DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses

Laura Chiavaroli, Effie Viguiliouk, Stephanie K Nishi, Sonia Blanco Mejia, Dario Rahelić, Hana Kahleová, Jordi Salas-Salvadó, Cyril Wc Kendall, John L Sievenpiper, Laura Chiavaroli, Effie Viguiliouk, Stephanie K Nishi, Sonia Blanco Mejia, Dario Rahelić, Hana Kahleová, Jordi Salas-Salvadó, Cyril Wc Kendall, John L Sievenpiper

Abstract

Background: The Dietary Approaches to Stop Hypertension (DASH) dietary pattern, which emphasizes fruit, vegetables, fat-free/low-fat dairy, whole grains, nuts and legumes, and limits saturated fat, cholesterol, red and processed meats, sweets, added sugars, salt and sugar-sweetened beverages, is widely recommended by international diabetes and heart association guidelines.

Objective: To summarize the available evidence for the update of the European Association of the Study of Diabetes (EASD) guidelines, we conducted an umbrella review of existing systematic reviews and meta-analyses using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach of the relation of the DASH dietary pattern with cardiovascular disease and other cardiometabolic outcomes in prospective cohort studies and its effect on blood pressure and other cardiometabolic risk factors in controlled trials in individuals with and without diabetes.

Methods: MEDLINE and EMBASE were searched through 3 January 2019. We included systematic reviews and meta-analyses assessing the relation of the DASH dietary pattern with cardiometabolic disease outcomes in prospective cohort studies and the effect on cardiometabolic risk factors in randomized and non-randomized controlled trials. Two independent reviewers extracted relevant data and assessed the risk of bias of individual studies. The primary outcome was incident cardiovascular disease (CVD) in the prospective cohort studies and systolic blood pressure in the controlled trials. Secondary outcomes included incident coronary heart disease, stroke, and diabetes in prospective cohort studies and other established cardiometabolic risk factors in controlled trials. If the search did not identify an existing systematic review and meta-analysis on a pre-specified outcome, then we conducted our own systematic review and meta-analysis. The evidence was summarized as risk ratios (RR) for disease incidence outcomes and mean differences (MDs) for risk factor outcomes with 95% confidence intervals (95% CIs). The certainty of the evidence was assessed using GRADE.

Results: We identified three systematic reviews and meta-analyses of 15 unique prospective cohort studies (n = 942,140) and four systematic reviews and meta-analyses of 31 unique controlled trials (n = 4,414) across outcomes. We conducted our own systematic review and meta-analysis of 2 controlled trials (n = 65) for HbA1c. The DASH dietary pattern was associated with decreased incident cardiovascular disease (RR, 0.80 (0.76⁻0.85)), coronary heart disease (0.79 (0.71⁻0.88)), stroke (0.81 (0.72⁻0.92)), and diabetes (0.82 (0.74⁻0.92)) in prospective cohort studies and decreased systolic (MD, -5.2 mmHg (95% CI, -7.0 to -3.4)) and diastolic (-2.60 mmHg (-3.50 to -1.70)) blood pressure, Total-C (-0.20 mmol/L (-0.31 to -0.10)), LDL-C (-0.10 mmol/L (-0.20 to -0.01)), HbA1c (-0.53% (-0.62, -0.43)), fasting blood insulin (-0.15 μU/mL (-0.22 to -0.08)), and body weight (-1.42 kg (-2.03 to -0.82)) in controlled trials. There was no effect on HDL-C, triglycerides, fasting blood glucose, HOMA-IR, or CRP. The certainty of the evidence was moderate for SBP and low for CVD incidence and ranged from very low to moderate for the secondary outcomes.

Conclusions: Current evidence allows for the conclusion that the DASH dietary pattern is associated with decreased incidence of cardiovascular disease and improves blood pressure with evidence of other cardiometabolic advantages in people with and without diabetes. More research is needed to improve the certainty of the estimates.

Keywords: DASH; GRADE; cardiometabolic health; cardiovascular disease; dietary approaches to stop hypertension; review.

Conflict of interest statement

D.R. has served as principal investigator or co-investigator in clinical trials of AstraZeneca, Eli Lilly, MSD, Novo Nordisk, Sanofi Aventis, Solvay and Trophos. He received honoraria for speaking or advisory board engagements and consulting fees from Abbott, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Eli Lilly, Lifescan–Johnson and Johnson, Novartis, Novo Nordisk, MSD, Merck Sharp and Dohme, Pfizer, Pliva, Roche, Salvus, Sanofi Aventis and Takeda. He served as a Board member and Secretary of IDF Europe in biennium 2015–2017. He is a president of Croatian Society for Diabetes and Metabolic Disorders of Croatian Medical Association, chair of IDF Young Leaders in Diabetes Programme, Executive committee member of Diabetes and Cardiovascular Disease Study Group of EASD, Croatian Endocrine Society, Croatian Society for Obesity and Croatian Society for Endocrine Oncology. J.S.S. reports serving on the board of and receiving grant support through his institution from the International Nut and Dried Fruit Council, and Eroski Foundation and serving on the Executive Committee of the Instituto Danone Spain and on the Scientific Committee of the Danone International Institute. Has received research support from the Instituto de Salud Carlos III, Spain; Ministerio de Educación y Ciencia, Spain; Departament de Salut Pública de la Generalitat de Catalunya, Catalonia, Spain; European Commission. He has received research support from California Walnut Commission, Sacramento CA, USA; Patrimonio Comunal Olivarero, Spain; La Morella Nuts, Spain; and Borges S.A., Spain. Reports receiving consulting fees or travel expenses from Danone; California Walnut Commission, Eroski Foundation, Instituto Danone–Spain, Nuts for Life, Australian Nut Industry Council, Nestlé, Abbot Laboratories, and Font Vella Lanjarón. He is on the Clinical Practice Guidelines Expert Committee of the European Association for the study of Diabetes (EASD), and served in the Scientific Committee of the Spanish Food and Safety Agency, and the Spanish Federation of the Scientific Societies of Food, Nutrition and Dietetics. He is a member of the International Carbohydrate Quality Consortium (ICQC), and Executive Board Member of the Diabetes and Nutrition Study Group (DNSG) of the EASD. C.W.C.K. has received grant grants or research support from the Advanced Food Materials Network, Agriculture and Agri-Foods Canada (AAFC), Almond Board of California, American Pistachio Growers, Barilla, California Strawberry Commission, Calorie Control Council, Canadian Institutes of Health Research (CIHR), Canola Council of Canada, International Nut and Dried Fruit Council, International Tree Nut Council Research and Education Foundation, Loblaw Brands Ltd., Pulse Canada, Saskatchewan Pulse Growers and Unilever. He has received in-kind research support from the Almond Board of California, California Walnut Council, American Peanut Council, Barilla, Unilever, Unico/Primo, Loblaw Companies, Quaker (Pepsico), Pristine Gourmet, Kellogg Canada, WhiteWave Foods. He has received travel support and/or honoraria from the American Peanut Council, American Pistachio Growers, Barilla, Bayer, California Walnut Commission, Canola Council of Canada, General Mills, International Tree Nut Council, Loblaw Brands Ltd., Nutrition Foundation of Italy, Oldways Preservation Trust, Orafti, Paramount Farms, Peanut Institute, Pulse Canada, Sabra Dipping Co., Saskatchewan Pulse Growers, Sun-Maid, Tate and Lyle, Unilever and White Wave Foods. He has served on the scientific advisory board for the International Tree Nut Council, McCormick Science Institute, Oldways Preservation Trust, Paramount Farms and Pulse Canada. He is a member of the International Carbohydrate Quality Consortium (ICQC), Executive Board Member of the Diabetes and Nutrition Study Group (DNSG) of the European Association for the Study of Diabetes (EASD), is on the Clinical Practice Guidelines Expert Committee for Nutrition Therapy of the EASD and is a Director of the Toronto 3D Knowledge Synthesis and Clinical Trials foundation. J.L.S. has received research support from the Canadian Institutes of health Research (CIHR), Diabetes Canada, PSI Foundation, Banting and Best Diabetes Centre (BBDC), Canadian Nutrition Society (CNS), American Society for Nutrition (ASN), INC International Nut and Dried Fruit Council Foundation, National Dried Fruit Trade Association, The Tate and Lyle Nutritional Research Fund at the University of Toronto, The Glycemic Control and Cardiovascular Disease in Type 2 Diabetes Fund at the University of Toronto (a fund established by the Alberta Pulse Growers) and the Nutrition Trialists Fund at the University of Toronto (a fund established by the Calorie Control Council). He has received in-kind research support from the Almond Board of California, California Walnut Commission, American Peanut Council, Barilla, Unilever, Unico/Primo, Loblaw Companies, Quaker (Pepsico), Kellogg Canada, WhiteWave Foods. He has received travel support, speaker fees and/or honoraria from Diabetes Canada, Canadian Nutrition Society (CNS), Mott’s LLP, Dairy Farmers of Canada, FoodMinds LLC, Memac Ogilvy & Mather LLC, PepsiCo, The Ginger Network LLC, International Sweeteners Association, Nestlé, Pulse Canada, Canadian Society for Endocrinology and Metabolism (CSEM), GI Foundation, Abbott, Biofortis, American Society for Nutrition (ASN), and Physicians Committee for Responsible Medicine. He has ad hoc consulting arrangements with Perkins Coie LLP, Tate and Lyle, and Wirtschaftliche Vereinigung Zucker e.V. He is a member of the European Fruit Juice Association Scientific Expert Panel. He is on the Clinical Practice Guidelines Expert Committees of Diabetes Canada, European Association for the study of Diabetes (EASD), Canadian Cardiovascular Society (CCS), and Obesity Canada. He serves as an unpaid scientific advisor for the Food, Nutrition, and Safety Program (FNSP) and the Technical Committee on Carbohydrates of the International Life Science Institute (ILSI) North America. He is a member of the International Carbohydrate Quality Consortium (ICQC), Executive Board Member of the Diabetes and Nutrition Study Group (DNSG) of the EASD, and Director of the Toronto 3D Knowledge Synthesis and Clinical Trials foundation. No competing interests were declared by L.C., E.V., S.K.N., S.B.M., and H.K.

Figures

Figure 1
Figure 1
Literature search.
Figure 2
Figure 2
Summary plot of the association between the DASH dietary pattern on risk of various chronic diseases in prospective cohort studies. The pooled risk estimate is represented by the diamond. P-values were determined using random effects modelling in each systematic review and meta-analysis. Between-study heterogeneity was assessed by the Cochran Q statistic, where P < 0.10 is considered statistically significant, and quantified by the I2 statistic, where I2 ≥ 50% is considered evidence of substantial heterogeneity [29]. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) of prospective cohort studies are rated as “Low” certainty of evidence and can be downgraded by five domains and upgraded by three domains. The filled black squares indicate downgrade and/or upgrades for each outcome. CHD = coronary heart disease; CI = confidence interval; CVD = cardiovascular disease; GRADE = Grading of Recommendations, Assessment, Development and Evaluation; NA = not applicable.
Figure 3
Figure 3
Summary plot of the effect of the DASH dietary pattern on cardiometabolic risk factors in controlled trials. Data are expressed as weighted mean differences with 95% CIs using random effects models in each systematic review and meta-analysis with the exception of HbA1c in which a fixed effects model was used due to the inclusion of P < 0.10 is considered statistically significant, and quantified by the I2 statistic, where I2 ≥ 50% is considered evidence of substantial heterogeneity [29]. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) of randomized controlled trials are rated as "High" certainty of evidence and can be downgraded by five domains. The filled black squares indicate downgrades for each outcome. *Due to the difference in directionality of HDL-C compared to the other outcomes with regards to signal for benefit or harm, the sign for the SMD was changed. ** Since no published systematic review and meta-analysis was retrieved from the search, we manually conducted a systematic review and meta-analysis on the DASH dietary pattern and HbA1c (Supplemental Tables S20–21 and Supplemental Figure S3). To convert Total-C, LDL-C, and HDL-C to mg/dL, multiply by 38.67; to convert TG to mg/dL, multiply by 88.57; to convert blood glucose to mg/dL, multiply by 18.02; to convert CRP to mg/L, multiply by 0.105. CI = confidence interval; CRP = C-reactive protein; GRADE = Grading of Recommendations, Assessment, Development and Evaluation; HbA1c = hemoglobin A1c; HDL-C = high-density lipoprotein-cholesterol; HOMA-IR = Homeostatic Model Assessment of Insulin Resistance; LDL-C = low-density lipoprotein-cholesterol; MD = mean difference; NA = not available; SMD=standardized mean difference; TG = triglycerides; Total-C = total-cholesterol

References

    1. International Diabetes Federation IDF Diabetes Atlas. [(accessed on 30 January 2018)];2015 Available online: .
    1. O’Rourke K., VanderZanden A., Shepard D., Leach-Kemon K. Cardiovascular disease worldwide, 1990–2013. JAMA. 2015;314:1905. doi: 10.1001/jama.2015.14994.
    1. World Health Organization (WHO) Obesity. [(accessed on 30 January 2018)]; Available online:
    1. Chobanian A.V., Bakris G.L., Black H.R., Cushman W.C., Green L.A., Izzo J.L., Jr., Jones D.W., Materson B.J., Oparil S., Wright J.T., Jr., et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: The JNC 7 report. JAMA. 2003;289:2560–2572. doi: 10.1001/jama.289.19.2560.
    1. American Heart Association Nutrition Committee. Lichtenstein A.H., Appel L.J., Brands M., Carnethon M., Daniels S., Franch H.A., Franklin B., Kris-Etherton P., Harris W.S., et al. Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114:82–96. doi: 10.1161/CIRCULATIONAHA.106.176158.
    1. Anderson T.J., Gregoire J., Pearson G.J., Barry A.R., Couture P., Dawes M., Francis G.A., Genest J., Jr., Grover S., Gupta M., et al. 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. Can. J. Cardiol. 2016;32:1263–1282. doi: 10.1016/j.cjca.2016.07.510.
    1. Evert A.B., Boucher J.L., Cypress M., Dunbar S.A., Franz M.J., Mayer-Davis E.J., Neumiller J.J., Nwankwo R., Verdi C.L., Urbanski P., et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37(Suppl. 1):S120–S143. doi: 10.2337/dc14-S120.
    1. Canadian Diabetes Association Clinical Practice Guidelines Expert Committee. Dworatzek P.D., Arcudi K., Gougeon R., Husein N., Sievenpiper J.L., Williams S.L. Nutrition therapy. Can. J. Diabetes. 2013;37(Suppl. 1):S45–S55. doi: 10.1016/j.jcjd.2013.01.019.
    1. Nerenberg K.A., Zarnke K.B., Leung A.A., Dasgupta K., Butalia S., McBrien K., Harris K.C., Nakhla M., Cloutier L., Gelfer M., et al. Hypertension Canada’s 2018 Guidelines for Diagnosis, Risk Assessment, Prevention, and Treatment of Hypertension in Adults and Children. Can. J. Cardiol. 2018;34:506–525. doi: 10.1016/j.cjca.2018.02.022.
    1. Sacks F.M., Svetkey L.P., Vollmer W.M., Appel L.J., Bray G.A., Harsha D., Obarzanek E., Conlin P.R., Miller E.R., 3rd, Simons-Morton D.G., et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 2001;344:3–10. doi: 10.1056/NEJM200101043440101.
    1. Siervo M., Lara J., Chowdhury S., Ashor A., Oggioni C., Mathers J.C. Effects of the Dietary Approach to Stop Hypertension (DASH) diet on cardiovascular risk factors: A systematic review and meta-analysis. Br. J. Nutr. 2015;113:1–15. doi: 10.1017/S0007114514003341.
    1. Jannasch F., Kroger J., Schulze M.B. Dietary Patterns and Type 2 Diabetes: A Systematic Literature Review and Meta-Analysis of Prospective Studies. J. Nutr. 2017;147:1174–1182. doi: 10.3945/jn.116.242552.
    1. Schwingshackl L., Hoffmann G. Diet quality as assessed by the Healthy Eating Index, the Alternate Healthy Eating Index, the Dietary Approaches to Stop Hypertension score, and health outcomes: A systematic review and meta-analysis of cohort studies. J. Acad. Nutr. Diet. 2015;115:780–800 e785. doi: 10.1016/j.jand.2014.12.009.
    1. U.S. Department of Health and Human Services and U.S. Department of Agriculture [(accessed on 27 November 2018)];2015–2020 Dietary Guidelines for Americans. (8th ed.). 2015 Dec; Available online:
    1. Diabetes Canada Clinical Practice Guidelines Expert Committee. Sievenpiper J.L., Chan C.B., Dworatzek P.D., Freeze C., Williams S.L. Nutrition Therapy. Can. J. Diabetes. 2018;42(Suppl. 1):S64–S79. doi: 10.1016/j.jcjd.2017.10.009.
    1. Piepoli M.F., Hoes A.W., Agewall S., Albus C., Brotons C., Catapano A.L., Cooney M.T., Corra U., Cosyns B., Deaton C., et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR) Eur. Heart J. 2016;37:2315–2381.
    1. Eckel R.H., Jakicic J.M., Ard J.D., de Jesus J.M., Houston Miller N., Hubbard V.S., Lee I.M., Lichtenstein A.H., Loria C.M., Millen B.E., et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014;63:2960–2984. doi: 10.1016/j.jacc.2013.11.003.
    1. Higgins J.P.T., Green S. Cochrane Handbook for Systematic Reviews of Interventions version 5.1.0 [updated March 2011]. Cochrane Collaboration. [(accessed on 27 November 2018)]; Available online:
    1. Guyatt G., Oxman A.D., Akl E.A., Kunz R., Vist G., Brozek J., Norris S., Falck-Ytter Y., Glasziou P., DeBeer H., et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011;64:383–394. doi: 10.1016/j.jclinepi.2010.04.026.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G., Group P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010;8:336–341. doi: 10.1016/j.ijsu.2010.02.007.
    1. Wells G.A., Shea B., O’Connell D., Peterson J., Welch V., Losos M., Tugwell P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Ottawa Hospital Research Institute; Ottawa, Canada: 2014. [(accessed on 30 January 2018)]. Available online: .
    1. Higgins J.P., Altman D.G., Gotzsche P.C., Juni P., Moher D., Oxman A.D., Savovic J., Schulz K.F., Weeks L., Sterne J.A., et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Balshem H., Helfand M., Schunemann H.J., Oxman A.D., Kunz R., Brozek J., Vist G.E., Falck-Ytter Y., Meerpohl J., Norris S., et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011;64:401–406. doi: 10.1016/j.jclinepi.2010.07.015.
    1. Brunetti M., Shemilt I., Pregno S., Vale L., Oxman A.D., Lord J., Sisk J., Ruiz F., Hill S., Guyatt G.H., et al. GRADE guidelines: 10. Considering resource use and rating the quality of economic evidence. J. Clin. Epidemiol. 2013;66:140–150. doi: 10.1016/j.jclinepi.2012.04.012.
    1. Guyatt G., Oxman A.D., Sultan S., Brozek J., Glasziou P., Alonso-Coello P., Atkins D., Kunz R., Montori V., Jaeschke R., et al. GRADE guidelines: 11. Making an overall rating of confidence in effect estimates for a single outcome and for all outcomes. J. Clin. Epidemiol. 2013;66:151–157. doi: 10.1016/j.jclinepi.2012.01.006.
    1. Guyatt G.H., Oxman A.D., Kunz R., Atkins D., Brozek J., Vist G., Alderson P., Glasziou P., Falck-Ytter Y., Schunemann H.J. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J. Clin. Epidemiol. 2011;64:395–400. doi: 10.1016/j.jclinepi.2010.09.012.
    1. Guyatt G.H., Oxman A.D., Kunz R., Brozek J., Alonso-Coello P., Rind D., Devereaux P.J., Montori V.M., Freyschuss B., Vist G., et al. GRADE guidelines 6. Rating the quality of evidence--imprecision. J. Clin. Epidemiol. 2011;64:1283–1293. doi: 10.1016/j.jclinepi.2011.01.012.
    1. Guyatt G.H., Oxman A.D., Kunz R., Woodcock J., Brozek J., Helfand M., Alonso-Coello P., Falck-Ytter Y., Jaeschke R., Vist G., et al. GRADE guidelines: 8. Rating the quality of evidence--indirectness. J. Clin. Epidemiol. 2011;64:1303–1310. doi: 10.1016/j.jclinepi.2011.04.014.
    1. Guyatt G.H., Oxman A.D., Kunz R., Woodcock J., Brozek J., Helfand M., Alonso-Coello P., Glasziou P., Jaeschke R., Akl E.A., et al. GRADE guidelines: 7. Rating the quality of evidence--inconsistency. J. Clin. Epidemiol. 2011;64:1294–1302. doi: 10.1016/j.jclinepi.2011.03.017.
    1. Guyatt G.H., Oxman A.D., Montori V., Vist G., Kunz R., Brozek J., Alonso-Coello P., Djulbegovic B., Atkins D., Falck-Ytter Y., et al. GRADE guidelines: 5. Rating the quality of evidence—Publication bias. J. Clin. Epidemiol. 2011;64:1277–1282. doi: 10.1016/j.jclinepi.2011.01.011.
    1. Guyatt G.H., Oxman A.D., Santesso N., Helfand M., Vist G., Kunz R., Brozek J., Norris S., Meerpohl J., Djulbegovic B., et al. GRADE guidelines: 12. Preparing summary of findings tables-binary outcomes. J. Clin. Epidemiol. 2013;66:158–172. doi: 10.1016/j.jclinepi.2012.01.012.
    1. Guyatt G.H., Oxman A.D., Sultan S., Glasziou P., Akl E.A., Alonso-Coello P., Atkins D., Kunz R., Brozek J., Montori V., et al. GRADE guidelines: 9. Rating up the quality of evidence. J. Clin. Epidemiol. 2011;64:1311–1316. doi: 10.1016/j.jclinepi.2011.06.004.
    1. Guyatt G.H., Oxman A.D., Vist G., Kunz R., Brozek J., Alonso-Coello P., Montori V., Akl E.A., Djulbegovic B., Falck-Ytter Y., et al. GRADE guidelines: 4. Rating the quality of evidence—Study limitations (risk of bias) J. Clin. Epidemiol. 2011;64:407–415. doi: 10.1016/j.jclinepi.2010.07.017.
    1. Guyatt G.H., Thorlund K., Oxman A.D., Walter S.D., Patrick D., Furukawa T.A., Johnston B.C., Karanicolas P., Akl E.A., Vist G., et al. GRADE guidelines: 13. Preparing summary of findings tables and evidence profiles-continuous outcomes. J. Clin. Epidemiol. 2013;66:173–183. doi: 10.1016/j.jclinepi.2012.08.001.
    1. Agnoli C., Krogh V., Grioni S., Sieri S., Palli D., Masala G., Sacerdote C., Vineis P., Tumino R., Frasca G., et al. A priori-defined dietary patterns are associated with reduced risk of stroke in a large Italian cohort. J. Nutr. 2011;141:1552–1558. doi: 10.3945/jn.111.140061.
    1. Bertoia M.L., Triche E.W., Michaud D.S., Baylin A., Hogan J.W., Neuhouser M.L., Tinker L.F., Van Horn L., Waring M.E., Li W., et al. Mediterranean and Dietary Approaches to Stop Hypertension dietary patterns and risk of sudden cardiac death in postmenopausal women. Am. J. Clin. Nutr. 2014;99:344–351. doi: 10.3945/ajcn.112.056135.
    1. Fitzgerald K.C., Chiuve S.E., Buring J.E., Ridker P.M., Glynn R.J. Comparison of associations of adherence to a Dietary Approaches to Stop Hypertension (DASH)-style diet with risks of cardiovascular disease and venous thromboembolism. J. Thromb. Haemost. 2012;10:189–198. doi: 10.1111/j.1538-7836.2011.04588.x.
    1. Folsom A.R., Parker E.D., Harnack L.J. Degree of concordance with DASH diet guidelines and incidence of hypertension and fatal cardiovascular disease. Am. J. Hypertens. 2007;20:225–232. doi: 10.1016/j.amjhyper.2006.09.003.
    1. Fung T.T., Chiuve S.E., McCullough M.L., Rexrode K.M., Logroscino G., Hu F.B. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch. Intern. Med. 2008;168:713–720. doi: 10.1001/archinte.168.7.713.
    1. Levitan E.B., Wolk A., Mittleman M.A. Consistency with the DASH diet and incidence of heart failure. Arch. Intern. Med. 2009;169:851–857. doi: 10.1001/archinternmed.2009.56.
    1. Lin P.H., Yeh W.T., Svetkey L.P., Chuang S.Y., Chang Y.C., Wang C., Pan W.H. Dietary intakes consistent with the DASH dietary pattern reduce blood pressure increase with age and risk for stroke in a Chinese population. Asia Pac. J. Clin. Nutr. 2013;22:482–491.
    1. Reedy J., Krebs-Smith S.M., Miller P.E., Liese A.D., Kahle L.L., Park Y., Subar A.F. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J. Nutr. 2014;144:881–889. doi: 10.3945/jn.113.189407.
    1. Salehi-Abargouei A., Maghsoudi Z., Shirani F., Azadbakht L. Effects of Dietary Approaches to Stop Hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases—incidence: A systematic review and meta-analysis on observational prospective studies. Nutrition. 2013;29:611–618. doi: 10.1016/j.nut.2012.12.018.
    1. de Koning L., Chiuve S.E., Fung T.T., Willett W.C., Rimm E.B., Hu F.B. Diet-quality scores and the risk of type 2 diabetes in men. Diabetes Care. 2011;34:1150–1156. doi: 10.2337/dc10-2352.
    1. Otto M.C., Padhye N.S., Bertoni A.G., Jacobs D.R., Jr., Mozaffarian D. Everything in Moderation—Dietary Diversity and Quality, Central Obesity and Risk of Diabetes. PLoS ONE. 2015;10:e0141341.
    1. Jacobs S., Harmon B.E., Boushey C.J., Morimoto Y., Wilkens L.R., Le Marchand L., Kroger J., Schulze M.B., Kolonel L.N., Maskarinec G. A priori-defined diet quality indexes and risk of type 2 diabetes: The Multiethnic Cohort. Diabetologia. 2015;58:98–112. doi: 10.1007/s00125-014-3404-8.
    1. InterAct C. Adherence to predefined dietary patterns and incident type 2 diabetes in European populations: EPIC-InterAct Study. Diabetologia. 2014;57:321–333.
    1. Liese A.D., Nichols M., Sun X., D’Agostino R.B., Jr., Haffner S.M. Adherence to the DASH Diet is inversely associated with incidence of type 2 diabetes: The insulin resistance atherosclerosis study. Diabetes Care. 2009;32:1434–1436. doi: 10.2337/dc09-0228.
    1. Appel L.J., Moore T.J., Obarzanek E., Vollmer W.M., Svetkey L.P., Sacks F.M., Bray G.A., Vogt T.M., Cutler J.A., Windhauser M.M., et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997;336:1117–1124. doi: 10.1056/NEJM199704173361601.
    1. Appel L.J., Champagne C.M., Harsha D.W., Cooper L.S., Obarzanek E., Elmer P.J., Stevens V.J., Vollmer W.M., Lin P.H., Svetkey L.P., et al. Effects of comprehensive lifestyle modification on blood pressure control: Main results of the PREMIER clinical trial. JAMA. 2003;289:2083–2093.
    1. Conlin P.R., Erlinger T.P., Bohannon A., Miller E.R., 3rd, Appel L.J., Svetkey L.P., Moore T.J. The DASH diet enhances the blood pressure response to losartan in hypertensive patients. Am. J. Hypertens. 2003;16:337–342. doi: 10.1016/S0895-7061(03)00056-6.
    1. Lopes H.F., Martin K.L., Nashar K., Morrow J.D., Goodfriend T.L., Egan B.M. DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension. 2003;41:422–430. doi: 10.1161/01.HYP.0000053450.19998.11.
    1. Nowson C.A., Wattanapenpaiboon N., Pachett A. Low-sodium Dietary Approaches to Stop Hypertension-type diet including lean red meat lowers blood pressure in postmenopausal women. Nutr. Res. 2009;29:8–18. doi: 10.1016/j.nutres.2008.12.002.
    1. Nowson C.A., Worsley A., Margerison C., Jorna M.K., Frame A.G., Torres S.J., Godfrey S.J. Blood pressure response to dietary modifications in free-living individuals. J. Nutr. 2004;134:2322–2329. doi: 10.1093/jn/134.9.2322.
    1. Nowson C.A., Worsley A., Margerison C., Jorna M.K., Godfrey S.J., Booth A. Blood pressure change with weight loss is affected by diet type in men. Am. J. Clin. Nutr. 2005;81:983–989. doi: 10.1093/ajcn/81.5.983.
    1. Azadbakht L., Mirmiran P., Esmaillzadeh A., Azizi T., Azizi F. Beneficial effects of a Dietary Approaches to Stop Hypertension eating plan on features of the metabolic syndrome. Diabetes Care. 2005;28:2823–2831. doi: 10.2337/diacare.28.12.2823.
    1. Azadbakht L., Surkan P.J., Esmaillzadeh A., Willett W.C. The Dietary Approaches to Stop Hypertension eating plan affects C-reactive protein, coagulation abnormalities, and hepatic function tests among type 2 diabetic patients. J. Nutr. 2011;141:1083–1088. doi: 10.3945/jn.110.136739.
    1. Al-Solaiman Y., Jesri A., Mountford W.K., Lackland D.T., Zhao Y., Egan B.M. DASH lowers blood pressure in obese hypertensives beyond potassium, magnesium and fibre. J. Hum. Hypertens. 2010;24:237–246. doi: 10.1038/jhh.2009.58.
    1. Blumenthal J.A., Babyak M.A., Hinderliter A., Watkins L.L., Craighead L., Lin P.H., Caccia C., Johnson J., Waugh R., Sherwood A. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: The ENCORE study. Arch. Intern. Med. 2010;170:126–135. doi: 10.1001/archinternmed.2009.470.
    1. Malloy-McFall J., Barkley J.E., Gordon K.L., Burzminski N., Glickman E.L. Effect of the DASH Diet on Pre- and Stage 1 Hypertensive Individuals in a Free-Living Environment. Nutr. Metab. Insights. 2010;3:15–23. doi: 10.4137/NMI.S3871.
    1. Edwards K.M., Wilson K.L., Sadja J., Ziegler M.G., Mills P.J. Effects on blood pressure and autonomic nervous system function of a 12-week exercise or exercise plus DASH-diet intervention in individuals with elevated blood pressure. Acta Physiol. (Oxf.) 2011;203:343–350. doi: 10.1111/j.1748-1716.2011.02329.x.
    1. Lin P.H., Allen J.D., Li Y.J., Yu M., Lien L.F., Svetkey L.P. Blood Pressure-Lowering Mechanisms of the DASH Dietary Pattern. J. Nutr. Metab. 2012;2012:472396. doi: 10.1155/2012/472396.
    1. Asemi Z., Tabassi Z., Samimi M., Fahiminejad T., Esmaillzadeh A. Favourable effects of the Dietary Approaches to Stop Hypertension diet on glucose tolerance and lipid profiles in gestational diabetes: A randomised clinical trial. Br. J. Nutr. 2013;109:2024–2030. doi: 10.1017/S0007114512004242.
    1. Shirani F., Salehi-Abargouei A., Azadbakht L. Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: A systematic review and meta-analysis on controlled clinical trials. Nutrition. 2013;29:939–947. doi: 10.1016/j.nut.2012.12.021.
    1. Soltani S., Shirani F., Chitsazi M.J., Salehi-Abargouei A. The effect of dietary approaches to stop hypertension (DASH) diet on weight and body composition in adults: A systematic review and meta-analysis of randomized controlled clinical trials. Obes. Rev. 2016;17:442–454. doi: 10.1111/obr.12391.
    1. Soltani S., Chitsazi M.J., Salehi-Abargouei A. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: A systematic review and meta-analysis of randomized trials. Clin. Nutr. 2018;37:542–550. doi: 10.1016/j.clnu.2017.02.018.
    1. Harsha D.W., Sacks F.M., Obarzanek E., Svetkey L.P., Lin P.H., Bray G.A., Aickin M., Conlin P.R., Miller E.R., 3rd, Appel L.J. Effect of dietary sodium intake on blood lipids: Results from the DASH-sodium trial. Hypertension. 2004;43:393–398. doi: 10.1161/01.HYP.0000113046.83819.a2.
    1. Chen S.T., Maruthur N.M., Appel L.J. The effect of dietary patterns on estimated coronary heart disease risk: Results from the Dietary Approaches to Stop Hypertension (DASH) trial. Circ. Cardiovasc. Qual. Outcomes. 2010;3:484–489. doi: 10.1161/CIRCOUTCOMES.109.930685.
    1. Ard J.D., Grambow S.C., Liu D., Slentz C.A., Kraus W.E., Svetkey L.P., study P. The effect of the PREMIER interventions on insulin sensitivity. Diabetes Care. 2004;27:340–347. doi: 10.2337/diacare.27.2.340.
    1. Lien L.F., Brown A.J., Ard J.D., Loria C., Erlinger T.P., Feldstein A.C., Lin P.H., Champagne C.M., King A.C., McGuire H.L., et al. Effects of PREMIER lifestyle modifications on participants with and without the metabolic syndrome. Hypertension. 2007;50:609–616. doi: 10.1161/HYPERTENSIONAHA.107.089458.
    1. Al-Solaiman Y., Jesri A., Zhao Y., Morrow J.D., Egan B.M. Low-Sodium DASH reduces oxidative stress and improves vascular function in salt-sensitive humans. J. Hum. Hypertens. 2009;23:826–835. doi: 10.1038/jhh.2009.32.
    1. Hodson L., Harnden K.E., Roberts R., Dennis A.L., Frayn K.N. Does the DASH diet lower blood pressure by altering peripheral vascular function? J. Hum. Hypertens. 2010;24:312–319. doi: 10.1038/jhh.2009.65.
    1. Ard J.D., Coffman C.J., Lin P.H., Svetkey L.P. One-year follow-up study of blood pressure and dietary patterns in dietary approaches to stop hypertension (DASH)-sodium participants. Am. J. Hypertens. 2004;17:1156–1162. doi: 10.1016/j.amjhyper.2004.07.005.
    1. Elmer P.J., Obarzanek E., Vollmer W.M., Simons-Morton D., Stevens V.J., Young D.R., Lin P.H., Champagne C., Harsha D.W., Svetkey L.P., et al. Effects of comprehensive lifestyle modification on diet, weight, physical fitness, and blood pressure control: 18-month results of a randomized trial. Ann. Intern. Med. 2006;144:485–495. doi: 10.7326/0003-4819-144-7-200604040-00007.
    1. Lima S.T., da Silva Nalin de Souza B., Franca A.K., Salgado Filho N., Sichieri R. Dietary approach to hypertension based on low glycaemic index and principles of DASH (Dietary Approaches to Stop Hypertension): A randomised trial in a primary care service. Br. J. Nutr. 2013;110:1472–1479. doi: 10.1017/S0007114513000718.
    1. Rifai L., Pisano C., Hayden J., Sulo S., Silver M.A. Impact of the DASH diet on endothelial function, exercise capacity, and quality of life in patients with heart failure. Bayl. Univ. Med. Cent. Proc. 2015;28:151–156. doi: 10.1080/08998280.2015.11929216.
    1. Asemi Z., Samimi M., Tabassi Z., Esmaillzadeh A. The effect of DASH diet on pregnancy outcomes in gestational diabetes: A randomized controlled clinical trial. Eur. J. Clin. Nutr. 2014;68:490–495. doi: 10.1038/ejcn.2013.296.
    1. Razavi Zade M., Telkabadi M.H., Bahmani F., Salehi B., Farshbaf S., Asemi Z. The effects of DASH diet on weight loss and metabolic status in adults with non-alcoholic fatty liver disease: A randomized clinical trial. Liver Int. 2016;36:563–571. doi: 10.1111/liv.12990.
    1. Jenkins D.J., Jones P.J., Frohlich J., Lamarche B., Ireland C., Nishi S.K., Srichaikul K., Galange P., Pellini C., Faulkner D., et al. The effect of a dietary portfolio compared to a DASH-type diet on blood pressure. Nutr. Metab. Cardiovasc. Dis. 2015;25:1132–1139. doi: 10.1016/j.numecd.2015.08.006.
    1. King D.E., Egan B.M., Woolson R.F., Mainous A.G., 3rd, Al-Solaiman Y., Jesri A. Effect of a high-fiber diet vs a fiber-supplemented diet on C-reactive protein level. Arch. Intern. Med. 2007;167:502–506. doi: 10.1001/archinte.167.5.502.
    1. Roussell M.A., Hill A.M., Gaugler T.L., West S.G., Heuvel J.P., Alaupovic P., Gillies P.J., Kris-Etherton P.M. Beef in an Optimal Lean Diet study: Effects on lipids, lipoproteins, and apolipoproteins. Am. J. Clin. Nutr. 2012;95:9–16. doi: 10.3945/ajcn.111.016261.
    1. Wang X., Ouyang Y., Liu J., Zhu M., Zhao G., Bao W., Hu F.B. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2014;349:g4490. doi: 10.1136/bmj.g4490.
    1. Tang G., Wang D., Long J., Yang F., Si L. Meta-analysis of the association between whole grain intake and coronary heart disease risk. Am. J. Cardiol. 2015;115:625–629. doi: 10.1016/j.amjcard.2014.12.015.
    1. Reynolds A.N. Associations of fats and carbohydrates with cardiovascular disease and mortality-PURE and simple? Lancet. 2018;391:1676. doi: 10.1016/S0140-6736(18)30845-6.
    1. Viguiliouk E., Blanco Mejia S., Kendall C.W., Sievenpiper J.L. Can pulses play a role in improving cardiometabolic health? Evidence from systematic reviews and meta-analyses. Ann. N. Y. Acad. Sci. 2017;1392:43–57. doi: 10.1111/nyas.13312.
    1. Aune D., Keum N., Giovannucci E., Fadnes L.T., Boffetta P., Greenwood D.C., Tonstad S., Vatten L.J., Riboli E., Norat T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14:207. doi: 10.1186/s12916-016-0730-3.
    1. Abete I., Romaguera D., Vieira A.R., Lopez de Munain A., Norat T. Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: A meta-analysis of cohort studies. Br. J. Nutr. 2014;112:762–775. doi: 10.1017/S000711451400124X.
    1. Wang X., Lin X., Ouyang Y.Y., Liu J., Zhao G., Pan A., Hu F.B. Red and processed meat consumption and mortality: Dose-response meta-analysis of prospective cohort studies. Public Health Nutr. 2016;19:893–905. doi: 10.1017/S1368980015002062.
    1. Threapleton D.E., Greenwood D.C., Evans C.E., Cleghorn C.L., Nykjaer C., Woodhead C., Cade J.E., Gale C.P., Burley V.J. Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ. 2013;347:f6879. doi: 10.1136/bmj.f6879.
    1. Arts I.C., Hollman P.C. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005;81:317S–325S. doi: 10.1093/ajcn/81.1.317S.
    1. Perez-Cano F.J., Castell M. Flavonoids, Inflammation and Immune System. Nutrients. 2016;8:659. doi: 10.3390/nu8100659.
    1. Lim S.S., Vos T., Flaxman A.D., Danaei G., Shibuya K., Adair-Rohani H., Amann M., Anderson H.R., Andrews K.G., Aryee M., et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–2260. doi: 10.1016/S0140-6736(12)61766-8.
    1. Lewington S., Clarke R., Qizilbash N., Peto R., Collins R., Prospective Studies, Collaboration Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–1913.
    1. Cholesterol Treatment Trialists Collaboration. Baigent C., Blackwell L., Emberson J., Holland L.E., Reith C., Bhala N., Peto R., Barnes E.H., Keech A., et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–1681.
    1. Cholesterol Treatment Trialists Collaboration. Fulcher J., O’Connell R., Voysey M., Emberson J., Blackwell L., Mihaylova B., Simes J., Collins R., Kirby A., et al. Efficacy and safety of LDL-lowering therapy among men and women: Meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015;385:1397–1405.
    1. Cannon C.P., Blazing M.A., Giugliano R.P., McCagg A., White J.A., Theroux P., Darius H., Lewis B.S., Ophuis T.O., Jukema J.W., et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015;372:2387–2397. doi: 10.1056/NEJMoa1410489.
    1. Johnston B.C., Kanters S., Bandayrel K., Wu P., Naji F., Siemieniuk R.A., Ball G.D., Busse J.W., Thorlund K., Guyatt G., et al. Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA. 2014;312:923–933. doi: 10.1001/jama.2014.10397.
    1. Haslam D.W., James W.P. Obesity. Lancet. 2005;366:1197–1209. doi: 10.1016/S0140-6736(05)67483-1.
    1. Sotos-Prieto M., Bhupathiraju S.N., Mattei J., Fung T.T., Li Y., Pan A., Willett W.C., Rimm E.B., Hu F.B. Association of Changes in Diet Quality with Total and Cause-Specific Mortality. N. Engl. J. Med. 2017;377:143–153. doi: 10.1056/NEJMoa1613502.
    1. Li M., Fan Y., Zhang X., Hou W., Tang Z. Fruit and vegetable intake and risk of type 2 diabetes mellitus: Meta-analysis of prospective cohort studies. BMJ Open. 2014;4:e005497. doi: 10.1136/bmjopen-2014-005497.
    1. Gijsbers L., Ding E.L., Malik V.S., de Goede J., Geleijnse J.M., Soedamah-Muthu S.S. Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 2016;103:1111–1124. doi: 10.3945/ajcn.115.123216.
    1. Wei G.S., Coady S.A., Goff D.C., Jr., Brancati F.L., Levy D., Selvin E., Vasan R.S., Fox C.S. Blood pressure and the risk of developing diabetes in african americans and whites: ARIC, CARDIA, and the framingham heart study. Diabetes Care. 2011;34:873–879. doi: 10.2337/dc10-1786.
    1. Emdin C.A., Anderson S.G., Woodward M., Rahimi K. Usual Blood Pressure and Risk of New-Onset Diabetes: Evidence From 4.1 Million Adults and a Meta-Analysis of Prospective Studies. J. Am. Coll. Cardiol. 2015;66:1552–1562. doi: 10.1016/j.jacc.2015.07.059.
    1. Marott S.C., Nordestgaard B.G., Tybjaerg-Hansen A., Benn M. Components of the Metabolic Syndrome and Risk of Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2016;101:3212–3221. doi: 10.1210/jc.2015-3777.
    1. Post R.E., Mainous A.G., 3rd, King D.E., Simpson K.N. Dietary fiber for the treatment of type 2 diabetes mellitus: A meta-analysis. J. Am. Board Fam. Med. 2012;25:16–23. doi: 10.3122/jabfm.2012.01.110148.
    1. Evans C.E., Greenwood D.C., Threapleton D.E., Cleghorn C.L., Nykjaer C., Woodhead C.E., Gale C.P., Burley V.J. Effects of dietary fibre type on blood pressure: A systematic review and meta-analysis of randomized controlled trials of healthy individuals. J. Hypertens. 2015;33:897–911. doi: 10.1097/HJH.0000000000000515.
    1. Hou Q., Li Y., Li L., Cheng G., Sun X., Li S., Tian H. The Metabolic Effects of Oats Intake in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients. 2015;7:10369–10387. doi: 10.3390/nu7125536.
    1. Sievenpiper J.L., Kendall C.W., Esfahani A., Wong J.M., Carleton A.J., Jiang H.Y., Bazinet R.P., Vidgen E., Jenkins D.J. Effect of non-oil-seed pulses on glycaemic control: A systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia. 2009;52:1479–1495. doi: 10.1007/s00125-009-1395-7.
    1. Choo V.L., Viguiliouk E., Blanco Mejia S., Cozma A.I., Khan T.A., Ha V., Wolever T.M.S., Leiter L.A., Vuksan V., Kendall C.W.C., et al. Food sources of fructose-containing sugars and glycaemic control: Systematic review and meta-analysis of controlled intervention studies. BMJ. 2018;363:k4644. doi: 10.1136/bmj.k4644.
    1. InterAct Consortium Dietary fibre and incidence of type 2 diabetes in eight European countries: The EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia. 2015;58:1394–1408. doi: 10.1007/s00125-015-3585-9.
    1. Aune D., Norat T., Romundstad P., Vatten L.J. Whole grain and refined grain consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of cohort studies. Eur. J. Epidemiol. 2013;28:845–858. doi: 10.1007/s10654-013-9852-5.
    1. Kotchen T.A., Kotchen J.M. Dietary sodium and blood pressure: Interactions with other nutrients. Am. J. Clin. Nutr. 1997;65:708S–711S. doi: 10.1093/ajcn/65.2.708S.
    1. Whelton P.K., He J., Cutler J.A., Brancati F.L., Appel L.J., Follmann D., Klag M.J. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA. 1997;277:1624–1632. doi: 10.1001/jama.1997.03540440058033.
    1. Petrov V., Lijnen P. Modification of intracellular calcium and plasma renin by dietary calcium in men. Am. J. Hypertens. 1999;12:1217–1224. doi: 10.1016/S0895-7061(99)00126-0.
    1. Kanbay M., Bayram Y., Solak Y., Sanders P.W. Dietary potassium: A key mediator of the cardiovascular response to dietary sodium chloride. J. Am. Soc. Hypertens. 2013;7:395–400. doi: 10.1016/j.jash.2013.04.009.
    1. Haddy F.J., Vanhoutte P.M., Feletou M. Role of potassium in regulating blood flow and blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;290:R546–R552. doi: 10.1152/ajpregu.00491.2005.
    1. Zacchia M., Abategiovanni M.L., Stratigis S., Capasso G. Potassium: From Physiology to Clinical Implications. Kidney Dis. (Basel) 2016;2:72–79. doi: 10.1159/000446268.
    1. Siervo M., Lara J., Ogbonmwan I., Mathers J.C. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: A systematic review and meta-analysis. J. Nutr. 2013;143:818–826. doi: 10.3945/jn.112.170233.
    1. Jayalath V.H., de Souza R.J., Sievenpiper J.L., Ha V., Chiavaroli L., Mirrahimi A., Di Buono M., Bernstein A.M., Leiter L.A., Kris-Etherton P.M., et al. Effect of dietary pulses on blood pressure: A systematic review and meta-analysis of controlled feeding trials. Am. J. Hypertens. 2014;27:56–64.
    1. Huang H., Chen G., Liao D., Zhu Y., Xue X. Effects of Berries Consumption on Cardiovascular Risk Factors: A Meta-analysis with Trial Sequential Analysis of Randomized Controlled Trials. Sci. Rep. 2016;6:23625. doi: 10.1038/srep23625.
    1. Khan K., Jovanovski E., Ho H.V.T., Marques A.C.R., Zurbau A., Mejia S.B., Sievenpiper J.L., Vuksan V. The effect of viscous soluble fiber on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2018;28:3–13. doi: 10.1016/j.numecd.2017.09.007.
    1. Ho H.V., Sievenpiper J.L., Zurbau A., Blanco Mejia S., Jovanovski E., Au-Yeung F., Jenkins A.L., Vuksan V. The effect of oat beta-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: A systematic review and meta-analysis of randomised-controlled trials. Br. J. Nutr. 2016;116:1369–1382. doi: 10.1017/S000711451600341X.
    1. Hollaender P.L., Ross A.B., Kristensen M. Whole-grain and blood lipid changes in apparently healthy adults: A systematic review and meta-analysis of randomized controlled studies. Am. J. Clin. Nutr. 2015;102:556–572. doi: 10.3945/ajcn.115.109165.
    1. Ha V., Sievenpiper J.L., de Souza R.J., Jayalath V.H., Mirrahimi A., Agarwal A., Chiavaroli L., Mejia S.B., Sacks F.M., Di Buono M., et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: A systematic review and meta-analysis of randomized controlled trials. CMAJ. 2014;186:E252–E262. doi: 10.1503/cmaj.131727.
    1. Hooper L., Martin N., Abdelhamid A., Davey Smith G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2015 doi: 10.1002/14651858.CD011737.
    1. Chiavaroli L., Nishi S.K., Khan T.A., Braunstein C.R., Glenn A.J., Mejia S.B., Rahelic D., Kahleova H., Salas-Salvado J., Jenkins D.J.A., et al. Portfolio Dietary Pattern and Cardiovascular Disease: A Systematic Review and Meta-analysis of Controlled Trials. Prog. Cardiovasc. Dis. 2018;61:43–53. doi: 10.1016/j.pcad.2018.05.004.
    1. Mytton O.T., Nnoaham K., Eyles H., Scarborough P., Ni Mhurchu C. Systematic review and meta-analysis of the effect of increased vegetable and fruit consumption on body weight and energy intake. BMC Public Health. 2014;14:886. doi: 10.1186/1471-2458-14-886.
    1. Howarth N.C., Saltzman E., Roberts S.B. Dietary fiber and weight regulation. Nutr. Rev. 2001;59:129–139. doi: 10.1111/j.1753-4887.2001.tb07001.x.
    1. Kim S.J., de Souza R.J., Choo V.L., Ha V., Cozma A.I., Chiavaroli L., Mirrahimi A., Blanco Mejia S., Di Buono M., Bernstein A.M., et al. Effects of dietary pulse consumption on body weight: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2016;103:1213–1223. doi: 10.3945/ajcn.115.124677.
    1. Li S.S., Kendall C.W., de Souza R.J., Jayalath V.H., Cozma A.I., Ha V., Mirrahimi A., Chiavaroli L., Augustin L.S., Blanco Mejia S., et al. Dietary pulses, satiety and food intake: A systematic review and meta-analysis of acute feeding trials. Obesity (Silver Spring) 2014;22:1773–1780. doi: 10.1002/oby.20782.
    1. Oh S.W., Han K.H., Han S.Y., Koo H.S., Kim S., Chin H.J. Association of Sodium Excretion With Metabolic Syndrome, Insulin Resistance, and Body Fat. Medicine (Baltimore) 2015;94:e1650. doi: 10.1097/MD.0000000000001650.
    1. Jiao J., Xu J.Y., Zhang W., Han S., Qin L.Q. Effect of dietary fiber on circulating C-reactive protein in overweight and obese adults: A meta-analysis of randomized controlled trials. Int. J. Food Sci. Nutr. 2015;66:114–119. doi: 10.3109/09637486.2014.959898.
    1. Estruch R., Martinez-Gonzalez M.A., Corella D., Basora-Gallisa J., Ruiz-Gutierrez V., Covas M.I., Fiol M., Gomez-Gracia E., Lopez-Sabater M.C., Escoda R., et al. Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J. Epidemiol. Community Health. 2009;63:582–588. doi: 10.1136/jech.2008.082214.
    1. Kanauchi O., Mitsuyama K., Araki Y., Andoh A. Modification of intestinal flora in the treatment of inflammatory bowel disease. Curr. Pharm Des. 2003;9:333–346. doi: 10.2174/1381612033391883.
    1. Scheppach W., Wiggins H.S., Halliday D., Self R., Howard J., Branch W.J., Schrezenmeir J., Cummings J.H. Effect of gut-derived acetate on glucose turnover in man. Clin. Sci. (Lond.) 1988;75:363–370. doi: 10.1042/cs0750363.
    1. Lee Y., Kang D., Lee S.A. Effect of dietary patterns on serum C-reactive protein level. Nutr. Metab. Cardiovasc. Dis. 2014;24:1004–1011. doi: 10.1016/j.numecd.2014.05.001.
    1. Watzl B., Kulling S.E., Moseneder J., Barth S.W., Bub A. A 4-wk intervention with high intake of carotenoid-rich vegetables and fruit reduces plasma C-reactive protein in healthy, nonsmoking men. Am. J. Clin. Nutr. 2005;82:1052–1058. doi: 10.1093/ajcn/82.5.1052.
    1. Dibaba D.T., Xun P., He K. Dietary magnesium intake is inversely associated with serum C-reactive protein levels: Meta-analysis and systematic review. Eur. J. Clin. Nutr. 2014;68:971. doi: 10.1038/ejcn.2014.111.
    1. Almoznino-Sarafian D., Berman S., Mor A., Shteinshnaider M., Gorelik O., Tzur I., Alon I., Modai D., Cohen N. Magnesium and C-reactive protein in heart failure: An anti-inflammatory effect of magnesium administration? Eur. J. Nutr. 2007;46:230–237. doi: 10.1007/s00394-007-0655-x.
    1. Chen X., Touyz R.M., Park J.B., Schiffrin E.L. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension. 2001;38:606–611. doi: 10.1161/hy09t1.094005.
    1. Yang Y., Gao M., Nie W., Yuan J., Zhang B., Wang Z., Wu Z. Dietary magnesium sulfate supplementation protects heat stress-induced oxidative damage by restoring the activities of anti-oxidative enzymes in broilers. Biol. Trace Elem. Res. 2012;146:53–58. doi: 10.1007/s12011-011-9210-y.
    1. Blanco Mejia S., Kendall C.W., Viguiliouk E., Augustin L.S., Ha V., Cozma A.I., Mirrahimi A., Maroleanu A., Chiavaroli L., Leiter L.A., et al. Effect of tree nuts on metabolic syndrome criteria: A systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2014;4:e004660. doi: 10.1136/bmjopen-2013-004660.
    1. Ho H.V., Sievenpiper J.L., Zurbau A., Blanco Mejia S., Jovanovski E., Au-Yeung F., Jenkins A.L., Vuksan V. A systematic review and meta-analysis of randomized controlled trials of the effect of barley beta-glucan on LDL-C, non-HDL-C and apoB for cardiovascular disease risk reduction(i-iv) Eur. J. Clin. Nutr. 2016;70:1340. doi: 10.1038/ejcn.2016.129.
    1. Health Promotion and Disease Prevention: Fruit and Vegetables European Commission. [(accessed on 28 November 2018)]; Available online: .
    1. Health Promotion and Disease Prevention: Dietary Fats European Commission. [(accessed on 28 November 2018)]; Available online: .
    1. Hjartaker A., Lagiou A., Slimani N., Lund E., Chirlaque M.D., Vasilopoulou E., Zavitsanos X., Berrino F., Sacerdote C., Ocke M.C., et al. Consumption of dairy products in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort: Data from 35,955 24-hour dietary recalls in 10 European countries. Public Health Nutr. 2002;5:1259–1271. doi: 10.1079/PHN2002403.
    1. Lee-Kwan S.H., Moore L.V., Blanck H.M., Harris D.M., Galuska D. Disparities in State-Specific Adult Fruit and Vegetable Consumption—United States, 2015. MMWR Morb. Mortal Wkly. Rep. 2017;66:1241–1247. doi: 10.15585/mmwr.mm6645a1.
    1. U. S. Department of Agricultural Service Food Patterns Equivalents Intakes from Food: Mean Amounts Consumed per Individual, by Gender and Age, What We Eat In America, NHANES 2009–2010. [(accessed on 27 November 2018)];2013 Available online: .
    1. Nielsen S.J., Kit B.K., Ogden C.L. Nut Consumption Among U.S. Adults, 2009–2010. NCHS Data Brief. 2014;176:1–8.

Source: PubMed

3
Subscribe