Use of Aldosterone Antagonists for Treatment of Uncontrolled Resistant Hypertension

Tanja Dudenbostel, David A Calhoun, Tanja Dudenbostel, David A Calhoun

Abstract

Background: Multiple studies indicate that primary aldosteronism (PA) is common in patients with resistant hypertension, with an estimated prevalence of approximately 20%. Additional studies suggest that beyond this 20% of patients with classical PA, there is a larger proportion of patients with lesser degrees of hyperaldosteronism which contributes even more broadly to antihypertensive treatment resistance. Given these observations, it is intuitive that use of aldosterone antagonists will provide antihypertensive benefit in patients with resistant hypertension and evidence of aldosterone excess. Intriguingly, however, are clinical findings demonstrating substantive benefit of aldosterone antagonists in patients with resistant hypertension, but without demonstrative evidence of hyperaldosteronism, that is, with seemingly normal or even low aldosterone levels.

Conclusion: Spironolactone is clearly established as the most effective fourth agent for treatment of uncontrolled resistant hypertension. Emerging observations suggest a further role of spironolactone for counteracting the effects of diet high in sodium, particularly in obese, hypertensive patients.

Keywords: aldosterone; aldosterone antagonists; blood pressure; hypertension; obesity; resistant hypertension; spironolactone..

© American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

Figures

Figure 1.
Figure 1.
Spironolactone-induced reduction in SBP (filled bars) and DBP (open bars) at 6-week, 3-month, and 6-month follow-up in subjects with resistant hypertension (upper panel). Spironolactone-induced reduction in SBP and DBP at 6-week, 3-month, and 6-month follow-up in subjects with PA (filled bars) and without PA (non-PA: open bars)(lower panel). Abbreviations: DBP, diastolic blood pressure; PA, primary aldosteronism; SBP, systolic blood pressure.
Figure 2.
Figure 2.
Mean 24-hour UAldo levels to quartiles of BMI in men vs. women. White columns represent women and black columns represent men. Abbreviations: BMI, body mass index; Ualdo, urinary aldosterone

References

    1. Calhoun DA, Nishizaka MK, Zaman MA, Thakkar RB, Weissmann P. Hyperaldosteronism among Black and White subjects with resistant hypertension. Hypertension 2002; 40:892–896.
    1. Eide IK, Torjesen PA, Drolsum A, Babovic A, Lilledahl NP. Low-renin status in therapy-resistant hypertension: a clue to efficient treatment. J Hypertens 2004; 22:2217–2226.
    1. Gallay BJ, Ahmad S, Xu L, Toivola B, Davidson RC. Screening for primary aldosteronism without discontinuing hypertensive medications: plasma aldosterone-renin ratio. Am J Kidney Dis 2001; 37:699–705.
    1. Strauch B, Zelinka T, Hampf M, Bernhardt R, Widimsky J., Jr Prevalence of primary hyperaldosteronism in moderate to severe hypertension in the Central Europe region. J Hum Hypertens 2003; 17:349–352.
    1. Gaddam KK, Nishizaka MK, Pratt-Ubunama MN, Pimenta E, Aban I, Oparil S, Calhoun DA. Characterization of resistant hypertension: association between resistant hypertension, aldosterone, and persistent intravascular volume expansion. Arch Intern Med 2008; 168:1159–1164.
    1. Nishizaka MK, Zaman MA, Calhoun DA. Efficacy of low-dose spironolactone in subjects with resistant hypertension. Am J Hypertens 2003; 16:925–930.
    1. Ouzan J, Perault C, Lincoff AM, Carre E, Mertes M. The role of spironolactone in the treatment of patients with refractory hypertension. Am J Hypertens 2002; 15:333–339.
    1. Alvarez-Alvarez B, Abad-Cardiel M, Fernandez-Cruz A, Martell-Claros N. Management of resistant arterial hypertension: role of spironolactone versus double blockade of the renin-angiotensin-aldosterone system. J Hypertens 2010; 28:2329–2335.
    1. de Souza F, Muxfeldt E, Fiszman R, Salles G. Efficacy of spironolactone therapy in patients with true resistant hypertension. Hypertension 2010; 55:147–152.
    1. Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, Ford I, Cruickshank JK, Caulfield MJ, Salsbury J, Mackenzie I, Padmanabhan S, Brown MJ; British Hypertension Society’s PSG Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 2015; 386:2059–2068.
    1. Ghazi L, Dudenbostel T, Lin CP, Oparil S, Calhoun DA. Urinary sodium excretion predicts blood pressure response to spironolactone in patients with resistant hypertension independent of aldosterone status. J Hypertens 2016; 34:1005–1010.
    1. Weinberger MH, Roniker B, Krause SL, Weiss RJ. Eplerenone, a selective aldosterone blocker, in mild-to-moderate hypertension. Am J Hypertens 2002; 15:709–716.
    1. Chapman N, Dobson J, Wilson S, Dahlof B, Sever PS, Wedel H, Poulter NR; Anglo-Scandinavian Cardiac Outcomes Trial I Effect of spironolactone on blood pressure in subjects with resistant hypertension. Hypertension 2007; 49:839–845.
    1. Vaclavik J, Sedlak R, Plachy M, Navratil K, Plasek J, Jarkovsky J, Vaclavik T, Husar R, Kocianova E, Taborsky M. Addition of spironolactone in patients with resistant arterial hypertension (ASPIRANT): a randomized, double-blind, placebo-controlled trial. Hypertension 2011; 57:1069–1075.
    1. Vaclavik J, Sedlak R, Jarkovsky J, Kocianova E, Taborsky M. Effect of spironolactone in resistant arterial hypertension: a randomized, double-blind, placebo-controlled trial (ASPIRANT-EXT). Medicine (Baltimore) 2014; 93:e162.
    1. Calhoun DA, White WB. Effectiveness of the selective aldosterone blocker, eplerenone, in patients with resistant hypertension. J Am Soc Hypertens 2008; 2:462–468.
    1. Dudenbostel T, Ghazi L, Liu M, Li P, Oparil S, Calhoun DA. Body mass index predicts 24-hour urinary aldosterone levels in patients with resistant hypertension. Hypertension 2016; e-pub ahead of print 15 August 2016.
    1. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, Hauner H, McCann SM, Scherbaum WA, Bornstein SR. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci USA 2003; 100:14211–14216.
    1. Jeon JH, Kim KY, Kim JH, Baek A, Cho H, Lee YH, Kim JW, Kim D, Han SH, Lim JS, Kim KI, Yoon DY, Kim SH, Oh GT, Kim E, Yang Y. A novel adipokine CTRP1 stimulates aldosterone production. FASEB J 2008; 22:1502–1511.
    1. Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, Correa JW, Gagnon AM, Gomez-Sanchez CE, Gomez-Sanchez EP, Sorisky A, Ooi TC, Ruzicka M, Burns KD, Touyz RM. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 2012; 59:1069–1078.
    1. Savoia C, Touyz RM, Amiri F, Schiffrin EL. Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension 2008; 51:432–439.
    1. Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 2000; 101:594–597.
    1. Nishizaka MK, Zaman MA, Green SA, Renfroe KY, Calhoun DA. Impaired endothelium-dependent flow-mediated vasodilation in hypertensive subjects with hyperaldosteronism. Circulation 2004; 109:2857–2861.

Source: PubMed

3
Subscribe