Biomarkers and cardiovascular risk assessment for primary prevention: an update

Lauren G Gilstrap, Thomas J Wang, Lauren G Gilstrap, Thomas J Wang

Abstract

Background: Interest in cardiovascular biomarkers in primary prevention has increased dramatically in the past decade. This increase has been fueled by an improved understanding of cardiovascular pathophysiology, as well as novel technologies for biomarker identification.

Content: In this review we provide a brief overview of recent concepts in the evaluation of screening biomarkers, because biomarkers may behave differently when used for screening as opposed to diagnosis or disease staging. The following specific biomarker examples are then discussed, with a focus on data from primary prevention studies: high-sensitivity C-reactive protein, B-type natriuretic peptide, lipoprotein-associated phospholipase A2, and high-sensitivity troponin T. The article concludes by addressing novel platforms for biomarker discovery, reviewing recent examples from the field of metabolomics.

Summary: An ongoing challenge is to develop screening strategies that can identify individuals at risk for cardiovascular events well before symptoms appear. For this purpose, the measurement of soluble biomarkers could be an important adjunct to traditional cardiovascular risk assessment. Recent studies highlight both the strengths and limitations of "novel" circulating biomarkers, and suggest that substantial work is still needed to identify biomarkers that are sufficiently accurate and cost-effective for routine use in primary prevention.

Figures

Figure 1
Figure 1
Relative risks for cardiovascular disease in individuals in the top vs bottom third of baseline BNP or NT-proBNP concentration, according to different study characteristics. From Di Angelantonio et al. Circulation. 2009;120:2177-87 (permission pending).
Figure 2
Figure 2
Association of troponin T detected with a highly sensitive assay and mortality risk. From deLemos, et al. JAMA 2010;304:2503-2512 (permission pending).
Figure 3
Figure 3
Biomarker identification and the genome, transcriptome, proteome, and metabolome. The numbers in the parentheses denote the estimated number of entities of each type of molecule. From Gerszten and Wang, Nature 2008;451:949-52 (permission pending).

References

    1. Gerszten RE, Wang TJ. The search for new cardiovascular biomarkers. Nature. 2008;451:949–952.
    1. Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, Ellis SG, Lincoff AM, Topol EJ. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290:898–904.
    1. Group. BDW Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.
    1. Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation. 2007;115:949–952.
    1. Wang TJ, Larson MG, Levy D, Leip EP, Benjamin EJ, Wilson PW, Sutherland P, Omland T, Vasan RS. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am.J.Cardiol. 2002;90:254–258.
    1. Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett Plasma brain natriuretic peptide concentration: Impact of age and gender. J Am Coll Cardiol. 2002;40:976–982.
    1. Lam CS, Cheng S, Choong K, Larson MG, Murabito JM, Newton-Cheh C, Bhasin S, McCabe EL, Miller KK, Redfield MM, Vasan RS, Coviello AD, Wang TJ. Influence of sex and hormone status on circulating natriuretic peptides. J Am Coll Cardiol. 2011;58:618–626.
    1. Chang AY, Abdullah SM, Jain T, Stanek HG, Das SR, McGuire DK, Auchus RJ, de Lemos JA. Associations among androgens, estrogens, and natriuretic peptides in young women: Observations from the dallas heart study. J Am Coll Cardiol. 2007;49:109–116.
    1. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Wilson PW, Vasan RS. Impact of obesity on plasma natriuretic peptide levels. Circulation. 2004;109:594–600.
    1. Mehra MR, Uber PA, Park MH, Scott RL, Ventura HO, Harris BC, Frohlich ED. Obesity and suppressed b-type natriuretic peptide levels in heart failure. J Am Coll Cardiol. 2004;43:1590–1595.
    1. Das SR, Drazner MH, Dries DL, Vega GL, Stanek HG, Abdullah SM, Canham RM, Chung AK, Leonard D, Wians FH, Jr., de Lemos JA. Impact of body mass and body composition on circulating levels of natriuretic peptides: Results from the dallas heart study. Circulation. 2005;112:2163–2168.
    1. McCord J, Mundy BJ, Hudson MP, Maisel AS, Hollander JE, Abraham WT, Steg PG, Omland T, Knudsen CW, Sandberg KR, McCullough PA. Relationship between obesity and b-type natriuretic peptide levels. Arch Intern Med. 2004;164:2247–2252.
    1. Horwich TB, Hamilton MA, Fonarow GC. B-type natriuretic peptide levels in obese patients with advanced heart failure. J Am Coll Cardiol. 2006;47:85–90.
    1. Koenig W. Cardiovascular biomarkers: Added value with an integrated approach? Circulation. 2007;116:3–5.
    1. Ware JH. The limitations of risk factors as prognostic tools. N Engl J Med. 2006;355:2615–2617.
    1. Wang TJ. Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction. Circulation. 2011;123:551–565.
    1. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology. 1982;143:29–36.
    1. Wilson PW. Prediction of cardiovascular disease events. Cardiol Clin. 2011;29:1–13.
    1. May A, Wang TJ. Biomarkers for cardiovascular disease: Challenges and future directions. Trends Mol Med. 2008;14:261–267.
    1. Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007;115:928–935.
    1. D'Agostino RB, Sr., Grundy S, Sullivan LM, Wilson P. Validation of the framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA : the journal of the American Medical Association. 2001;286:180–187.
    1. Executive summary of the third report of the national cholesterol education program (ncep) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel iii). JAMA : the journal of the American Medical Association. 2001;285:2486–2497.
    1. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97:1837–1847.
    1. Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., Vasan RS. Evaluating the added predictive ability of a new marker: From area under the roc curve to reclassification and beyond. Stat Med. 2008;27:157–172. discussion 207-112.
    1. Pencina MJ, D'Agostino RB, Sr., Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30:11–21.
    1. Hlatky MA, Greenland P, Arnett DK, Ballantyne CM, Criqui MH, Elkind MS, Go AS, Harrell FE, Jr., Hong Y, Howard BV, Howard VJ, Hsue PY, Kramer CM, McConnell JP, Normand SL, O'Donnell CJ, Smith SC, Jr., Wilson PW. Criteria for evaluation of novel markers of cardiovascular risk: A scientific statement from the american heart association. Circulation. 2009;119:2408–2416.
    1. Tillett WS, Francis T. Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J Exp Med. 1930;52:561–571.
    1. Kushner I. The phenomenon of the acute phase response. Ann N Y Acad Sci. 1982;389:39–48.
    1. Thompson D, Pepys MB, Wood SP. The physiological structure of human c-reactive protein and its complex with phosphocholine. Structure. 1999;7:169–177.
    1. Pepys MB, Hirschfield GM. C-reactive protein: A critical update. J Clin Invest. 2003;111:1805–1812.
    1. Macy EM, Hayes TE, Tracy RP. Variability in the measurement of c-reactive protein in healthy subjects: Implications for reference intervals and epidemiological applications. Clinical Chemistry. 1997;43:52–58.
    1. Chen TH, Gona P, Sutherland PA, Benjamin EJ, Wilson PW, Larson MG, Vasan RS, Robins SJ. Long-term c-reactive protein variability and prediction of metabolic risk. Am J Med. 2009;122:53–61.
    1. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–979.
    1. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO, 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC, Jr., Taubert K, Tracy RP, Vinicor F. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the centers for disease control and prevention and the american heart association. Circulation. 2003;107:499–511.
    1. Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated c-reactive protein and ischemic vascular disease. N Engl J Med. 2008;359:1897–1908.
    1. Buckley DI, Fu R, Freeman M, Rogers K, Helfand M. C-reactive protein as a risk factor for coronary heart disease: A systematic review and meta-analyses for the u.S. Preventive services task force. Ann Intern Med. 2009;151:483–495.
    1. Cook NR, Buring JE, Ridker PM. The effect of including c-reactive protein in cardiovascular risk prediction models for women. Ann Intern Med. 2006;145:21–29.
    1. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM, Jr., Kastelein JJ, Koenig W, Libby P, Lorenzatti AJ, MacFadyen JG, Nordestgaard BG, Shepherd J, Willerson JT, Glynn RJ. Rosuvastatin to prevent vascular events in men and women with elevated c-reactive protein. N Engl J Med. 2008;359:2195–2207.
    1. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, Foster E, Hlatky MA, Hodgson JM, Kushner FG, Lauer MS, Shaw LJ, Smith SC, Jr., Taylor AJ, Weintraub WS, Wenger NK, Jacobs AK, Anderson JL, Albert N, Buller CE, Creager MA, Ettinger SM, Guyton RA, Halperin JL, Hochman JS, Nishimura R, Ohman EM, Page RL, Stevenson WG, Tarkington LG, Yancy CW. accf/aha guideline for assessment of cardiovascular risk in asymptomatic adults: A report of the american college of cardiology foundation/american heart association task force on practice guidelines. J Am Coll Cardiol. 2010;2010;56:e50–103.
    1. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: Evidence on causality from a meta-analysis. BMJ. 2002;325:1202.
    1. Melander O, Newton-Cheh C, Almgren P, Hedblad B, Berglund G, Engstrom G, Persson M, Smith JG, Magnusson M, Christensson A, Struck J, Morgenthaler NG, Bergmann A, Pencina MJ, Wang TJ. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA : the journal of the American Medical Association. 2009;302:49–57.
    1. Burnett JC, Jr., Kao PC, Hu DC, Heser DW, Heublein D, Granger JP, Opgenorth TJ, Reeder GS. Atrial natriuretic peptide elevation in congestive heart failure in the human. Science. 1986;231:1145–1147.
    1. McKie PM, Cataliotti A, Lahr BD, Martin FL, Redfield MM, Bailey KR, Rodeheffer RJ, Burnett JC., Jr. The prognostic value of n-terminal pro-b-type natriuretic peptide for death and cardiovascular events in healthy normal and stage a/b heart failure subjects. J Am Coll Cardiol. 2010;55:2140–2147.
    1. Saunders JT, Nambi V, de Lemos JA, Chambless LE, Virani SS, Boerwinkle E, Hoogeveen RC, Liu X, Astor BC, Mosley TH, Folsom AR, Heiss G, Coresh J, Ballantyne CM. Cardiac troponin t measured by a highly sensitive assay predicts coronary heart disease, heart failure, and mortality in the atherosclerosis risk in communities study. Circulation. 2011;123:1367–1376.
    1. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, Wolf PA, Vasan RS. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med. 2004;350:655–663.
    1. Di Angelantonio E, Chowdhury R, Sarwar N, Ray KK, Gobin R, Saleheen D, Thompson A, Gudnason V, Sattar N, Danesh J. B-type natriuretic peptides and cardiovascular risk: Systematic review and meta-analysis of 40 prospective studies. Circulation. 2009;120:2177–2187.
    1. O'Donoghue M, Morrow DA, Sabatine MS, Murphy SA, McCabe CH, Cannon CP, Braunwald E. Lipoprotein-associated phospholipase a2 and its association with cardiovascular outcomes in patients with acute coronary syndromes in the prove it-timi 22 (pravastatin or atorvastatin evaluation and infection therapy-thrombolysis in myocardial infarction) trial. Circulation. 2006;113:1745–1752.
    1. Zalewski A, Macphee C. Role of lipoprotein-associated phospholipase a2 in atherosclerosis: Biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol. 2005;25:923–931.
    1. Anderson JL. Lipoprotein-associated phospholipase a2: An independent predictor of coronary artery disease events in primary and secondary prevention. Am J Cardiol. 2008;101:23F–33F.
    1. McConnell JP, Hoefner DM. Lipoprotein-associated phospholipase a2. Clin Lab Med. 2006;26:679–697, vii.
    1. Hakkinen T, Luoma JS, Hiltunen MO, Macphee CH, Milliner KJ, Patel L, Rice SQ, Tew DG, Karkola K, Yla-Herttuala S. Lipoprotein-associated phospholipase a(2), platelet-activating factor acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1999;19:2909–2917.
    1. Packard CJ, O'Reilly DS, Caslake MJ, McMahon AD, Ford I, Cooney J, Macphee CH, Suckling KE, Krishna M, Wilkinson FE, Rumley A, Lowe GD. Lipoprotein-associated phospholipase a2 as an independent predictor of coronary heart disease. West of scotland coronary prevention study group. N Engl J Med. 2000;343:1148–1155.
    1. Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Heiss G, Sharrett AR. Lipoprotein-associated phospholipase a2, high-sensitivity c-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the atherosclerosis risk in communities (aric) study. Circulation. 2004;109:837–842.
    1. Hatoum IJ, Cook NR, Nelson JJ, Rexrode KM, Rimm EB. Lipoprotein-associated phospholipase a2 activity improves risk discrimination of incident coronary heart disease among women. Am Heart J. 2011;161:516–522.
    1. Ebashi S. Third component participating in the superprecipitation of ‘natural actomyosin’. Nature. 1963;200:1010.
    1. Rybakova IN, Greaser ML, Moss RL. Myosin binding protein c interaction with actin: Characterization and mapping of the binding site. J Biol Chem. 2011;286:2008–2016.
    1. Christenson RH, Phillips D. Sensitive and high sensitivity next generation cardiac troponin assays: More than just a name. Pathology. 2011;43:213–219.
    1. Scirica BM. Acute coronary syndrome: Emerging tools for diagnosis and risk assessment. J Am Coll Cardiol. 2010;55:1403–1415.
    1. de Lemos JA, Drazner MH, Omland T, Ayers CR, Khera A, Rohatgi A, Hashim I, Berry JD, Das SR, Morrow DA, McGuire DK. Association of troponin t detected with a highly sensitive assay and cardiac structure and mortality risk in the general population. JAMA. 2010;304:2503–2512.
    1. deFilippi CR, de Lemos JA, Christenson RH, Gottdiener JS, Kop WJ, Zhan M, Seliger SL. Association of serial measures of cardiac troponin t using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA : the journal of the American Medical Association. 2010;304:2494–2502.
    1. Melander O, Newton-Cheh C, Almgren P, Hedblad B, Berglund G, Engstrom G, Persson M, Smith JG, Magnusson M, Christensson A, Struck J, Morgenthaler NG, Bergmann A, Pencina MJ, Wang TJ. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA. 2009;302:49–57.
    1. Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, Jacques PF, Rifai N, Selhub J, Robins SJ, Benjamin EJ, D'Agostino RB, Vasan RS. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006;355:2631–2639.
    1. Wannamethee SG, Welsh P, Lowe GD, Gudnason V, Di Angelantonio E, Lennon L, Rumley A, Whincup PH, Sattar N. N-terminal pro-brain natriuretic peptide is a more useful predictor of cardiovascular disease risk than c-reactive protein in older men with and without pre-existing cardiovascular disease. J Am Coll Cardiol. 2011;58:56–64.
    1. Zethelius B, Berglund L, Sundstrom J, Ingelsson E, Basu S, Larsson A, Venge P, Arnlov J. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N.Engl.J.Med. 2008;358:2107–2116.
    1. Blankenberg S, Zeller T, Saarela O, Havulinna AS, Kee F, Tunstall-Pedoe H, Kuulasmaa K, Yarnell J, Schnabel RB, Wild PS, Munzel TF, Lackner KJ, Tiret L, Evans A, Salomaa V. Contribution of 30 biomarkers to 10-year cardiovascular risk estimation in 2 population cohorts: The monica, risk, genetics, archiving, and monograph (morgam) biomarker project. Circulation. 2010;121:2388–2397.
    1. Velagaleti RS, Gona P, Larson MG, Wang TJ, Levy D, Benjamin EJ, Selhub J, Jacques PF, Meigs JB, Tofler GH, Vasan RS. Multimarker approach for the prediction of heart failure incidence in the community. Circulation. 2010;122:1700–1706.
    1. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836–843.
    1. Emberson JR, Ng LL, Armitage J, Bowman L, Parish S, Collins R. N-terminal pro-b-type natriuretic peptide, vascular disease risk, and cholesterol reduction among 20,536 patients in the mrc/bhf heart protection study. J.Am.Coll.Cardiol. 2007;49:311–319.
    1. Mayr M. Metabolomics: Ready for the prime time? Circ Cardiovasc Genet. 2008;1:58–65.
    1. Wishart DS. Human metabolome database: Completing the ‘human parts list’. Pharmacogenomics. 2007;8:683–686.
    1. Brindle JT, Antti H, Holmes E, Tranter G, Nicholson JK, Bethell HW, Clarke S, Schofield PM, McKilligin E, Mosedale DE, Grainger DJ. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1h-nmr-based metabonomics. Nat Med. 2002;8:1439–1444.
    1. Kirschenlohr HL, Griffin JL, Clarke SC, Rhydwen R, Grace AA, Schofield PM, Brindle KM, Metcalfe JC. Proton nmr analysis of plasma is a weak predictor of coronary artery disease. Nat Med. 2006;12:705–710.
    1. Shah SH, Bain JR, Muehlbauer MJ, Stevens RD, Crosslin DR, Haynes C, Dungan J, Newby LK, Hauser ER, Ginsburg GS, Newgard CB, Kraus WE. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 2010;3:207–214.
    1. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O'Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–453.
    1. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.
    1. Rosenberg S, Elashoff MR, Beineke P, Daniels SE, Wingrove JA, Tingley WG, Sager PT, Sehnert AJ, Yau M, Kraus WE, Newby LK, Schwartz RS, Voros S, Ellis SG, Tahirkheli N, Waksman R, McPherson J, Lansky A, Winn ME, Schork NJ, Topol EJ. Multicenter validation of the diagnostic accuracy of a blood-based gene expression test for assessing obstructive coronary artery disease in nondiabetic patients. Ann Intern Med. 2010;153:425–434.

Source: PubMed

3
Subscribe