The metabolism and significance of homocysteine in nutrition and health

Avinash Kumar, Henry A Palfrey, Rashmi Pathak, Philip J Kadowitz, Thomas W Gettys, Subramanyam N Murthy, Avinash Kumar, Henry A Palfrey, Rashmi Pathak, Philip J Kadowitz, Thomas W Gettys, Subramanyam N Murthy

Abstract

An association between arteriosclerosis and homocysteine (Hcy) was first demonstrated in 1969. Hcy is a sulfur containing amino acid derived from the essential amino acid methionine (Met). Hyperhomocysteinemia (HHcy) was subsequently shown in several age-related pathologies such as osteoporosis, Alzheimer's disease, Parkinson's disease, stroke, and cardiovascular disease (CVD). Also, Hcy is associated with (but not limited to) cancer, aortic aneurysm, hypothyroidism and end renal stage disease to mention some. The circulating levels of Hcy can be increased by defects in enzymes of the metabolism of Met, deficiencies of vitamins B6, B12 and folate or by feeding Met enriched diets. Additionally, some of the pharmaceuticals currently in clinical practice such as lipid lowering, and anti-Parkinsonian drugs are known to elevate Hcy levels. Studies on supplementation with folate, vitamins B6 and B12 have shown reduction in Hcy levels but concomitant reduction in certain associated pathologies have not been definitive. The enormous importance of Hcy in health and disease is illustrated by its prevalence in the medical literature (e.g. > 22,000 publications). Although there are compelling data in favor of Hcy as a modifiable risk factor, the debate regarding the significance of Hcy mediated health effects is still ongoing. Despite associations between increased levels of Hcy with several pathologies being well documented, whether it is a causative factor, or an effect remains inconclusive. The present review though not exhaustive, is focused on several important aspects of Hcy metabolism and their relevance to health.

Keywords: Cardiovascular disease; Dietary; Homocysteine; Hyperhomocysteinemia; Inflammation; Methionine.

Conflict of interest statement

Not Applicable.Not Applicable.None of the authors have any competing interest.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Metabolism of Homocysteine. The metabolism of methionine is depicted only till the formation of cysteine. Homocysteine can be either remethylated to methionine (Remethylation pathway) or can be routed for the formation of cysteine (Transsulfuration pathway). Cys- Cysteine, Gly- Glycine, Hcy- Homocysteine, HTL- Homocysteine thiolactone, SAH- S-adenosyl-L-homocysteine, SAM- S-adenosyl-L-methionine, THF- Tetrahydrofolate, CH2THF- Methylene tetrahydrofolate, CH3THF- Methyl tetrahydrofolate, Met- Methionine, Ser- Serine, α-KB- α-ketobutyrate, MTHFR- Methylene tetrahydrofolate reductase, CβS- Cystathionine β synthase, CSE- Cystathionine γ lyase, SAHH- S-adenosyl homocysteine hydrolase
Fig. 2
Fig. 2
Formation of Hydrogen Sulfide in vivo. The in vivo formation of Hydrogen sulfide is presented. This can be formed from the disulfide of cysteine-Cystine (Cys-Cys) or the mixed disulfide of cysteine and homocysteine (Cys-Hcy). α-KB- α-ketobutyrate, CβS- Cystathionine β synthase, CSE- Cystathionine γ lyase, H2S- Hydrogen sulfide

References

    1. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969;56:111.
    1. McCully KS, Wilson RB. Homocysteine theory of arteriosclerosis. Atherosclerosis. 1975;22:215–227.
    1. McCully KS. Chemical pathology of homocysteineI. Atherogenesis. Annals of Clinical & Laboratory Science. 1993;23:477–493.
    1. Tsai MY, Hanson NQ, Bignell MK, Schwichtenberg KA. Simultaneous detection and screening of T 833 C and G 919 a mutations of the cystathionine β-synthase gene by single-strand conformational polymorphism. Clin Biochem. 1996;29:473–477.
    1. Rothenbacher D, Fischer H, Hoffmeister A, Hoffmann M, März W, Bode G, Rosenthal J, Koenig W, Brenner H. Homocysteine and methylenetetrahydrofolate reductase genotype: association with risk of coronary heart disease and relation to inflammatory, hemostatic, and lipid parameters. Atherosclerosis. 2002;162:193–200.
    1. Stabler SP. Vitamins, homocysteine, and cognition. Am J Clin Nutr. 2003;78:359–360.
    1. King RA, Rotter JI, Motulsky AG. The genetic basis of common diseases. Oxford: Oxford university press; 2002.
    1. Desouza C, Keebler M, McNamara DB, Fonseca V. Drugs affecting homocysteine metabolism. Drugs. 2002;62:605–616.
    1. Sacco RL. Newer risk factors for stroke. Neurology. 2001;57:S31–S34.
    1. Cotter AM, Molloy AM, Scott JM, Daly SF. Elevated plasma homocysteine in early pregnancy: a risk factor for the development of nonsevere preeclampsia. Am J Obstet Gynecol. 2003;189:391–394.
    1. Ramlau-Hansen C, Møller U, Møller J, Thulstrup A. Lactation--a risk factor for elevated plasma homocysteine? Ugeskr Laeger. 2003;165:2819–2823.
    1. Hultberg B. Modulation of extracellular homocysteine concentration in human cell lines. Clin Chim Acta. 2003;330:151–159.
    1. Sakamoto A, Nishimura Y, Ono H, Sakura N. Betaine and homocysteine concentrations in foods. Pediatr Int. 2002;44:409–413.
    1. Nygård O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med. 1997;337:230–237.
    1. Ueland PM, Refsum H. Plasma homocysteine, a risk factor for vascular disease: plasma levels in health, disease, and drug therapy. J Lab Clin Med. 1989;114:473–501.
    1. Selhub J, Jacques PF, Bostom AG, D'Agostino RB, Wilson PW, Belanger AJ, O'Leary DH, Wolf PA, Schaefer EJ, Rosenberg IH. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med. 1995;332:286–291.
    1. Streifler J, Rosenberg N, Chetrit A, Eskaraev R, Sela B, Dardik R, Zivelin A, Ravid B, Davidson J, Seligsohn U. Cerebrovascular events in patients with significant stenosis of the carotid artery are associated with hyperhomocysteinemia and platelet antigen-1 (Leu33Pro) polymorphism. Stroke. 2001;32:2753–2758.
    1. Munshi MN, Stone A, Fink L, Fonseca V. Hyperhomocysteinemia following a methionine load in patients with non-insulin-dependent diabetes mellitus and macrovascular disease. Metabolism. 1996;45:133–135.
    1. Lievers K, Kluijtmans L, Heil SG, Boers G, Verhoef P, van Oppenraay-Emmerzaal D, den Heijer M, Trijbels FJ, Blom HJ. A 31 bp VNTR in the cystathionine beta-synthase (CBS) gene is associated with reduced CBS activity and elevated post-load homocysteine levels. Eur J Hum Genet. 2001;9:583–589.
    1. Kojoglanian SA, Jorgensen MB, Wolde-Tsadik G, Burchette RJ, Aharonian VJ. Restenosis in intervened coronaries with hyperhomocysteinemia (RICH) Am Heart J. 2003;146:1077–1081.
    1. Burke AP, Fonseca V, Kolodgie F, Zieske A, Fink L, Virmani R. Increased serum homocysteine and sudden death resulting from coronary atherosclerosis with fibrous plaques. Arterioscler Thromb Vasc Biol. 2002;22:1936–1941.
    1. Wang G, Woo CW, Sung FL, Siow YL, Karmin O. Increased monocyte adhesion to aortic endothelium in rats with hyperhomocysteinemia role of chemokine and adhesion molecules. Arterioscler Thromb Vasc Biol. 2002;22:1777–1783.
    1. Morita H, Kurihara H, Yoshida S, Saito Y, Shindo T, Oh-hashi Y, Kurihara Y, Yazaki Y, Nagai R. Diet-induced hyperhomocysteinemia exacerbates neointima formation in rat carotid arteries after balloon injury. Circulation. 2001;103:133–139.
    1. Xiao Y, Zhang Y, Wang M, Li X, Xia M, Ling W. Dietary protein and plasma total homocysteine, cysteine concentrations in coronary angiographic subjects. Nutr J. 2013;12:144.
    1. Chambers JC, Obeid OA, Kooner JS. Physiological increments in plasma homocysteine induce vascular endothelial dysfunction in normal human subjects. Arterioscler Thromb Vasc Biol. 1999;19:2922–2927.
    1. Verhoef P, van Vliet T, Olthof MR, Katan MB. A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations: a dietary controlled, crossover trial in healthy volunteers. Am J Clin Nutr. 2005;82:553–558.
    1. McCully KS. Homocysteine theory of arteriosclerosis: development and current status. Atherosclerosis reviews. 1983;11:157–246.
    1. Loscalzo J. The oxidant stress of hyperhomocyst (e) inemia. J Clin Investig. 1996;98:5.
    1. Stamler JS, Osborne JA, Jaraki O, Rabbani LE, Mullins M, Singel D, Loscalzo J. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin Investig. 1993;91:308.
    1. Smulders YM, Blom HJ. The homocysteine controversy. J Inherit Metab Dis. 2011;34:93–99.
    1. Wang X, Qin X, Demirtas H, Li J, Mao G, Huo Y, Sun N, Liu L, Xu X. Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. Lancet. 2007;369:1876–1882.
    1. Bing FC. Vincent du Vigneaud (1901–1978) a biographical sketch. J Nutr. 1982;112:1463–1473.
    1. McCully K. The homocysteine revolution. Columbus: McGraw Hill Professional; 1999.
    1. Case 19471 — Marked Cerebral Symptoms Following a Limp of Three Months' Duration. N Engl J Med. 209:1063-1066, November 23, 1933.
    1. Clarke R, Daly L, Robinson K, Naughten E, Cahalane S, Fowler B, Graham I. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med. 1991;324:1149–1155.
    1. Jakubowski H. Molecular basis of homocysteine toxicity in humans. Cellular and Molecular Life Sciences CMLS. 2004;61:470–487.
    1. Chwatko G, Boers GH, Strauss KA, Shih DM, Jakubowski H. Mutations in methylenetetrahydrofolate reductase or cystathionine β-syntase gene, or a high-methionine diet, increase homocysteine thiolactone levels in humans and mice. FASEB J. 2007;21:1707–1713.
    1. Nicholson CK, Calvert JW. Hydrogen sulfide and ischemia–reperfusion injury. Pharmacol Res. 2010;62:289–297.
    1. Moody BF, Calvert JW. Emergent role of gasotransmitters in ischemia-reperfusion injury. Medical gas research. 2011;1:1.
    1. Xu Z, Prathapasinghe G, Wu N, Hwang S-Y, Siow YL, Karmin O. Ischemia-reperfusion reduces cystathionine-β-synthase-mediated hydrogen sulfide generation in the kidney. American Journal of Physiology-Renal Physiology. 2009;297:F27–F35.
    1. Zhou C, Tang X. Hydrogen sulfide and nervous system regulation. Chin Med J. 2011;124:3576–3582.
    1. Lee HJ, Mariappan MM, Feliers D, Cavaglieri RC, Sataranatarajan K, Abboud HE, Choudhury GG, Kasinath BS. Hydrogen sulfide inhibits high glucose-induced matrix protein synthesis by activating AMP-activated protein kinase in renal epithelial cells. J Biol Chem. 2012;287:4451–4461.
    1. Taniguchi S, Kimura T, Umeki T, Kimura Y, Kimura H, Ishii I, Itoh N, Naito Y, Yamamoto H, Niki I. Protein phosphorylation involved in the gene expression of the hydrogen sulphide producing enzyme cystathionine γ-lyase in the pancreatic β-cell. Mol Cell Endocrinol. 2012;350:31–38.
    1. Zhou X, Cao Y, Ao G, Hu L, Liu H, Wu J, Wang X, Jin M, Zheng S, Zhen X. CaMKKβ-dependent activation of AMP-activated protein kinase is critical to suppressive effects of hydrogen sulfide on neuroinflammation. Antioxid Redox Signal. 2014;21:1741–1758.
    1. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science. 2008;322:587–590.
    1. Yoo D, Jupiter RC, Pankey EA, Reddy VG, Edward JA, Swan KW, Peak TC, Mostany R, Kadowitz PJ. Analysis of cardiovascular responses to the H2S donors Na2S and NaHS in the rat. Am J Phys Heart Circ Phys. 2015;309:H605–H614.
    1. Jakubowski H. Metabolism of homocysteine thiolactone in human cell cultures possible mechanism for pathological consequences of elevated homocysteine levels. J Biol Chem. 1997;272:1935–1942.
    1. Undas A, Perła J, Łacinski M, Trzeciak W, Kaźmierski R, Jakubowski H. Autoantibodies against N-homocysteinylated proteins in humans implications for atherosclerosis. Stroke. 2004;35:1299–1304.
    1. Naruszewicz M, Mirkiewicz E, Olszewski A, McCully K. Thiolation of low-density lipoprotein by homocysteine thiolactone causes increased aggregation and altered interaction with cultured macrophages. Nutrition Metabolism and Cardiovascular Diseases. 1994;4:70.
    1. Wang H, Patterson C. Atherosclerosis: risks, mechanisms, and therapies. Hoboken: John Wiley & Sons; 2015.
    1. Marsillach J, Suzuki SM, Richter RJ, McDonald MG, Rademacher PM, MacCoss MJ, Hsieh EJ, Rettie AE, Furlong CE. Human valacyclovir hydrolase/biphenyl hydrolase-like protein is a highly efficient homocysteine thiolactonase. PLoS One. 2014;9:e110054.
    1. Perna A, Satta E, Acanfora F, Lombardi C, Ingrosso D, De Santo N. Increased plasma protein homocysteinylation in hemodialysis patients. Kidney Int. 2006;69:869–876.
    1. Maestro De Las Casas C, Epeldegui M, Tudela C, Varela-Moreiras G, Pérez-Miguelsanz J. High exogenous homocysteine modifies eye development in early chick embryos. Birth Defects Research Part A: Clinical and Molecular Teratology. 2003;67:35–40.
    1. Harker LA, Slichter SJ, Scott CR, Ross R. Homocystinemia: vascular injury and arterial thrombosis. N Engl J Med. 1974;291:537–543.
    1. Endo N, Nishiyama K, Otsuka A, Kanouchi H, Taga M, Oka T. Antioxidant activity of vitamin B 6 delays homocysteine-induced atherosclerosis in rats. Br J Nutr. 2006;95:1088–1093.
    1. Kang S-S, Wong PW, Malinow MR. Hyperhomocyst (e) inemia as a risk factor for occlusive vascular disease. Annu Rev Nutr. 1992;12:279–298.
    1. Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH. Total homocysteine in plasma or serum: methods and clinical applications. Clin Chem. 1993;39:1764–1779.
    1. Maron BA, Loscalzo J. The treatment of hyperhomocysteinemia. Annu Rev Med. 2009;60:39.
    1. Agoston-Coldea L, Mocan T, Gatfosse M, Lupu S, Dumitrascu DL. Plasma homocysteine and the severity of heart failure in patients with previous myocardial infarction. Cardiol J. 2011;18:55–62.
    1. Kuo K, Still R, Cale S, McDowell I. Standardization (external and internal) of HPLC assay for plasma homocysteine. Clin Chem. 1997;43:1653–1655.
    1. Guilland J, Favier A, Potier de Courcy G, Galan P, Hercberg S. Hyperhomocysteinemia: an independent risk factor or a simple marker of vascular disease?. 1. Basic data. Pathologie-biologie. 2003;51:101–110.
    1. Wong YY, Golledge J, Flicker L, McCaul KA, Hankey GJ, van Bockxmeer FM, Yeap BB, Norman PE. Plasma total homocysteine is associated with abdominal aortic aneurysm and aortic diameter in older men. J Vasc Surg. 2013;58:364–370.
    1. Fu Y, Wang X, Kong W. Hyperhomocysteinemia and vascular injury: the advance of mechanisms and drug targets. Br J Pharmacol. 2017 [Epub ahead of print].
    1. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, Wilson PWF, Wolf PA. Plasma Homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346:476–483.
    1. Morris MS. Homocysteine and Alzheimer’s disease. The Lancet Neurology. 2003;2:425–428.
    1. Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci. 2003;26:137–146.
    1. McIlroy SP, Dynan KB, Lawson JT, Patterson CC, Passmore AP. Moderately elevated plasma homocysteine, methylenetetrahydrofolate reductase genotype, and risk for stroke, vascular dementia, and Alzheimer disease in Northern Ireland. Stroke. 2002;33:2351–2356.
    1. Rueda-Clausen C, Córdoba-Porras A, Bedoya G, Silva F, Zarruk J, López-Jaramillo P, Villa L. Increased plasma levels of total homocysteine but not asymmetric dimethylarginine in Hispanic subjects with ischemic stroke FREC-VI sub-study. Eur J Neurol. 2012;19:417–425.
    1. Herrmann M, Widmann T, Herrmann W. Homocysteine–a newly recognised risk factor for osteoporosis. Clinical Chemical Laboratory Medicine. 2005;43:1111–1117.
    1. Perna AF, Sepe I, Lanza D, Pollastro RM, De Santo NG, Ingrosso D. Hyperhomocysteinemia in chronic renal failure: alternative therapeutic strategies. J Ren Nutr. 2012;22:191–194.
    1. Golbahar J, Aminzadeh MA, Kassab SE, Omrani GR. Hyperhomocysteinemia induces insulin resistance in male Sprague–Dawley rats. Diabetes Res Clin Pract. 2007;76:1–5.
    1. Qi X, Zhang B, Zhao Y, Li R, Chang H-M, Pang Y, Qiao J. Hyperhomocysteinemia promotes insulin resistance and adipose tissue inflammation in PCOS mice through modulating M2 macrophage polarization via estrogen suppression. Endocrinology. 2017;158:1181–1193.
    1. Liu J, Zuo SW, Li Y, Jia X, Jia SH, Zhang T, Song YX, Wei YQ, Xiong J, Hu YH. Hyperhomocysteinaemia is an independent risk factor of abdominal aortic aneurysm in a Chinese Han population. Sci Rep. 2016;6:17966(1-9).
    1. Warsi A, Davies B, Morris-Stiff G, Hullin D, Lewis M. Abdominal aortic aneurysm and its correlation to plasma homocysteine, and vitamins. Eur J Vasc Endovasc Surg. 2004;27:75–79.
    1. Brunelli T, Prisco D, Fedi S, Rogolino A, Farsi A, Marcucci R, Giusti B, Pratesi C, Pulli R, Gensini GF. High prevalence of mild hyperhomocysteinemia in patients with abdominal aortic aneurysm. J Vasc Surg. 2000;32:531–536.
    1. Yang N, Yao Z, Miao L, Liu J, Gao X, Fan H, Hu Y, Zhang H, Xu Y, Qu A. Novel clinical evidence of an association between homocysteine and insulin resistance in patients with hypothyroidism or subclinical hypothyroidism. PLoS One. 2015;10:e0125922.
    1. Zhou Y, Chen Y, Cao X, Liu C, Xie Y. Association between plasma homocysteine status and hypothyroidism: a meta-analysis. Int J Clin Exp Med. 2014;7:4544.
    1. Sun C-F, Haven TR, T-L W, Tsao K-C, JT W. Serum total homocysteine increases with the rapid proliferation rate of tumor cells and decline upon cell death: a potential new tumor marker. Clin Chim Acta. 2002;321:55–62.
    1. Zhang D, Lou J, Zhang X, Zhang L, Wang F, Xu D, Niu N, Wang Y, Wu Y, Cui W. Hyperhomocysteinemia results from and promotes hepatocellular carcinoma via CYP450 metabolism by CYP2J2 DNA methylation. Oncotarget. 2017;8:15377.
    1. Givvimani S, Munjal C, Narayanan N, Aqil F, Tyagi G, Metreveli N, Tyagi SC. Hyperhomocysteinemia decreases intestinal motility leading to constipation. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2012;303:G281–G290.
    1. Stühlinger MC, Tsao PS, Her J-H, Kimoto M, Balint RF, Cooke JP. Homocysteine impairs the nitric oxide synthase pathway role of asymmetric dimethylarginine. Circulation. 2001;104:2569–2575.
    1. Lentz SR, Rodionov RN, Dayal S. Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: the potential role of ADMA. Atheroscler Suppl. 2003;4:61–65.
    1. Vallance P, Leiper J. Cardiovascular biology of the asymmetric dimethylarginine: dimethylarginine dimethylaminohydrolase pathway. Arterioscler Thromb Vasc Biol. 2004;24:1023–1030.
    1. Dayal S, Lentz SR. ADMA and hyperhomocysteinemia. Vasc Med. 2005;10:S27–S33.
    1. Li JG, Chu J, Barrero C, Merali S, Praticò D. Homocysteine exacerbates β-amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles. Ann Neurol. 2014;75:851–863.
    1. Kamath AF, Chauhan AK, Kisucka J, Dole VS, Loscalzo J, Handy DE, Wagner DD. Elevated levels of homocysteine compromise blood-brain barrier integrity in mice. Blood. 2006;107:591–593.
    1. Sacco RL, Benjamin EJ, Broderick JP, Dyken M, Easton JD, Feinberg WM, Goldstein LB, Gorelick PB, Howard G, Kittner SJ, et al. Risk factors. Stroke. 1997;28:1507–1517.
    1. Bhattacharjee N, Borah A. Oxidative stress and mitochondrial dysfunction are the underlying events of dopaminergic neurodegeneration in homocysteine rat model of Parkinson’s disease. Neurochem Int. 2016;101:48–55.
    1. Vacek TP, Kalani A, Voor MJ, Tyagi SC, Tyagi N. The role of homocysteine in bone remodeling. Clin Chem Lab Med. 2013;51:579–590.
    1. Yılmaz N, Eren E. Homocysteine oxidative stress and relation to bone mineral density in post-menopausal osteoporosis. Aging Clin Exp Res. 2009;21:353–357.
    1. Fleming JT, Barati MT, Beck DJ, Dodds JC, Malkani AL, Parameswaran D, Soukhova GK, Voor MJ, Feitelson JB. Bone blood flow and vascular reactivity. Cells Tissues Organs. 2001;169:279–284.
    1. Tyagi N, Kandel M, Munjal C, Qipshidze N, Vacek JC, Pushpakumar SB, Metreveli N, Tyagi SC. Homocysteine mediated decrease in bone blood flow and remodeling: role of folic acid. J Orthop Res. 2011;29:1511–1516.
    1. Long Y, Nie J. Homocysteine in renal injury. Kidney Diseases. 2016;2:80–87.
    1. C-C W, Zheng C-M, Lin Y-F, Lo L, Liao M-T, K-C L. Role of homocysteine in end-stage renal disease. Clin Biochem. 2012;45:1286–1294.
    1. Yajnik C, Deshpande S, Jackson A, Refsum H, Rao S, Fisher D, Bhat D, Naik S, Coyaji K, Joglekar C. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune maternal nutrition study. Diabetologia. 2008;51:29–38.
    1. Li Y, Jiang C, Xu G, Wang N, Zhu Y, Tang C, Wang X. Homocysteine upregulates resistin production from adipocytes in vivo and in vitro. Diabetes. 2008;57:817–827.
    1. Li Y, Zhang H, Jiang C, Xu M, Pang Y, Feng J, Xiang X, Kong W, Xu G, Li Y. Hyperhomocysteinemia promotes insulin resistance by inducing endoplasmic reticulum stress in adipose tissue. J Biol Chem. 2013;288:9583–9592.
    1. Investigators HOPE Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med. 2006;2006:1567–1577.
    1. Bønaa KH, Njølstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, Wang H, Nordrehaug JE, Arnesen E, Rasmussen K. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med. 2006;354:1578–1588.
    1. Toole JF, Malinow MR, Chambless LE, Spence JD, Pettigrew LC, Howard VJ, Sides EG, Wang C-H, Stampfer M. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the vitamin intervention for stroke prevention (VISP) randomized controlled trial. JAMA. 2004;291:565–575.
    1. Group VTS B vitamins in patients with recent transient ischaemic attack or stroke in the VITAmins TO prevent stroke (VITATOPS) trial: a randomised, double-blind, parallel, placebo-controlled trial. The Lancet Neurology. 2010;9:855–865.
    1. Jernerén F, Elshorbagy AK, Oulhaj A, Smith SM, Refsum H, Smith AD. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr. 2015;102:215–221.
    1. Huo Y, Li J, Qin X, Huang Y, Wang X, Gottesman RF, Tang G, Wang B, Chen D, He M. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPPT randomized clinical trial. JAMA. 2015;313:1325–1335.
    1. Gariballa S. Testing homocysteine-induced neurotransmitter deficiency, and depression of mood hypothesis in clinical practice. Age Ageing. 2011;40:702–705.
    1. Folstein M, Liu T, Peter I, Buel J, Arsenault L, Scott T, Qiu WW. The homocysteine hypothesis of depression. Am J Psychiatr. 2007;164:861–867.
    1. Isobe C, Terayama Y. A remarkable increase in total homocysteine concentrations in the CSF of migraine patients with aura. Headache: The Journal of Head and Face Pain. 2010;50:1561–1569.
    1. Minniti G, Calevo MG, Giannattasio A, Camicione P, Armani U, Lorini R, Piana G. Plasma homocysteine in patients with retinal vein occlusion. Eur J Ophthalmol. 2014;24:735–743.
    1. Li D, Zhou M, Peng X, Sun H. Homocysteine, methylenetetrahydrofolate reductase C677T polymorphism, and risk of retinal vein occlusion: an updated meta-analysis. BMC Ophthalmol. 2014;14:147.
    1. Schnyder G, Roffi M, Flammer Y, Pin R, Hess OM. Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss heart study: a randomized controlled trial. JAMA. 2002;288:973–979.
    1. Dinckal MH, Aksoy N, Aksoy M, Davutoglu V, Soydinc S, Kirilmaz A, Dinckal N, Akdemir I. Effect of homocysteine-lowering therapy on vascular endothelial function and exercise performance in coronary patients with hyperhomocysteinaemia. Acta Cardiol. 2003;58:389–396.
    1. Steenge GR, Verhoef P, Katan MB. Betaine supplementation lowers plasma homocysteine in healthy men and women. J Nutr. 2003;133:1291–1295.
    1. Cho E, Zeisel SH, Jacques P, Selhub J, Dougherty L, Colditz GA, Willett WC. Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham offspring study. Am J Clin Nutr. 2006;83:905–911.
    1. Olthof MR, van Vliet T, Boelsma E, Verhoef P. Low dose betaine supplementation leads to immediate and long term lowering of plasma homocysteine in healthy men and women. J Nutr. 2003;133:4135–4138.
    1. Barak AJ, Beckenhauer HC, Mailliard ME, Kharbanda KK, Tuma DJ. Betaine lowers elevated S-adenosylhomocysteine levels in hepatocytes from ethanol-fed rats. J Nutr. 2003;133:2845–2848.
    1. Akgullu C, Huyut MA, Boyacioglu M, Guleş O, Eryilmaz U, Hekim T, Dogan E, Zencir C, Güngör H. Nebivolol to attenuate the effects of hyper-homocysteinaemia in rats. Atherosclerosis. 2015;240:33–39.
    1. Yilmaz H, Sahin S, Sayar N, Tangurek B, Yilmaz M, Nurkalem Z, Onturk E, Cakmak N, Bolca O. Effects of folic acid and N-acetylcysteine on plasma homocysteine levels and endothelial function in patients with coronary artery disease. Acta Cardiol. 2007;62:579–585.
    1. Perna AF, Violetti E, Lanza D, Sepe I, Bellinghieri G, Savica V, Santoro D, Satta E, Cirillo G, Lupo A. Therapy of hyperhomocysteinemia in hemodialysis patients: effects of folates and N-acetylcysteine. J Ren Nutr. 2012;22:507–514.
    1. Basu TK, Makhani N, Sedgwick G. Niacin (nicotinic acid) in non-physiological doses causes hyperhomocysteineaemia in Sprague–Dawley rats. Br J Nutr. 2002;87:115–119.
    1. Westphal S, Dierkes J, Luley C. Effects of fenofibrate and gemfibrozil on plasma homocysteine. Lancet. 2001;358:39–40.
    1. Foucher C, Brugere L, Ansquer J-C. Fenofibrate, homocysteine and renal function. Curr Vasc Pharmacol. 2010;8:589–603.
    1. Murthy SN, Obregon DF, Chattergoon NN, Fonseca NA, Mondal D, Dunne JB, Diez JG, Jeter JR, Kadowitz PJ, Agrawal KC. Rosiglitazone reduces serum homocysteine levels, smooth muscle proliferation, and intimal hyperplasia in Sprague-Dawley rats fed a high methionine diet. Metabolism. 2005;54:645–652.
    1. Apeland T, Mansoor MA, Strandjord RE. Antiepileptic drugs as independent predictors of plasma total homocysteine levels. Epilepsy Res. 2001;47:27–35.
    1. Zoccolella S, Lamberti S, Iliceto G, Santamato A, Lamberti P, Logroscino G. Hyperhomocysteinemia in l-dopa treated patients with Parkinson's disease: potential implications in cognitive dysfunction and dementia? Curr Med Chem. 2010;17:3253–3261.

Source: PubMed

3
Subscribe