The effects of exercise training on autonomic and hemodynamic responses to muscle metaboreflex in people living with HIV/AIDS: A randomized clinical trial protocol

Gabriel Gama, Marcus Vinicius Dos Santos Rangel, Vanessa Cunha de Oliveira Coelho, Gabriela Andrade Paz, Catarina Vieira Branco de Matos, Bárbara Pinheiro Silva, Gabriella de Oliveira Lopes, Karynne Grutter Lopes, Paulo Farinatti, Juliana Pereira Borges, Gabriel Gama, Marcus Vinicius Dos Santos Rangel, Vanessa Cunha de Oliveira Coelho, Gabriela Andrade Paz, Catarina Vieira Branco de Matos, Bárbara Pinheiro Silva, Gabriella de Oliveira Lopes, Karynne Grutter Lopes, Paulo Farinatti, Juliana Pereira Borges

Abstract

Background: People living with HIV (PLHIV) present impaired muscle metaboreflex, which may lead to exercise intolerance and increased cardiovascular risk. The muscle metaboreflex adaptations to exercise training in these patients are unknown. The present study aims to investigate the effects of a supervised multimodal exercise training on hemodynamic and autonomic responses to muscle metaboreflex activation in PLHIV.

Methods and design: In this randomized clinical trial protocol, 42 PLHIV aged 30-50 years will be randomly assigned at a ratio of 1:1 into an intervention or a control group. The intervention group will perform exercise training (3x/week during 12 weeks) and the control group will remain physically inactive. A reference group composed of 21 HIV-uninfected individuals will be included. Primary outcomes will be blood pressure and heart rate variability indices assessed during resting, mental stress, and activation of muscle metaboreflex by a digital sphygmomanometer and a heart rate monitor; respectively. Mental stress will be induced by the Stroop Color-Word test and muscle metaboreflex will be activated through a post-exercise circulatory arrest (PECA) protocol, being the latter performed without and with the application of a capsaicin-based analgesic balm in the exercised limb. Secondary outcomes will be heart rate, peripheral vascular resistance, stroke volume, cardiac output, blood lactate, anthropometric markers and handgrip maximal voluntary contraction. The intervention and control groups of PLHIV will be evaluated at baseline and after the intervention, while the HIV-uninfected reference group only at baseline.

Discussion: The findings of the present study may help to elucidate the muscle metaboreflex adaptations to exercise training in PLHIV.

Trial registration: This study will be performed at University of Rio de Janeiro State following registration at ClinicalTrials.gov as NCT04512456 on August 13, 2020.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Schedule of enrolment, interventions, and…
Fig 1. Schedule of enrolment, interventions, and assessments.
-t1, enrolment week 0; t0, allocation and baseline week; t3, post-intervention (week 12).
Fig 2. Study flowchart.
Fig 2. Study flowchart.
Fig 3. Experimental design.
Fig 3. Experimental design.
Fig 4. Post-exercise circulatory arrest (PECA) protocol…
Fig 4. Post-exercise circulatory arrest (PECA) protocol used during muscle metaboreflex activity assessment.

References

    1. WHO. Key Facts (HIV/AIDS). November 30, 2021. Retrieved from .
    1. UNAIDS. Global HIV & AIDS statistics—2020 fact sheet. January 4, 2021. Retrieved from .
    1. Panel-of-Experts-from-the-Metabolic-Disorders-and-Comorbilities Study-Group-(GEAM), Aids-Study-Group-(GeSIDA), National-Aids-Plan-(PNS). Executive summary of the consensus document on metabolic disorders and cardiovascular risk in patients with HIV infection. Enferm Infecc Microbiol Clin. 2019;37(1):50–5. Epub 2017/08/22. doi: 10.1016/j.eimc.2017.06.007 [pii] .
    1. De Francesco D, Sabin CA, Reiss P. Multimorbidity patterns in people with HIV. Curr Opin HIV AIDS. 2020;15(2):110–7. Epub 2019/10/24. doi: 10.1097/COH.0000000000000595 .
    1. Feinstein MJ, Hsue PY, Benjamin LA, Bloomfield GS, Currier JS, Freiberg MS, et al.. Characteristics, Prevention, and Management of Cardiovascular Disease in People Living With HIV: A Scientific Statement From the American Heart Association. Circulation. 2019;140(2):e98–e124. Epub 2019/06/04. doi: 10.1161/CIR.0000000000000695 .
    1. Elgazzaz M, Lazartigues E. Epigenetic modifications of the renin-angiotensin system in cardiometabolic diseases. Clinical science (London, England: 1979). 2021;135(1):127–42. Epub 2021/01/09. doi: 10.1042/CS20201287 .
    1. Sakhuja A, Goyal A, Jaryal AK, Wig N, Vajpayee M, Kumar A, et al.. Heart rate variability and autonomic function tests in HIV positive individuals in India. Clinical autonomic research: official journal of the Clinical Autonomic Research Society. 2007;17(3):193–6. doi: 10.1007/s10286-007-0412-5 .
    1. Quiles N, Garber C, Ciccolo J. Resting Autonomic Function in Active and Insufficiently Active People Living with HIV. International journal of sports medicine. 2018;39(1):73–8. doi: 10.1055/s-0043-118033 .
    1. Borges J, Soares P, Farinatti P. Autonomic modulation following exercise is impaired in HIV patients. International journal of sports medicine. 2012;33(4):320–4. doi: 10.1055/s-0031-1297954 .
    1. Chen CY, Bonham AC. Postexercise hypotension: central mechanisms. Exerc Sport Sci Rev. 2010;38(3):122–7. doi: 10.1097/JES.0b013e3181e372b5 ; PubMed Central PMCID: PMC2936915.
    1. Fisher JP, Adlan AM, Shantsila A, Secher JF, Sorensen H, Secher NH. Muscle metaboreflex and autonomic regulation of heart rate in humans. The Journal of physiology. 2013;591(15):3777–88. doi: 10.1113/jphysiol.2013.254722 ; PubMed Central PMCID: PMC3752457.
    1. Fisher JP, Young CN, Fadel PJ. Autonomic adjustments to exercise in humans. Compr Physiol. 2015;5(2):475–512. Epub 2015/04/17. doi: 10.1002/cphy.c140022 .
    1. Smith JR, Hart CR, Ramos PA, Akinsanya JG, Lanza IR, Joyner MJ, et al.. Metabo- and mechanoreceptor expression in human heart failure: Relationships with the locomotor muscle afferent influence on exercise responses. Experimental physiology. 2020;105(5):809–18. Epub 2020/02/28. doi: 10.1113/EP088353 ; PubMed Central PMCID: PMC7291843.
    1. Murphy MN, Mizuno M, Mitchell JH, Smith SA. Cardiovascular regulation by skeletal muscle reflexes in health and disease. Am J Physiol Heart Circ Physiol. 2011;301(4):H1191–204. Epub 2011/08/16. doi: 10.1152/ajpheart.00208.2011 ; PubMed Central PMCID: PMC3197431.
    1. Amann M, Sidhu SK, Weavil JC, Mangum TS, Venturelli M. Autonomic responses to exercise: group III/IV muscle afferents and fatigue. Autonomic neuroscience: basic & clinical. 2015;188:19–23. doi: 10.1016/j.autneu.2014.10.018 ; PubMed Central PMCID: PMC4336599.
    1. Amann M, Wan HY, Thurston TS, Georgescu VP, Weavil JC. On the Influence of Group III/IV Muscle Afferent Feedback on Endurance Exercise Performance. Exerc Sport Sci Rev. 2020;48(4):209–16. Epub 2020/07/14. doi: 10.1249/JES.0000000000000233 ; PubMed Central PMCID: PMC7492373.
    1. Antunes-Correa LM, Nobre TS, Groehs RV, Alves MJ, Fernandes T, Couto GK, et al.. Molecular basis for the improvement in muscle metaboreflex and mechanoreflex control in exercise-trained humans with chronic heart failure. Am J Physiol Heart Circ Physiol. 2014;307(11):H1655–66. doi: 10.1152/ajpheart.00136.2014 ; PubMed Central PMCID: PMC4255006.
    1. Guerra RS, Goya TT, Silva RF, Lima MF, Barbosa ERF, Alves M, et al.. Exercise Training Increases Metaboreflex Control in Patients with Obstructive Sleep Apnea. Med Sci Sports Exerc. 2019;51(3):426–35. doi: 10.1249/MSS.0000000000001805 .
    1. Trombetta IC, Batalha LT, Rondon MU, Laterza MC, Kuniyoshi FH, Gowdak MM, et al.. Weight loss improves neurovascular and muscle metaboreflex control in obesity. Am J Physiol Heart Circ Physiol. 2003;285(3):H974–82. doi: 10.1152/ajpheart.01090.2002 .
    1. Milia R, Roberto S, Marongiu E, Olla S, Sanna I, Angius L, et al.. Improvement in hemodynamic responses to metaboreflex activation after one year of training in spinal cord injured humans. BioMed research international. 2014;2014:893468. doi: 10.1155/2014/893468 ; PubMed Central PMCID: PMC3997898.
    1. Gama G, Farinatti P, Rangel M, Mira PAC, Laterza MC, Crisafulli A, et al.. Muscle metaboreflex adaptations to exercise training in health and disease. European journal of applied physiology. 2021. Epub 2021/07/01. doi: 10.1007/s00421-021-04756-8 .
    1. Thet D, Siritientong T. Antiretroviral Therapy-Associated Metabolic Complications: Review of the Recent Studies. HIV AIDS (Auckl). 2020;12:507–24. Epub 2020/10/17. doi: 10.2147/HIV.S275314 ; PubMed Central PMCID: PMC7537841.
    1. Gama G, Farinatti P, Crisafulli A, Borges J. Blood Pressure Response to Muscle Metaboreflex Activation is Impaired in Men Living with HIV. International journal of sports medicine. 2020. doi: 10.1055/a-1263-1124
    1. Michael S, Graham KS, Davis GMO. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals-A Review. Frontiers in physiology. 2017;8:301. Epub 2017/06/15. doi: 10.3389/fphys.2017.00301 ; PubMed Central PMCID: PMC5447093.
    1. Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, et al.. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ: British Medical Journal. 2013;346:e7586. doi: 10.1136/bmj.e7586
    1. Selik RM, Mokotoff ED, Branson B, Owen SM, Whitmore S, Hall HI. Revised Surveillance Case Definition for HIV Infection—United States, 2014. Morbidity and Mortality Weekly Report. 2014;63(3):1–10.
    1. Vianna LC, Fernandes IA, Barbosa TC, Teixeira AL, Nobrega ACL. Capsaicin-based analgesic balm attenuates the skeletal muscle metaboreflex in healthy humans. Journal of applied physiology. 2018;125(2):362–8. doi: 10.1152/japplphysiol.00038.2018 .
    1. Lopes GO, Farinatti P, Lopes KG, Medeiros-Lima DJ, Matsuura C, Oliveira RB, et al.. Increased vascular function and superoxide dismutase activity in physically active vs inactive adults living with HIV. Scand J Med Sci Sports. 2019;29(1):25–33. Epub 2018/09/30. doi: 10.1111/sms.13312 .
    1. Paz GA, Farinatti P, Lopes KG, Borges JP. Effects of exercise training on bone mineral density in adults living with HIV: a retrospective study. HIV Res Clin Pract. 2021;22(5):140–9. Epub 2021/09/28. .
    1. Rodrigues KL, Borges JP, Lopes GO, Pereira E, Mediano MFF, Farinatti P, et al.. Influence of Physical Exercise on Advanced Glycation End Products Levels in Patients Living With the Human Immunodeficiency Virus. Frontiers in physiology. 2018;9:1641. Epub 2018/12/24. doi: 10.3389/fphys.2018.01641 ; PubMed Central PMCID: PMC6291474.
    1. Scarpina F, Tagini S. The Stroop Color and Word Test. Front Psychol. 2017;8:557. Epub 2017/04/28. doi: 10.3389/fpsyg.2017.00557 ; PubMed Central PMCID: PMC5388755.
    1. Porello RA, Dos Santos MR, FR DES, GWP DAF, Sayegh ALC, TF DEO, et al.. Neurovascular Response during Exercise and Mental Stress in Anabolic Steroid Users. Med Sci Sports Exerc. 2018;50(3):596–602. Epub 2017/10/19. doi: 10.1249/MSS.0000000000001456 .
    1. Gilgen-Ammann R, Schweizer T, Wyss T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. European journal of applied physiology. 2019;119(7):1525–32. doi: 10.1007/s00421-019-04142-5 .
    1. Shaffer F, Ginsberg JP. An Overview of Heart Rate Variability Metrics and Norms. Frontiers in public health. 2017;5:258. Epub 2017/10/17. doi: 10.3389/fpubh.2017.00258 ; PubMed Central PMCID: PMC5624990.
    1. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354–81. Epub 1996/03/01. .
    1. Bos WJ, van Goudoever J, van Montfrans GA, van den Meiracker AH, Wesseling KH. Reconstruction of brachial artery pressure from noninvasive finger pressure measurements. Circulation. 1996;94(8):1870–5. doi: 10.1161/01.cir.94.8.1870 .
    1. Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ. Computation of aortic flow from pressure in humans using a nonlinear, three-element model. Journal of applied physiology. 1993;74(5):2566–73. doi: 10.1152/jappl.1993.74.5.2566 .
    1. McIntosh RC. A meta-analysis of HIV and heart rate variability in the era of antiretroviral therapy. Clinical autonomic research: official journal of the Clinical Autonomic Research Society. 2016;26(4):287–94. doi: 10.1007/s10286-016-0366-6 .
    1. Thoni GJ, Schuster I, Walther G, Nottin S, Vinet A, Boccara F, et al.. Silent cardiac dysfunction and exercise intolerance in HIV+ men receiving combined antiretroviral therapies. Aids. 2008;22(18):2537–40. doi: 10.1097/QAD.0b013e328319806d .
    1. Gomes-Neto M, Conceicao CS, Oliveira Carvalho V, Brites C. A systematic review of the effects of different types of therapeutic exercise on physiologic and functional measurements in patients with HIV/AIDS. Clinics. 2013;68(8):1157–67. doi: 10.6061/clinics/2013(08)16 ; PubMed Central PMCID: PMC3752639.
    1. Dianatinasab M, Ghahri S, Dianatinasab A, Amanat S, Fararouei M. Effects of Exercise on the Immune Function, Quality of Life, and Mental Health in HIV/AIDS Individuals. Advances in experimental medicine and biology. 2020;1228:411–21. doi: 10.1007/978-981-15-1792-1_28 .
    1. Zanetti HR, da Cruz LG, Lourenco CL, Ribeiro GC, Ferreira de Jesus Leite MA, Neves FF, et al.. Nonlinear Resistance Training Enhances the Lipid Profile and Reduces Inflammation Marker in People Living With HIV: A Randomized Clinical Trial. Journal of physical activity & health. 2016;13(7):765–70. doi: 10.1123/jpah.2015-0540 .
    1. Quiles N, Taylor B, Ortiz A. Effectiveness of an 8-Week Aerobic Exercise Program on Autonomic Function in People Living with HIV Taking Anti-Retroviral Therapy: A Pilot Randomized Controlled Trial. AIDS Res Hum Retroviruses. 2020;36(4):283–90. Epub 2019/10/09. doi: 10.1089/AID.2019.0194 .
    1. Pedro RE, Guariglia DA, Okuno NM, Deminice R, Peres SB, Moraes SM. Effects of 16 Weeks of Concurrent Training on Resting Heart Rate Variability and Cardiorespiratory Fitness in People Living With HIV/AIDS Using Antiretroviral Therapy: A Randomized Clinical Trial. J Strength Cond Res. 2016;30(12):3494–502. Epub 2016/05/19. doi: 10.1519/JSC.0000000000001454 .
    1. Teixeira AL, Fernandes IA, Vianna LC. Cardiovascular Control During Exercise: The Connectivity of Skeletal Muscle Afferents to the Brain. Exerc Sport Sci Rev. 2020;48(2):83–91. doi: 10.1249/JES.0000000000000218 .
    1. Crisafulli A. The Impact of Cardiovascular Diseases on Cardiovascular Regulation During Exercise in Humans: Studies on Metaboreflex Activation Elicited by the Post-exercise Muscle Ischemia Method. Current cardiology reviews. 2017;13(4):293–300. doi: 10.2174/1573403X13666170804165928 ; PubMed Central PMCID: PMC5730962.
    1. Boushel R. Muscle metaboreflex control of the circulation during exercise. Acta physiologica. 2010;199(4):367–83. doi: 10.1111/j.1748-1716.2010.02133.x .
    1. Notarius CF, Millar PJ, Keir DA, Murai H, Haruki N, O’Donnell E, et al.. Training heart failure patients with reduced ejection fraction attenuates muscle sympathetic nerve activation during mild dynamic exercise. American journal of physiology Regulatory, integrative and comparative physiology. 2019;317(4):R503–R12. doi: 10.1152/ajpregu.00104.2019 ; PubMed Central PMCID: PMC6842905.
    1. Saito M, Iwase S, Hachiya T. Resistance exercise training enhances sympathetic nerve activity during fatigue-inducing isometric handgrip trials. European journal of applied physiology. 2009;105(2):225–34. doi: 10.1007/s00421-008-0893-5 .
    1. Crisafulli A, de Farias RR, Farinatti P, Lopes KG, Milia R, Sainas G, et al.. Blood Flow Restriction Training Reduces Blood Pressure During Exercise Without Affecting Metaboreflex Activity. Frontiers in physiology. 2018;9:1736. doi: 10.3389/fphys.2018.01736 ; PubMed Central PMCID: PMC6299290.
    1. Johnston BW, Barrett-Jolley R, Krige A, Welters ID. Heart rate variability: Measurement and emerging use in critical care medicine. Journal of the Intensive Care Society. 2020;21(2):148–57. doi: 10.1177/1751143719853744 ; PubMed Central PMCID: PMC7238479. ensive Care Society. 2020;21(2):148–57.

Source: PubMed

3
Subscribe