354536
    1. Gibbons E. M., Thomson A. N., de Noronha M., Joseph S. (2016). Are virtual reality technologies effective in improving lower limb outcomes for patients following stroke - a systematic review with meta-analysis. Top. Stroke Rehabil. 23 440–457. 10.1080/10749357.2016.1183349
    1. Gottesman R. F., Hillis A. E. (2010). Predictors and assessment of cognitive dysfunction resulting from ischaemic stroke. Lancet Neurol. 9 895–905. 10.1016/S1474-4422(10)70164-2
    1. Govender M., Bowen R. C., German M. L., Bulaj G., Bruggers C. S. (2015). Clinical and neurobiological perspectives of empowering pediatric cancer patients using videogames. Games Health J. 4 362–374. 10.1089/g4h.2015.0014
    1. Hagberg L. A., Lindahl B., Nyberg L., Hellénius M.-L. (2009). Importance of enjoyment when promoting physical exercise. Scand. J. Med. Sci. Sports 19 740–747. 10.1111/j.1600-0838.2008.00844.x
    1. Henderson A., Korner-Bitensky N., Levin M. (2007). Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top. Stroke Rehabil. 14 52–61. 10.1310/tsr1402-52
    1. Howard M. C. (2017). A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Comput. Hum. Behav. 70 317–327. 10.1016/j.chb.2017.01.013
    1. Hung C.-T., Croft E. A., Van der Loos H. F. M. (2015). “A wearable vibrotactile device for upper-limb bilateral motion training in stroke rehabilitation: a case study,” in Proceedings of the 37th Annual International Conference of the IEEE Engineering Medicine and Biology Society, Milan, 3480–3483. 10.1109/EMBC.2015.7319142
    1. Jack K., McLean S. M., Moffett J. K., Gardiner E. (2010). Barriers to treatment adherence in physiotherapy outpatient clinics: a systematic review. Man. Ther. 15 220–228. 10.1016/j.math.2009.12.004
    1. Johansson B. B. (2012). Multisensory stimulation in stroke rehabilitation. Front. Hum. Neurosci. 6:60. 10.3389/fnhum.2012.00060
    1. Jokinen H., Melkas S., Ylikoski R., Pohjasvaara T., Kaste M., Erkinjuntti T., et al. (2015). Post-stroke cognitive impairment is common even after successful clinical recovery. Eur. J. Neurol. 22 1288–1294. 10.1111/ene.12743
    1. Jurkiewicz M., Marzolini S., Oh P. (2011). Adherence to a home-based exercise program for individuals after stroke. Top. Stroke Rehabil. 18 277–284. 10.1310/tsr1803-277
    1. Kalra L., Perez I., Gupta S., Wittink M. (1997). The influence of visual neglect on stroke rehabilitation. Stroke 28 1386–1391. 10.1161/01.STR.28.7.1386
    1. Kim J. S. (2016). Post-stroke mood and emotional disturbances: pharmacological therapy based on mechanisms. J. Stroke 18 244–255. 10.5853/jos.2016.01144
    1. Krakauer J. W., Marshall R. S. (2015). The proportional recovery rule for stroke revisited. Ann. Neurol. 78 845–847. 10.1002/ana.24537
    1. Laver K. E., Lange B., George S., Deutsch J. E., Saposnik G., Crotty M. (2017). Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 11:CD008349. 10.1002/14651858.CD008349.pub4
    1. Levin M. F., Weiss P. L., Keshner E. A. (2015). Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys. Ther. 95 415–425. 10.2522/ptj.20130579
    1. Lohse K. R., Hilderman C. G. E., Cheung K. L., Tatla S., Van der Loos H. F. (2014). Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS One 9:e93318. 10.1371/journal.pone.0093318
    1. Maclean N., Pound P., Wolfe C., Rudd A. (2000). Qualitative analysis of stroke patients’ motivation for rehabilitation. BMJ 321 1051–1054. 10.1136/bmj.321.7268.1051
    1. Mader S., Levieux G., Natkin S. (2016). “A game design method for therapeutic games,” in Proceedings of the 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES), (Barcelona: IEEE; ), 1–8. 10.1109/VS-GAMES.2016.7590333
    1. Massetti T., Trevizan I. L., Arab C., Favero F. M., Ribeiro-Papa D. C., de Mello Monteiro C. B. (2016). Virtual reality in multiple sclerosis - A systematic review. Mult. Scler. Relat. Disord. 8 107–112. 10.1016/j.msard.2016.05.014
    1. Mellon L., Brewer L., Hall P., Horgan F., Williams D., Hickey A., et al. (2015). Cognitive impairment six months after ischaemic stroke: a profile from the ASPIRE-S study. BMC Neurol. 15:31. 10.1186/s12883-015-0288-2
    1. Mirelman A., Rochester L., Maidan I., Din S. D., Alcock L., Nieuwhof F., et al. (2016). Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet 388 1170–1182. 10.1016/S0140-6736(16)31325-3
    1. Mishra J., Anguera J. A., Gazzaley A. (2016). Video games for neuro-cognitive optimization. Neuron 90 214–218. 10.1016/j.neuron.2016.04.010
    1. Nap H. H., Diaz-Orueta U. (2013). “Rehabilitation gaming,” in Serious Games for Healthcare: Applications and Implications, eds Arnab S., Dunwell I., Debattista K. (Hershey, PA: IGI Global; ), 50–75. 10.4018/978-1-4666-1903-6.ch003
    1. Oberlin L. E., Waiwood A. M., Cumming T. B., Marsland A. L., Bernhardt J., Erickson K. I. (2017). Effects of physical activity on poststroke cognitive function: a meta-analysis of randomized controlled trials. Stroke 48 3093–3100. 10.1161/STROKEAHA.117.017319
    1. Ogwumike O., Badaru U., Adeniyi A. (2014). Factors influencing adherence to home-based exercise by stroke survivors in North Western Nigeria. Int. J. Ther. Rehabil. Res. 3 8–16. 10.5455/ijtrr.00000023
    1. Passamonti C., Frissen I., Làdavas E. (2009). Visual recalibration of auditory spatial perception: two separate neural circuits for perceptual learning. Eur. J. Neurosci. 30 1141–1150. 10.1111/j.1460-9568.2009.06910.x
    1. Perez-Marcos D., Solazzi M., Steptoe W., Oyekoya W., Frisoli A., Weyrich T., et al. (2012). A fully immersive set-up for remote interaction and neurorehabilitation based on virtual body ownership. Front. Neurol. 3:110. 10.3389/fneur.2012.00110
    1. Prabhakaran S., Zarahn E., Riley C., Speizer A., Chong J. Y., Lazar R. M., et al. (2008). Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil. Neural Repair 22 64–71. 10.1177/1545968307305302
    1. Rand D., Weiss P. L. T., Katz N. (2009). Training multitasking in a virtual supermarket: a novel intervention after stroke. Am. J. Occup. Ther. 63 535–542. 10.5014/ajot.63.5.535
    1. Riva G., Baños R. M., Botella C., Wiederhold B. K., Gaggioli A. (2012). Positive technology: using interactive technologies to promote positive functioning. Cyberpsychol. Behav. Soc. Netw. 15 69–77. 10.1089/cyber.2011.0139
    1. Robertson I. H., Ridgeway V., Greenfield E., Parr A. (1997). Motor recovery after stroke depends on intact sustained attention: a 2-year follow-up study. Neuropsychology 11 290–295. 10.1037/0894-4105.11.2.290
    1. Ronchi R., Perez-Marcos D., Giroux A., Thomasson M., Serino A., Saj A., et al. (2018). Use of immersive virtual reality to detect unilateral spatial neglect in chronic stroke. Ann. Phys. Rehabil. Med. 61 e90–e91. 10.1016/j.rehab.2018.05.193
    1. Schmidt L., Lebreton M., Cléry-Melin M.-L., Daunizeau J., Pessiglione M. (2012). Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biol. 10:e1001266. 10.1371/journal.pbio.1001266
    1. Seligman M. E. P. (2011). Flourish: A Visionary New Understanding of Happiness and Well-Being. New York, NY: Free Press.
    1. Shin J.-H., Kim M.-Y., Lee J.-Y., Jeon Y.-J., Kim S., Lee S., et al. (2016). Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. J. Neuroeng. Rehabil. 13:17. 10.1186/s12984-016-0125-x
    1. Shishov N., Melzer I., Bar-Haim S. (2017). Parameters and measures in assessment of motor learning in neurorehabilitation; a systematic review of the literature. Front. Hum. Neurosci. 11:82. 10.3389/fnhum.2017.00082
    1. Sit J. W., Chair S. Y., Choi K. C., Chan C. W., Lee D. T., Chan A. W., et al. (2016). Do empowered stroke patients perform better at self-management and functional recovery after a stroke? A randomized controlled trial. Clin. Interv. Aging 11 1441–1450. 10.2147/CIA.S109560
    1. Spence C., Obrist M., Velasco C., Ranasinghe N. (2017). Digitizing the chemical senses: possibilities & pitfalls. Int. J. Hum. Comput. Stud. 107 62–74. 10.1016/j.ijhcs.2017.06.003
    1. Stanmore E., Stubbs B., Vancampfort D., de Bruin E. D., Firth J. (2017). The effect of active video games on cognitive functioning in clinical and non-clinical populations: a meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 78 34–43. 10.1016/j.neubiorev.2017.04.011
    1. Stoykov M. E., Madhavan S. (2015). Motor priming in neurorehabilitation. J. Neurol. Phys. Ther. 39 33–42. 10.1097/NPT.0000000000000065
    1. Subramanian S. K., Lourenço C. B., Chilingaryan G., Sveistrup H., Levin M. F. (2013). Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil. Neural Repair 27 13–23. 10.1177/1545968312449695
    1. Tiozzo E., Youbi M., Dave K., Perez-Pinzon M., Rundek T., Sacco R. L., et al. (2015). Aerobic, resistance, and cognitive exercise training poststroke. Stroke 46 2012–2016. 10.1161/STROKEAHA.114.006649
    1. Vanbellingen T., Ottiger B., Maaijwee N., Pflugshaupt T., Bohlhalter S., Müri R. M., et al. (2017). Spatial neglect predicts upper limb use in the activities of daily living. CED 44 122–127. 10.1159/000477500
    1. Vourvopoulos A., Ferreira A., Badia S. B. I. (2016). “NeuRow: an immersive VR environment for motor-imagery training with the use of brain-computer interfaces and vibrotactile feedback,” in Proceedings of the 3rd International Conference on Physiological Computing Systems, Lisbon, 43–53. 10.5220/0005939400430053
    1. Wang C.-Y., Hwang W.-J., Fang J.-J., Sheu C.-F., Leong I.-F., Ma H.-I. (2011). Comparison of virtual reality versus physical reality on movement characteristics of persons with Parkinson’s disease: effects of moving targets. Arch. Phys. Med. Rehabil. 92 1238–1245. 10.1016/j.apmr.2011.03.014
    1. Warner G., Packer T., Villeneuve M., Audulv A., Versnel J. (2015). A systematic review of the effectiveness of stroke self-management programs for improving function and participation outcomes: self-management programs for stroke survivors. Disabil. Rehabil. 37 2141–2163. 10.3109/09638288.2014.996674
    1. Wilkinson P. R., Wolfe C. D., Warburton F. G., Rudd A. G., Howard R. S., Ross-Russell R. W., et al. (1997). A long-term follow-up of stroke patients. Stroke 28 507–512. 10.1161/01.STR.28.3.507
    1. Yang Y., Shi Y.-Z., Zhang N., Wang S., Ungvari G. S., Ng C. H., et al. (2016). The disability rate of 5-year post-stroke and its correlation factors: a national survey in China. PLoS One 11:e0165341. 10.1371/journal.pone.0165341
    1. You S. H., Jang S. H., Kim Y.-H., Hallett M., Ahn S. H., Kwon Y.-H., et al. (2005). Virtual reality–induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke 36 1166–1171. 10.1161/01.STR.0000162715.43417.91

Source: PubMed

3
Subscribe