Urinary Protein Profiling for Potential Biomarkers of Chronic Kidney Disease: A Pilot Study

Abduzhappar Gaipov, Zhalaliddin Makhammajanov, Zhanna Dauyey, Zhannur Markhametova, Kamilla Mussina, Assem Nogaibayeva, Larissa Kozina, Dana Auganova, Pavel Tarlykov, Rostislav Bukasov, Zhandos Utegulov, Duman Turebekov, Maria Jose Soler, Alberto Ortiz, Mehmet Kanbay, Abduzhappar Gaipov, Zhalaliddin Makhammajanov, Zhanna Dauyey, Zhannur Markhametova, Kamilla Mussina, Assem Nogaibayeva, Larissa Kozina, Dana Auganova, Pavel Tarlykov, Rostislav Bukasov, Zhandos Utegulov, Duman Turebekov, Maria Jose Soler, Alberto Ortiz, Mehmet Kanbay

Abstract

Proteinuria is a risk factor for chronic kidney disease (CKD) progression and associated complications. However, there is insufficient information on individual protein components in urine and the severity of CKD. We aimed to investigate urinary proteomics and its association with proteinuria and kidney function in early-stage CKD and in healthy individuals. A 24 h urine sample of 42 individuals (21-CKD and 21-healthy individuals) was used for mass spectrometry-based proteomics analysis. An exponentially modified protein abundance index (emPAI) was calculated for each protein. Data were analyzed by Mascot software using the SwissProt database and bioinformatics tools. Overall, 298 unique proteins were identified in the cohort; of them, 250 proteins belong to the control group with median (IQR) emPAI 39.1 (19−53) and 142 proteins belong to the CKD group with median (IQR) emPAI 67.8 (49−117). The level of 24 h proteinuria positively correlated with emPAI (r = 0.390, p = 0.011). The emPAI of some urinary proteomics had close positive (ALBU, ZA2G, IGKC) and negative (OSTP, CD59, UROM, KNG1, RNAS1, CD44, AMBP) correlations (r < 0.419, p < 0.001) with 24 h proteinuria levels. Additionally, a few proteins (VTDB, AACT, A1AG2, VTNC, and CD44) significantly correlated with kidney function. In this proteomics study, several urinary proteins correlated with proteinuria and kidney function. Pathway analysis identified subpathways potentially related to early proteinuric CKD, allowing the design of prospective studies that explore their response to therapy and their relationship to long-term outcomes.

Keywords: biomarkers; chronic kidney disease; proteinuria; urinary proteomics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A comparison of protein distribution was identified in more than 50% of any group participants. CKD, chronic kidney disease; HC, healthy controls.
Figure 2
Figure 2
GO enrichment analysis of the 29 selected proteins in the CKD group (in red) and 37 proteins in the control group (in blue). (A) protein class. (B) cellular component. (C) biological process.
Figure 2
Figure 2
GO enrichment analysis of the 29 selected proteins in the CKD group (in red) and 37 proteins in the control group (in blue). (A) protein class. (B) cellular component. (C) biological process.
Figure 2
Figure 2
GO enrichment analysis of the 29 selected proteins in the CKD group (in red) and 37 proteins in the control group (in blue). (A) protein class. (B) cellular component. (C) biological process.
Figure 3
Figure 3
A comparison of highly significant pathways of the most relevant proteins in the CKD and healthy control groups (p < 0.003). The color codes denote the different pathway groups. CKD, chronic kidney disease; HC, healthy controls; IGF, insulin-like growth factor; IGFBPs, uptake by insulin-like growth factor binding proteins.

References

    1. Jager K.J., Kovesdy C., Langham R., Rosenberg M., Jha V., Zoccali C. A Single Number for Advocacy and Communication—Worldwide More than 850 Million Individuals Have Kidney Diseases. Oxford University Press; Oxford, UK: 2019. pp. 1803–1805.
    1. Carney E.F. The impact of chronic kidney disease on global health. Nat. Rev. Nephrol. 2020;16:251. doi: 10.1038/s41581-020-0268-7.
    1. Foreman K.J., Marquez N., Dolgert A., Fukutaki K., Fullman N., McGaughey M., Pletcher M.A., Smith A.E., Tang K., Yuan C.-W., et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet. 2018;392:2052–2090. doi: 10.1016/S0140-6736(18)31694-5.
    1. Cravedi P., Remuzzi G. Pathophysiology of proteinuria and its value as an outcome measure in chronic kidney disease. Br. J. Clin. Pharmacol. 2013;76:516–523.
    1. Liu D., Lv L.-L. Renal Fibrosis: Mechanisms and Therapies. Springer; Berlin/Heidelberg, Germany: 2019. New understanding on the role of proteinuria in progression of chronic kidney disease; pp. 487–500.
    1. Kasiske B., Wheeler D. Kidney Disease: Improving Global Outcomes CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013;3:1–150.
    1. Perico N., Benigni A., Remuzzi G. Diabetic Nephropathy. Springer; Berlin/Heidelberg, Germany: 2019. Proteinuria and tubulotoxicity; pp. 197–214.
    1. Ledingham J. Tubular toxicity of filtered proteins. Am. J. Nephrol. 1990;10((Suppl. S1)):52–57. doi: 10.1159/000168194.
    1. Meng Z., Bustamante Lopez S.C., Meissner K.E., Yakovlev V.V. Subcellular measurements of mechanical and chemical properties using dual Raman-Brillouin microspectroscopy. J. Biophotonics. 2016;9:201–207. doi: 10.1002/jbio.201500163.
    1. Gaipov A., Utegulov Z., Bukasov R., Turebekov D., Tarlykov P., Markhametova Z., Nurekeyev Z., Kunushpayeva Z., Sultangaziyev A. Development and validation of hybrid Brillouin-Raman spectroscopy for non-contact assessment of mechano-chemical properties of urine proteins as biomarkers of kidney diseases. BMC Nephrol. 2020;21:1–9. doi: 10.1186/s12882-020-01890-x.
    1. Levey A.S., Eckardt K.-U., Tsukamoto Y., Levin A., Coresh J., Rossert J., Eknoyan G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO) Kidney Int. 2005;67:2089–2100. doi: 10.1111/j.1523-1755.2005.00365.x.
    1. Aitekenov S., Gaipov A., Bukasov R. Detection and quantification of proteins in human urine. Talanta. 2021;223:121718. doi: 10.1016/j.talanta.2020.121718.
    1. Sun W., Gao Y. Renal and Urinary Proteomics: Methods and Protocols. Wiley; Hoboken, NJ, USA: 2009. Liquid Chromatography Coupled to Mass Spectrometry for Analysis of the Urinary Proteome; pp. 271–279.
    1. Ishihama Y., Oda Y., Tabata T., Sato T., Nagasu T., Rappsilber J., Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein* s. Mol. Cell. Proteom. 2005;4:1265–1272. doi: 10.1074/mcp.M500061-MCP200.
    1. The Gene Ontology Consortium The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021;49:D325–D334. doi: 10.1093/nar/gkaa1113.
    1. Mi H., Muruganujan A., Ebert D., Huang X., Thomas P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47:D419–D426. doi: 10.1093/nar/gky1038.
    1. Jassal B., Matthews L., Viteri G., Gong C., Lorente P., Fabregat A., D’Eustachio P. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48:D498–D503. doi: 10.1093/nar/gkz1031.
    1. D’amico G., Bazzi C. Pathophysiology of proteinuria. Kidney Int. 2003;63:809–825. doi: 10.1046/j.1523-1755.2003.00840.x.
    1. Tofte N., Lindhardt M., Adamova K., Bakker S.J.L., Beige J., Beulens J.W.J., Kilic C. Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): A prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2020;8:301–312. doi: 10.1016/S2213-8587(20)30026-7.
    1. Rodríguez-Ortiz M.E., Pontillo C., Rodríguez M., Zürbig P., Mischak H., Ortiz A. Novel Urinary Biomarkers for Improved Prediction of Progressive Egfr Loss in Early Chronic Kidney Disease Stages And In High Risk Individuals Without Chronic Kidney Disease. Sci. Rep. 2018;8:15940. doi: 10.1038/s41598-018-34386-8.
    1. Captur G., Moon J.C., Topriceanu C.C., Joy G., Swadling L., Hallqvist J., Doykov I., Patel N., Spiewak J., Baldwin T., et al. Plasma proteomic signature predicts who will get persistent symptoms following SARS-CoV-2 infection. eBioMedicine. 2022;2022:104293. doi: 10.1016/j.ebiom.2022.104293.
    1. Martin H. Laboratory measurement of urine albumin and urine total protein in screening for proteinuria in chronic kidney disease. Clin. Biochem. Rev. 2011;32:97.
    1. Methven S., MacGregor M.S., Traynor J.P., Hair M., O’Reilly D.S.J., Deighan C.J. Comparison of urinary albumin and urinary total protein as predictors of patient outcomes in CKD. Am. J. Kidney Dis. 2011;57:21–28. doi: 10.1053/j.ajkd.2010.08.009.
    1. Thongboonkerd V., Malasit P. Renal and urinary proteomics: Current applications and challenges. Proteomics. 2005;5:1033–1042. doi: 10.1002/pmic.200401012.
    1. Scolari F., Izzi C., Ghiggeri G.M. Uromodulin: From monogenic to multifactorial diseases. Nephrol. Dial. Transplant. 2015;30:1250–1256. doi: 10.1093/ndt/gfu300.
    1. Molitoris B.A., Sandoval R.M., Yadav S.P.S., Wagner M.C. Albumin Uptake and Processing by the Proximal Tubule: Physiologic, Pathologic and Therapeutic Implications. Physiol. Rev. 2022;102:1625–1667. doi: 10.1152/physrev.00014.2021.
    1. Jassil N.K., Sharma A., Bikle D., Wang X. Vitamin D binding protein and 25-hydroxyvitamin D levels: Emerging clinical applications. Endocr. Pract. 2017;23:605–613. doi: 10.4158/EP161604.RA.
    1. Diaz-Riera E., García-Arguinzonis M., López L., Garcia-Moll X., Badimon L., Padró T. Vitamin D Binding Protein and Renal Injury in Acute Decompensated Heart Failure. Front. Cardiovasc. Med. 2022;9:829490. doi: 10.3389/fcvm.2022.829490.
    1. Suresh C., Saha A., Kaur M., Kumar R., Dubey N., Basak T., Upadhyay A.D. Differentially expressed urinary biomarkers in children with idiopathic nephrotic syndrome. Clin. Exp. Nephrol. 2016;20:273–283. doi: 10.1007/s10157-015-1162-7.
    1. Zhou X.-H., Liu S.-Y., Feng L., Yang B., Li Y.-F., Wang X.-Q., Chen J., Wang H.H. Urinary orosomucoid and retinol binding protein levels as early diagnostic markers for diabetic nephropathy. Res. Sq. 2020
    1. Alhazmi S., Basingab F., Alrahimi J., Alharbi M., Mufawwaz A., Alotaibi K. The Role of Alpha-1-acid Glycoprotein 2 Protein and the Underlying Orosomucoid 2 Gene in Different Diseases. J. Pharm. Res. Int. 2022;34:15–29.
    1. Jin Y., Wang W., Wang Q., Zhang Y., Zahid K.R., Raza U., Gong Y. Alpha-1-antichymotrypsin as a novel biomarker for diagnosis, prognosis, and therapy prediction in human diseases. Cancer Cell Int. 2022;22:156. doi: 10.1186/s12935-022-02572-4.
    1. Sánchez-Navarro A., Mejía-Vilet J.M., Pérez-Villalva R., Carrillo-Pérez D.L., Marquina-Castillo B., Gamba G., Bobadilla N.A. SerpinA3 in the Early Recognition of Acute Kidney Injury to Chronic Kidney Disease (CKD) transition in the rat and its Potentiality in the Recognition of Patients with CKD. Sci. Rep. 2019;9:10350. doi: 10.1038/s41598-019-46601-1.
    1. López-Guisa J.M., Rassa A.C., Cai X., Collins S.J., Eddy A.A. Vitronectin accumulates in the interstitium but minimally impacts fibrogenesis in experimental chronic kidney disease. Am. J. Physiol.-Ren. Physiol. 2011;300:F1244–F1254. doi: 10.1152/ajprenal.00701.2010.
    1. Carreras-Planella L., Cucchiari D., Cañas L., Juega J., Franquesa M., Bonet J., Borràs F.E. Urinary vitronectin identifies patients with high levels of fibrosis in kidney grafts. J. Nephrol. 2021;34:861–874. doi: 10.1007/s40620-020-00886-y.
    1. Yoon S., Gingras D., Bendayan M. Alterations of vitronectin and its receptor αv integrin in the rat renal glomerular wall during diabetes. Am. J. Kidney Dis. 2001;38:1298–1306. doi: 10.1053/ajkd.2001.29228.
    1. Zhao X., Chen X., Chima A., Zhang Y., George J., Cobbs A., Emmett N. Albumin induces CD44 expression in glomerular parietal epithelial cells by activating extracellular signal-regulated kinase 1/2 pathway. J. Cell. Physiol. 2019;234:7224–7235. doi: 10.1002/jcp.27477.
    1. Rouschop K., Roelofs J., Sylva M., Rowshani A., Ten Berge I., Weening J., Florquin S. Renal expression of CD44 correlates with acute renal allograft rejection. Kidney Int. 2006;70:1127–1134. doi: 10.1038/sj.ki.5001711.
    1. Froes B.P., de Almeida Araújo S., Bambirra E.A., Oliveira E.A., Simoes e Silva A.C., Pinheiro S.V.B. Is CD44 in glomerular parietal epithelial cells a pathological marker of renal function deterioration in primary focal segmental glomerulosclerosis? Pediatr. Nephrol. 2017;32:2165–2169. doi: 10.1007/s00467-017-3775-4.
    1. Weening J.J., Ronco P., Remuzzi G. Advances in the pathology of glomerular diseases. New Insights Glomerulonephritis. 2013;181:12–21.
    1. Gros A., Ollivier V., Ho-Tin-Noé B. Platelets in inflammation: Regulation of leukocyte activities and vascular repair. Front. Immunol. 2015;5:678. doi: 10.3389/fimmu.2014.00678.
    1. Finsterbusch M., Schrottmaier W.C., Kral-Pointner J.B., Salzmann M., Assinger A. Measuring and interpreting platelet-leukocyte aggregates. Platelets. 2018;29:677–685. doi: 10.1080/09537104.2018.1430358.
    1. Mayadas T.N., Rosetti F., Ernandez T., Sethi S. Neutrophils: Game changers in glomerulonephritis? Trends Mol. Med. 2010;16:368–378. doi: 10.1016/j.molmed.2010.06.002.
    1. Chen S.-F., Chen M. Renal Fibrosis: Mechanisms and Therapies. Springer; Berlin/Heidelberg, Germany: 2019. Complement activation in progression of chronic kidney disease; pp. 423–441.
    1. Barcellini W. Immune hemolysis: Diagnosis and treatment recommendations. Semin. Hematol. 2015;52:304–312. doi: 10.1053/j.seminhematol.2015.05.001.
    1. Zager R.A., Johnson A.C., Becker K. Renal cortical hemopexin accumulation in response to acute kidney injury. Am. J. Physiol.-Ren. Physiol. 2012;303:F1460–F1472. doi: 10.1152/ajprenal.00426.2012.
    1. Moreno J.A., Martín-Cleary C., Gutiérrez E., Rubio-Navarro A., Ortiz A., Praga M., Egido J. Haematuria: The forgotten CKD factor? Nephrol. Dial. Transplant. 2012;27:28–34. doi: 10.1093/ndt/gfr749.
    1. Moreno J.A., Martín-Cleary C., Gutiérrez E., Toldos O., Blanco-Colio L.M., Praga M., Egido J. AKI associated with macroscopic glomerular hematuria: Clinical and pathophysiologic consequences. Clin. J. Am. Soc. Nephrol. 2012;7:175–184. doi: 10.2215/CJN.01970211.
    1. Stephan J.-P., Mao W., Filvaroff E., Cai L., Rabkin R., Pan G. Albumin stimulates the accumulation of extracellular matrix in renal tubular epithelial cells. Am. J. Nephrol. 2004;24:14–19. doi: 10.1159/000075347.

Source: PubMed

3
Subscribe