Homeostatic Control of the Thyroid-Pituitary Axis: Perspectives for Diagnosis and Treatment

Rudolf Hoermann, John E M Midgley, Rolf Larisch, Johannes W Dietrich, Rudolf Hoermann, John E M Midgley, Rolf Larisch, Johannes W Dietrich

Abstract

The long-held concept of a proportional negative feedback control between the thyroid and pituitary glands requires reconsideration in the light of more recent studies. Homeostatic equilibria depend on dynamic inter-relationships between thyroid hormones and pituitary thyrotropin (TSH). They display a high degree of individuality, thyroid-state-related hierarchy, and adaptive conditionality. Molecular mechanisms involve multiple feedback loops on several levels of organization, different time scales, and varying conditions of their optimum operation, including a proposed feedforward motif. This supports the concept of a dampened response and multistep regulation, making the interactions between TSH, FT4, and FT3 situational and mathematically more complex. As a homeostatically integrated parameter, TSH becomes neither normatively fixed nor a precise marker of euthyroidism. This is exemplified by the therapeutic situation with l-thyroxine (l-T4) where TSH levels defined for optimum health may not apply equivalently during treatment. In particular, an FT3-FT4 dissociation, discernible FT3-TSH disjoint, and conversion inefficiency have been recognized in l-T4-treated athyreotic patients. In addition to regulating T4 production, TSH appears to play an essential role in maintaining T3 homeostasis by directly controlling deiodinase activity. While still allowing for tissue-specific variation, this questions the currently assumed independence of the local T3 supply. Rather it integrates peripheral and central elements into an overarching control system. On l-T4 treatment, altered equilibria have been shown to give rise to lower circulating FT3 concentrations in the presence of normal serum TSH. While data on T3 in tissues are largely lacking in humans, rodent models suggest that the disequilibria may reflect widespread T3 deficiencies at the tissue level in various organs. As a consequence, the use of TSH, valuable though it is in many situations, should be scaled back to a supporting role that is more representative of its conditional interplay with peripheral thyroid hormones. This reopens the debate on the measurement of free thyroid hormones and encourages the identification of suitable biomarkers. Homeostatic principles conjoin all thyroid parameters into an adaptive context, demanding a more flexible interpretation in the accurate diagnosis and treatment of thyroid dysfunction.

Keywords: TSH; deiodinase; feedback regulation; homeostasis; set point; thyroid hormones.

Figures

Figure 1
Figure 1
Homeostatic integration of central, thyroidal, and peripheral influences. The integrated control involves several major control loops, a negative feedback control of thyroid hormones on pituitary TSH and hypothalamic TRH, positive stimulatory control of TRH on TSH, ultrashort feedback of TSH on its own secretion, and feedforward control of deiodinases by TSH. Other thyrotropic agonists than TSH, such as TSH receptor antibodies (TSH-R Ab) and human chorionic gonadotropin (hCG), play an important role in diseases, such as Graves’ disease and pregnancy-related hyperthyroidism. A plethora of additional influences may fine-tune the responses at each level of organization. 1 refers to the classical Astwood–Hoskins loop, and 5 indicates ultrashort feedback loop of TSH on its own secretion, described in the text. Additional feedback loops (not shown here) control the binding of thyroid hormones to plasma proteins (8, 10).
Figure 2
Figure 2
Non-linear relationship between logTSH and free T4. The two studies by Hoermann et al. (6) (A) and Hadlow et al. (7) (B) show that the TSH–FT4 relationship may not follow a proportional log-linear model (dashed straight line), displaying a damped response in the euthyroid range and steeper gradients at the hypothyroid or hyperthyroid spectrum. The superiority of the non-linear modulatory logistic function shown over the standard log-linear model was statistically established by a strict curve-fitting template based on Akaike’s information criterion (6). A multistep regulation of the FT4–TSH feedback control is discussed in the text. Adapted and reproduced with permission from Hoermann et al. (6) and Hadlow et al. (7).
Figure 3
Figure 3
Pulsatility of TSH secretion. Secretion of thyrotropin is subject to circadian and ultradian variation. Shown are results of computer simulations with circadian input only (model 1), additional stochastic afferences (model 2), additional ultrashort feedback of TSH secretion (model 3), and combined stochastic input and ultrashort feedback (model 4). Statistical properties and fractal geometry of model 4 is identical to that of natural time series, while the simpler models differ (10).
Figure 4
Figure 4
Overview of classical (iodothyronines) and non-classical thyroid hormones (iodothyroacetates and thyronamines) with associated interconversion processes. Adapted from Engler and Burger (152), Piehl et al. (153), Soffer et al. (154), and Hoefig et al. (155).
Figure 5
Figure 5
Loss of T3 stability in l-T4-treated athyreotic patients with thyroid carcinomas. In controls (dashed line), serum T3 remains stable over a wide variation in the endogenous thyroid hormone production. In contrast, in l-T4-treated patients (solid line), compensatory T3 regulation is broken, and serum T3 unstably varies with the exogenous T4 supply. Adapted and reproduced with permission from Hoermann et al. (123).

References

    1. Larsen PR. Thyroid-pituitary interaction: feedback regulation of thyrotropin secretion by thyroid hormones. N Engl J Med (1982) 306:23–32.10.1056/NEJM198201073060107
    1. Baloch ZW, Carayon P, Conte-Devolx B, Demers LM, Feldt-Rasmussen U, Henry J-F, et al. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid (2003) 13:3–126.10.1089/105072503321086962
    1. Sam S, Frohman LA. Normal physiology of hypothalamic pituitary regulation. Endocrinol Metab Clin North Am (2008) 37:1–22.10.1016/j.ecl.2007.10.007
    1. Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, et al. Woeber for the American Association of Clinical Endocrinologists and American Thyroid Association Taskforce on hypothyroidism in adults KA. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid (2012) 22:1200–35.10.1089/thy.2012.0205
    1. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association task force on thyroid hormone replacement. Thyroid (2014) 24:1670–751.10.1089/thy.2014.0028
    1. Hoermann R, Eckl WA, Hoermann C, Larisch R. Complex relationship between free thyroxine and TSH in the regulation of thyroid function. Eur J Endocrinol (2010) 162:1123–9.10.1530/EJE-10-0106
    1. Hadlow NC, Rothacker KM, Wardrop R, Brown SJ, Lim EM, Walsh JP. The relationship between TSH and free T4 in a large population is complex and nonlinear and differs by age and sex. J Clin Endocrinol Metab (2013) 98:2936–43.10.1210/jc.2012-4223
    1. Midgley JEM, Hoermann R, Larisch R, Dietrich JW. Physiological states and functional relation between thyrotropin and free thyroxine in thyroid health and disease: in vivo and in silico data suggest a hierarchical model. J Clin Pathol (2013) 66:335–42.10.1136/jclinpath-2012-201213
    1. Hoermann R, Midgley JEM, Giacobino A, Eckl WA, Wahl HG, Dietrich JW, et al. Homeostatic equilibria between free thyroid hormones and pituitary thyrotropin are modulated by various influences including age, body mass index and treatment. Clin Endocrinol (Oxf) (2014) 81:907–15.10.1111/cen.12527
    1. Dietrich JW, Tesche A, Pickardt CR, Mitzdorf U. Thyrotropic feedback control: evidence for an additional ultrashort feedback loop from fractal analysis. Cybern Syst (2004) 35:315–31.10.1080/01969720490443354
    1. Salter WT. Endocrine Function of Iodine. Cambridge: Harvard University Press; (1940).
    1. Stanley MM, Astwood EB. The response of the thyroid gland in normal human subjects to the administration of thyrotropin, as shown by studies with I131. Endocrinology (1949) 44:49–60.10.1210/endo-44-1-49
    1. Hoskins RG. The thyroid-pituitary apparatus as a servo (feed-back) mechanism. J Clin Endocrinol Metab (1949) 9:1429–31.10.1210/jcem-9-12-1429
    1. Danziger L, Elmergreen GL. The thyroid-pituitary homeostatic mechanism. Bull Math Biophys (1956) 18:1–13.10.1007/BF02477840
    1. Norwich KH, Reiter R. Homeostatic control of thyroxin concentration expressed by a set of linear differential equations. Bull Math Biophys (1965) 27:133–44.10.1007/BF02498768
    1. Distefano JJ., III A model of the regulation of circulating thyroxin unbound and bound to plasma proteins and its response to pregnancy, drugs, long-acting thyroid stimulator, and temperature stress. Math Biosci (1969) 4:137–52.10.1016/0025-5564(69)90010-8
    1. Wilkin TJ, Storey BE, Isles TE, Crooks J, Beck JS. High TSH concentrations in “euthyroidism”: explanation based on control-loop theory. Br Med J (1977) 1:993–6.10.1136/bmj.1.6067.993
    1. Leow MKS. A mathematical model of pituitary – thyroid interaction to provide an insight into the nature of the thyrotropin – thyroid hormone relationship. J Theor Biol (2007) 248:275–87.10.1016/j.jtbi.2007.05.016
    1. Spencer CA, LoPresti JS, Patel A, Guttler RB, Eigen A, Shen D, et al. Applications of a new chemiluminometric thyrotropin assay to subnormal measurement. J Clin Endocrinol Metab (1990) 70:453–60.10.1210/jcem-70-2-453
    1. Nicoloff JT, Spencer CA. Clinical review 12: the use and misuse of the sensitive thyrotropin assays. J Clin Endocrinol Metab (1990) 71:553–8.10.1210/jcem-71-3-553
    1. Benhadi N, Fliers E, Visser TJ, Reitsma JB, Wiersinga WM. Pilot study on the assessment of the setpoint of the hypothalamus-pituitary-thyroid axis in healthy volunteers. Eur J Endocrinol (2010) 162:323–9.10.1530/EJE-09-0655
    1. van Deventer HE, Mendu DR, Remaley AT, Soldin SJ. Inverse log-linear relationship between thyroid-stimulating hormone and free thyroxine measured by direct analog immunoassay and tandem mass spectrometry. Clin Chem (2011) 57:122–7.10.1373/clinchem.2010.154088
    1. Roston S. Mathematical representation of some endocrinological systems. Bull Math Biophys (1959) 21:271–82.10.1007/BF02477915
    1. Saratchandran P, Carson ER, Reeve J. An improved mathematical model of human thyroid hormone regulation. Clin Endocrinol (Oxf) (1976) 5:473–83.10.1111/j.1365-2265.1976.tb01976.x
    1. Cohen JL. Thyroid-stimulation hormone and its disorders. In: Becker KL, editor. Principles and Practice of Endocrinology and Metabolism. Philadelphia, PA: J B Lippincott Company; (1990). p. 144–52.
    1. Li G, Liu B, Liu Y. A dynamical model of the pulsatile secretion of the hypothalamo-pituitary-thyroid axis. Biosystems (1995) 35:83–92.10.1016/0303-2647(94)01484-O
    1. Dietrich JW. Spektrum medizinischer forschung. In: Schardt F, editor. Der Hypophysen-Schilddrüsen-Regelkreis. Vol 2, Berlin: Logos Verlag; (2002).
    1. Dietrich JW, Mitzdorf U, Weitkunat R, Pickardt CR. The pituitary-thyroid feedback control: stability and oscillations in a new nonlinear model. J Endocrinol Invest (1997) 20:100.
    1. Degon M, Chait Y, Hollot C, Chipkin S, Zoeller T. A quantitative model of the human thyroid: development and observations. Am Control Conf (2005)2:961–6.10.1109/ACC.2005.1470084
    1. McLanahan ED, Andersen ME, Fisher JW. A biologically based dose-response model for dietary iodide and the hypothalamic-pituitary-thyroid axis in the adult rat: evaluation of iodide deficiency. Toxicol Sci (2008) 102:241–53.10.1093/toxsci/kfm312
    1. Eisenberg M, Samuels M, DiStefano JJ. Extensions, validation, and clinical applications of a feedback control system simulator of the hypothalamo-pituitary-thyroid axis. Thyroid (2008) 18:1071–85.10.1089/thy.2007.0388
    1. Eisenberg MC, Santini F, Marsili A, Pinchera A, DiStefano JJ. TSH regulation dynamics in central and extreme primary hypothyroidism. Thyroid (2010) 20:1215–28.10.1089/thy.2009.0349
    1. Clark PMS, Holder RL, Haque SM, Hobbs FDR, Roberts LM, Franklyn JA. The relationship between serum TSH and free T4 in older people. J Clin Pathol (2012) 65:463–5.10.1136/jclinpath-2011-200433
    1. Jonklaas J, Sathasivam A, Wang H, Gu J, Burman KD, Soldin SJ. Total and free thyroxine and triiodothyronine: measurement discrepancies, particularly in inpatients. Clin Biochem (2014) 47:1272–8.10.1016/j.clinbiochem.2014.06.007
    1. Goede SL, Leow MKS, Smit JWA, Dietrich JW. A novel minimal mathematical model of the hypothalamus-pituitary-thyroid axis validated for individualized clinical applications. Math Biosci (2014) 249:1–7.10.1016/j.mbs.2014.01.001
    1. DiStefano JJ, III, Stear EB. Neuroendocrine control of thyroid secretion in living systems: a feedback control system model. Bull Math Biophys (1968) 30:3–26.10.1007/BF02476936
    1. DiStefano JJ, Chang RF. Computer simulation of thyroid hormone binding, distribution, and disposal dynamics in man. Am J Physiol (1971) 221:1529–44.
    1. Hatakeyama T, Yagi H. Computer simulation for hormones related to primary thyropathy. Biol Cybern (1985) 52:259–66.10.1007/BF00336982
    1. Sorribas A, González A. The power-law formalism as a tool for modeling hormonal systems. J Theor Med (1999) 2:19–38.10.1080/17486709909490786
    1. Dietrich JW, Tesche A, Pickardt CR, Mitzdorf U. Fractal properties of the thyrotropic feedback control implications of a nonlinear model compared with empirical data. Proc Cybern Syst (2002) 2:329–34.10.13140/2.1.1351.6803
    1. Goede SL, Leow MKS, Smit JWA, Klein HH, Dietrich JW. Hypothalamus-pituitary-thyroid feedback control: implications of mathematical modeling and consequences for thyrotropin (TSH) and free thyroxine (FT4) reference ranges. Bull Math Biol (2014) 76:1270–87.10.1007/s11538-014-9955-5
    1. Reichlin S, Utiger RD. Regulation of the pituitary-thyroid axis in man: relationship of TSH concentration to concentration of free and total thyroxine in plasma. J Clin Endocrinol Metab (1967) 27:251–5.10.1210/jcem-27-2-251
    1. Korte W, Engler H, Riesen WF, Brinkmann T. Performance evaluation of the Access FT3 and FT4 assays, comparison with Immulite and AxSym, and the relationship to TSH values. Clin Lab (2012) 58:645–57.10.7754/Clin.Lab.2011.110705
    1. Thienpont LM, Van Uytfanghe K, Poppe K, Velkeniers B. Determination of free thyroid hormones. Best Pract Res Clin Endocrinol Metab (2013) 27:689–700.10.1016/j.beem.2013.05.012
    1. Larisch R, Giacobino A, Eckl WA, Wahl HG, Midgley JEM, Hoermann R. Reference range for thyrotropin. Post hoc assessment. Nuklearmedizin (2015) 54:112–7.10.3413/Nukmed-0671-14-06
    1. Larisch R, Schulte S, Hildenbrand G, Hoermann R. The role of thyroid hormones in anxiety and depression (Abstract). Nuklearmedizin (2015) 53:V162.
    1. Lazar MA. Thyroid hormone action: a binding contract. J Clin Invest (2003) 112:497–9.10.1172/JCI19479
    1. Cheng S-Y, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev (2010) 31:139–70.10.1210/er.2009-0007
    1. Chiamolera MI, Sidhaye AR, Matsumoto S, He Q, Hashimoto K, Ortiga-Carvalho TM, et al. Fundamentally distinct roles of thyroid hormone receptor isoforms in a thyrotroph cell line are due to differential DNA binding. Mol Endocrinol (2012) 26:926–39.10.1210/me.2011-1290
    1. Dumitrescu AM, Refetoff S. The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta (2013) 1830:3987–4003.10.1016/j.bbagen.2012.08.005
    1. Astapova I, Hollenberg AN. The in vivo role of nuclear receptor corepressors in thyroid hormone action. Biochim Biophys Acta (2013) 1830:3876–81.10.1016/j.bbagen.2012.07.001
    1. Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol (2014) 10:582–91.10.1038/nrendo.2014.143
    1. Wan W, Farboud B, Privalsky ML. Pituitary resistance to thyroid hormone syndrome is associated with T3 receptor mutants that selectively impair beta2 isoform function. Mol Endocrinol (2005) 19:1529–42.10.1210/me.2005-0014
    1. Lee S, Young BM, Wan W, Chan IH, Privalsky ML. A mechanism for pituitary-resistance to thyroid hormone (PRTH) syndrome: a loss in cooperative coactivator contacts by thyroid hormone receptor (TR)beta2. Mol Endocrinol (2011) 25:1111–25.10.1210/me.2010-0448
    1. Beech SG, Walker SW, Arthur JR, Lee D, Beckett GJ. Differential control of type-I iodothyronine deiodinase expression by the activation of the cyclic AMP and phosphoinositol signalling pathways in cultured human thyrocytes. J Mol Endocrinol (1995) 14:171–7.10.1677/jme.0.0140171
    1. Escobar-Morreale HF, Obregón MJ, Hernandez A, Escobar del Rey F, Morereale de Escobar G. Regulation of iodothyronine deiodinase activity as studied in thyroidectomized rats infused with thyroxine or triiodothyronine. Endocrinology (1997) 138:2559–68.10.1210/endo.138.6.5212
    1. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev (2002) 23:38–89.10.1210/edrv.23.1.0455
    1. Wagner MS, Morimoto R, Dora JM, Benneman A, Pavan R, Maia AL. Hypothyroidism induces type 2 iodothyronine deiodinase expression in mouse heart and testis. J Mol Endocrinol (2003) 31:541–50.10.1677/jme.0.0310541
    1. Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest (2006) 116:2571–9.10.1172/JCI29812
    1. Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev (2008) 29:898–938.10.1210/er.2008-0019
    1. Salvatore D. Deiodinases: keeping the thyroid hormone supply in balance. J Endocrinol (2011) 209:259–60.10.1530/JOE-11-0058
    1. Darras VM, Van Herck SLJ. Iodothyronine deiodinase structure and function: from ascidians to humans. J Endocrinol (2012) 215:189–206.10.1530/JOE-12-0204
    1. Abdalla SM, Bianco AC. Defending plasma T3 is a biological priority. Clin Endocrinol (Oxf) (2014) 81:633–41.10.1111/cen.12538
    1. Werneck de Castro JP, Fonseca TL, Ueta CB, McAninch EA, Abdalla SM, Wittmann G, et al. Differences in hypothalamic type 2 deiodinase ubiquitination explain localized sensitivity to thyroxine. J Clin Invest (2015) 125:769–81.10.1172/JCI77588
    1. Visser WE, Friesema ECH, Visser TJ. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol (2011) 25:1–14.10.1210/me.2010-0095
    1. Takeshige K, Sekido T, Kitahara J-I, Ohkubo Y, Hiwatashi D, Ishii H, et al. Cytosolic T3-binding protein modulates dynamic alteration of T3-mediated gene expression in cells. Endocr J (2014) 61(6):561–70.10.1507/endocrj.EJ13-0418
    1. Herwig A, Campbell G, Mayer C-D, Boelen A, Anderson RA, Ross AW, et al. A thyroid hormone challenge in hypothyroid rats identifies T3 regulated genes in the hypothalamus and in models with altered energy balance and glucose homeostasis. Thyroid (2014) 24:1575–93.10.1089/thy.2014.0169
    1. Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol Rev (2002) 82:473–502.10.1152/physrev.00031.2001
    1. Yamada M, Satoh T, Mori M. Mice lacking the thyrotropin-releasing hormone gene: what do they tell us? Thyroid (2003) 13:1111–21.10.1089/10507250360731505
    1. Nikrodhanond AA, Ortiga-Carvalho TM, Shibusawa N, Hashimoto K, Liao X-H, Refetoff S, et al. Dominant role of thyrotropin-releasing hormone in the hypothalamic-pituitary-thyroid axis. J Biol Chem (2006) 281:5000–7.10.1074/jbc.M511530200
    1. Costa-e-Sousa RH, Astapova I, Ye F, Wondisford FE, Hollenberg AN. The thyroid axis is regulated by NCoR1 via its actions in the pituitary. Endocrinology (2012) 153:5049–57.10.1210/en.2012-1504
    1. Estrada JM, Soldin D, Buckey TM, Burman KD, Soldin OP. Thyrotropin isoforms: implications for thyrotropin analysis and clinical practice. Thyroid (2014) 24:411–23.10.1089/thy.2013.0119
    1. Ikegami K, Liao X-H, Hoshino Y, Ono H, Ota W, Ito Y, et al. Tissue-specific posttranslational modification allows functional targeting of thyrotropin. Cell Rep (2014) 9:801–10.10.1016/j.celrep.2014.10.006
    1. Lechan RM, Fekete C. The TRH neuron: a hypothalamic integrator of energy metabolism. Prog Brain Res (2006) 153:209–35.10.1016/S0079-6123(06)53012-2
    1. Fekete C, Lechan RM. Negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) synthesizing neurons: role of neuronal afferents and type 2 deiodinase. Front Neuroendocrinol (2007) 28:97–114.10.1016/j.yfrne.2007.04.002
    1. Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev (2014) 35:159–94.10.1210/er.2013-1087
    1. Fekete C, Mihály E, Luo LG, Kelly J, Clausen JT, Mao Q, et al. Association of cocaine- and amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic-pituitary-thyroid axis during fasting. J Neurosci (2000) 20:9224–34.
    1. Fekete C, Gereben B, Doleschall M, Harney JW, Dora JM, Bianco AC, et al. Lipopolysaccharide induces type 2 iodothyronine deiodinase in the mediobasal hypothalamus: implications for the nonthyroidal illness syndrome. Endocrinology (2004) 145:1649–55.10.1210/en.2003-1439
    1. Joseph-Bravo P. Hypophysiotropic thyrotropin-releasing hormone neurons as transducers of energy homeostasis. Endocrinology (2004) 145:4813–5.10.1210/en.2004-0979
    1. Mebis L, Debaveye Y, Ellger B, Derde S, Ververs E-J, Langouche L, et al. Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness. Crit Care (2009) 13:R147.10.1186/cc8043
    1. Prummel MF, Brokken LJS, Meduri G, Misrahi M, Bakker O, Wiersinga WM. Expression of the thyroid-stimulating hormone receptor in the folliculo-stellate cells of the human anterior pituitary. J Clin Endocrinol Metab (2000) 85:4347–53.10.1210/jcem.85.11.6991
    1. Prummel MF, Brokken LJS, Wiersinga WM. Ultra short-loop feedback control of thyrotropin secretion. Thyroid (2004) 14:825–9.10.1089/thy.2004.14.825
    1. Brokken LJS, Bakker O, Wiersinga WM, Prummel MF. Functional thyrotropin receptor expression in the pituitary folliculo-stellate cell line TtT/GF. Exp Clin Endocrinol Diabetes (2005) 113:13–20.10.1055/s-2004-830516
    1. Chiamolera MI, Wondisford FE. Minireview: thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology (2009) 150:1091–6.10.1210/en.2008-1795
    1. Marsili A, Sanchez E, Singru P, Harney JW, Zavacki AM, Lechan RM, et al. Thyroxine-induced expression of pyroglutamyl peptidase II and inhibition of TSH release precedes suppression of TRH mRNA and requires type 2 deiodinase. J Endocrinol (2011) 211:73–8.10.1530/JOE-11-0248
    1. Fonseca TL, Correa-Medina M, Campos MPO, Wittmann G, Werneck de Castro JP, Arrojo e Drigo R, et al. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J Clin Invest (2013) 123:1492–500.10.1172/JCI61231
    1. Luongo C, Martin C, Vella K, Marsili A, Ambrosio R, Dentice M, et al. The selective loss of the type 2 iodothyronine deiodinase in mouse thyrotrophs increases basal TSH but blunts the thyrotropin response to hypothyroidism. Endocrinology (2015) 156:745–54.10.1210/en.2014-1698
    1. Schneider MJ, Fiering SN, Pallud SE, Parlow AF, St Germain DL, Galton VA. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol (2001) 15:2137–48.10.1210/mend.15.12.0740
    1. Wagner MS, Wajner SM, Dora JM, Maia AL. Regulation of Dio2 gene expression by thyroid hormones in normal and type 1 deiodinase-deficient C3H mice. J Endocrinol (2007) 193:435–44.10.1677/JOE-07-0099
    1. Galton VA, de Waard E, Parlow AF, St Germain DL, Hernández A. Life without the iodothyronine deiodinases. Endocrinology (2014) 155:4081–7.10.1210/en.2014-1184
    1. Carle A, Laurberg P, Pedersen IB, Perrild H, Ovesen L, Rasmussen LB, et al. Age modifies the pituitary TSH response to thyroid failure. Thyroid (2007) 17:139–44.10.1089/thy.2006.0191
    1. Vadiveloo T, Donnan PT, Murphy MJ, Leese GP. Age- and gender-specific TSH reference intervals in people with no obvious thyroid disease in Tayside, Scotland: the Thyroid Epidemiology, Audit, and Research Study (TEARS). J Clin Endocrinol Metab (2013) 98:1147–53.10.1210/jc.2012-3191
    1. Over R, Mannan S, Nsouli-Maktabi H, Burman KD, Jonklaas J. Age and the thyrotropin response to hypothyroxinemia. J Clin Endocrinol Metab (2010) 95:3675–83.10.1210/jc.2010-0281
    1. Surks MI, Boucai L. Age- and race-based serum thyrotropin reference limits. J Clin Endocrinol Metab (2010) 95:496–502.10.1210/jc.2009-1845
    1. Bremner AP, Feddema P, Leedman PJ, Brown SJ, Beilby JP, Lim EM, et al. Age-related changes in thyroid function: a longitudinal study of a community-based cohort. J Clin Endocrinol Metab (2012) 97:1554–62.10.1210/jc.2011-3020
    1. Asvold BO, Bjøro T, Vatten LJ. Association of serum TSH with high body mass differs between smokers and never-smokers. J Clin Endocrinol Metab (2009) 94:5023–7.10.1210/jc.2009-1180
    1. Agnihothri RV, Courville AB, Linderman JD, Smith S, Brychta R, Remaley A, et al. Moderate weight loss is sufficient to affect thyroid hormone homeostasis and inhibit its peripheral conversion. Thyroid (2014) 24:19–26.10.1089/thy.2013.0055
    1. Knudsen N, Laurberg P, Rasmussen LB, Bülow I, Perrild H, Ovesen L, et al. Small differences in thyroid function may be important for body mass index and the occurrence of obesity in the population. J Clin Endocrinol Metab (2005) 90:4019–24.10.1210/jc.2004-2225
    1. Roef GL, Rietzschel ER, Van Daele CM, Taes YE, De Buyzere ML, Gillebert TC, et al. Triiodothyronine and free thyroxine levels are differentially associated with metabolic profile and adiposity-related cardiovascular risk markers in euthyroid middle-aged subjects. Thyroid (2014) 24:223–31.10.1089/thy.2013.0314
    1. Ehrenkranz J, Bach PR, Snow GL, Schneider A, Lee JL, Ilstrup S, et al. Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid (2015) 25:954–61.10.1089/thy.2014.0589
    1. Dietrich JW, Landgrafe G, Fotiadou EH. TSH and thyrotropic agonists: key actors in thyroid homeostasis. J Thyroid Res (2012) 2012:1–29.10.1155/2012/351864
    1. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. Executive summary to EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev (2015) 28:er20151093.10.1210/er.2015-1093
    1. Jugan M-L, Levi Y, Blondeau J-P. Endocrine disruptors and thyroid hormone physiology. Biochem Pharmacol (2010) 79:939–47.10.1016/j.bcp.2009.11.006
    1. Pariante CM. Risk factors for development of depression and psychosis. Ann N Y Acad Sci (2009) 1179:144–52.10.1111/j.1749-6632.2009.04978.x
    1. Hage MP, Azar ST. The link between thyroid function and depression. J Thyroid Res (2012) 2012:590648–590648.10.1155/2012/590648
    1. Stouthard JM, van der Poll T, Endert E, Bakker PJ, Veenhof CH, Sauerwein HP, et al. Effects of acute and chronic interleukin-6 administration on thyroid hormone metabolism in humans. J Clin Endocrinol Metab (1994) 79:1342–6.10.1210/jcem.79.5.7962327
    1. Bjergved L, Jørgensen T, Perrild H, Carle A, Cerqueira C, Krejbjerg A, et al. Predictors of change in serum TSH after iodine fortification: an 11-year follow-up to the DanThyr study. J Clin Endocrinol Metab (2012) 97:4022–9.10.1210/jc.2012-2508
    1. Hoermann R, Schumm-Draeger P-MM, Rehbach K, Mann K. Asialoagalacto-human chorionic gonadotropin, a carbohydrate-modified variant of human chorionic gonadotropin, antagonizes the stimulatory actions of bovine thyroid-stimulating hormone on thyroid function and HLA-DR expression in human thyroid in vitro and in vivo. J Clin Invest (1991) 88:1947–54.10.1172/JCI115519
    1. Hoermann R, Broecker-Preuss M, Grossmann M, Mann K, Derwahl K-M. Interaction of human chorionic gonadotropin (hCG) and asialo-hCG with recombinant human thyrotropin receptor. J Clin Endocrinol Metab (1994) 78:933–8.10.1210/jcem.78.4.8157724
    1. Kato K, Mostafa MH, Mann K, Schindler AE, Hoermann R. The human chorionic gonadotropin molecule from patients with trophoblastic diseases has a high thyrotropic activity but is less active in the ovary. Gynecol Endocrinol (2004) 18:269–77.10.1080/09513590410001667247
    1. Vassart G, Dumont JE. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev (1992) 13:596–611.10.1210/edrv-13-3-596
    1. Brabant G, Prank K, Ranft U, Schuermeyer T, Wagner TO, Hauser H, et al. Physiological regulation of circadian and pulsatile thyrotropin secretion in normal man and woman. J Clin Endocrinol Metab (1990) 70:403–9.10.1210/jcem-70-2-403
    1. Samuels MH, Veldhuis JD, Henry P, Ridgway EC. Pathophysiology of pulsatile and copulsatile release of thyroid-stimulating hormone, luteinizing hormone, follicle-stimulating hormone, and alpha-subunit. J Clin Endocrinol Metab (1990) 71:425–32.10.1210/jcem-71-2-425
    1. Samuels MH, Henry P, Luther M, Ridgway EC. Pulsatile TSH secretion during 48-hour continuous TRH infusions. Thyroid (1993) 3:201–6.10.1089/thy.1993.3.201
    1. Krsmanovic LZ, Hu L, Leung P-K, Feng H, Catt KJ. The hypothalamic GnRH pulse generator: multiple regulatory mechanisms. Trends Endocrinol Metab (2009) 20:402–8.10.1016/j.tem.2009.05.002
    1. Fliers E, Kalsbeek A, Boelen A. Beyond the fixed setpoint of the hypothalamus-pituitary-thyroid axis. Eur J Endocrinol (2014) 171:R197–208.10.1530/EJE-14-0285
    1. Van den Berghe G. Non-thyroidal illness in the ICU: a syndrome with different faces. Thyroid (2014) 24:1456–65.10.1089/thy.2014.0201
    1. Dayan CM, Panicker V. Novel insights into thyroid hormones from the study of common genetic variation. Nat Rev Endocrinol (2009) 5:211–8.10.1038/nrendo.2009.19
    1. Hoftijzer HC, Heemstra KA, Visser TJ, le Cessie S, Peeters RP, Corssmit EPM, et al. The type 2 deiodinase ORFa-Gly3Asp polymorphism (rs12885300) influences the set point of the hypothalamus-pituitary-thyroid axis in patients treated for differentiated thyroid carcinoma. J Clin Endocrinol Metab (2011) 96:E1527–33.10.1210/jc.2011-0235
    1. Verburg FA, Smit JWA, Grelle I, Visser TJ, Peeters RP, Reiners C. Changes within the thyroid axis after long-term TSH-suppressive levothyroxine therapy. Clin Endocrinol (Oxf) (2012) 76:577–81.10.1111/j.1365-2265.2011.04262.x
    1. Midgley JEM, Larisch R, Dietrich JW, Hoermann R. Variation in the biochemical response to L-thyroxine therapy and relationship with peripheral thyroid hormone conversion. Endocr Connect (2015) 4:196–205.10.1530/EC-15-0056
    1. Hoermann R, Midgley JEM, Larisch R, Dietrich JW. Is pituitary TSH an adequate measure of thyroid hormone-controlled homoeostasis during thyroxine treatment? Eur J Endocrinol (2013) 168:271–80.10.1530/EJE-12-0819
    1. Hoermann R, Midgley JEM, Larisch R, Dietrich JW. Integration of peripheral and glandular regulation of triiodothyronine production by thyrotropin in untreated and thyroxine-treated subjects. Horm Metab Res (2015) 47:674–80.10.1055/s-0034-1398616
    1. Wu SY. Thyrotropin-mediated induction of thyroidal iodothyronine monodeiodinases in the dog. Endocrinology (1983) 112:417–24.10.1210/endo-112-2-417
    1. Ishii H, Inada M, Tanaka K, Mashio Y, Naito K, Nishikawa M, et al. Induction of outer and inner ring monodeiodinases in human thyroid gland by thyrotropin. J Clin Endocrinol Metab (1983) 57:500–5.10.1210/jcem-57-3-500
    1. Köhrle J. Thyrotropin (TSH) action on thyroid hormone deiodination and secretion: one aspect of thyrotropin regulation of thyroid cell biology. Horm Metab Res Suppl (1990) 23:18–28.
    1. Murakami M, Kamiya Y, Morimura T, Araki O, Imamura M, Ogiwara T, et al. Thyrotropin receptors in brown adipose tissue: thyrotropin stimulates type II iodothyronine deiodinase and uncoupling protein-1 in brown adipocytes. Endocrinology (2001) 142:1195–201.10.1210/endo.142.3.8012
    1. Morimura T, Tsunekawa K, Kasahara T, Seki K, Ogiwara T, Mori M, et al. Expression of type 2 iodothyronine deiodinase in human osteoblast is stimulated by thyrotropin. Endocrinology (2005) 146:2077–84.10.1210/en.2004-1432
    1. Koenig RJ. Regulation of type 1 iodothyronine deiodinase in health and disease. Thyroid (2005) 15:835–40.10.1089/thy.2005.15.835
    1. Maia AL, Goemann IM, Meyer ELS, Wajner SM. Type 1 iodothyronine deiodinase in human physiology and disease: deiodinases: the balance of thyroid hormone. J Endocrinol (2011) 209:283–97.10.1530/JOE-10-0481
    1. Greenspan SL, Klibanski A, Schoenfeld D, Ridgway EC. Pulsatile secretion of thyrotropin in man. J Clin Endocrinol Metab (1986) 63:661–8.10.1210/jcem-63-3-661
    1. Lalli E, Sassone-Corsi P. Thyroid-stimulating hormone (TSH)-directed induction of the CREM gene in the thyroid gland participates in the long-term desensitization of the TSH receptor. Proc Natl Acad Sci U S A (1995) 92:9633–7.10.1073/pnas.92.21.9633
    1. Nagayama Y, Tanaka K, Hara T, Namba H, Yamashita S, Taniyama K, et al. Involvement of G protein-coupled receptor kinase 5 in homologous desensitization of the thyrotropin receptor. J Biol Chem (1996) 271:10143–8.10.1074/jbc.271.17.10143
    1. Saji M, Ikuyama S, Akamizu T, Kohn LD. Increases in cytosolic Ca++ down regulate thyrotropin receptor gene expression by a mechanism different from the cAMP signal. Biochem Biophys Res Commun (1991) 176:94–101.10.1016/0006-291X(91)90894-D
    1. Donadio S, Pascual A, Thijssen JHH, Ronin C. Feasibility study of new calibrators for thyroid-stimulating hormone (TSH) immunoprocedures based on remodeling of recombinant TSH to mimic glycoforms circulating in patients with thyroid disorders. Clin Chem (2006) 52:286–97.10.1373/clinchem.2005.058172
    1. Persani L, Borgato S, Romoli R, Asteria C, Pizzocaro A, Beck-Peccoz P. Changes in the degree of sialylation of carbohydrate chains modify the biological properties of circulating thyrotropin isoforms in various physiological and pathological states. J Clin Endocrinol Metab (1998) 83:2486–92.10.1210/jc.83.7.2486
    1. Maes M, Mommen K, Hendrickx D, Peeters D, D’Hondt P, Ranjan R, et al. Components of biological variation, including seasonality, in blood concentrations of TSH, TT3, FT4, PRL, cortisol and testosterone in healthy volunteers. Clin Endocrinol (Oxf) (1997) 46:587–98.10.1046/j.1365-2265.1997.1881002.x
    1. Russell W, Harrison RF, Smith N, Darzy K, Shalet S, Weetman AP, et al. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J Clin Endocrinol Metab (2008) 93:2300–6.10.1210/jc.2007-2674
    1. Roelfsema F, Pereira AM, Adriaanse R, Endert E, Fliers E, Romijn JA, et al. Thyrotropin secretion in mild and severe primary hypothyroidism is distinguished by amplified burst mass and basal secretion with increased spikiness and approximate entropy. J Clin Endocrinol Metab (2010) 95:928–34.10.1210/jc.2009-1959
    1. Denereaz N, Lemarchand-Beraud T. Severe but not mild alterations of thyroid function modulate the density of thyroid-stimulating hormone receptors in the rat thyroid gland. Endocrinology (1995) 136:1694–700.10.1210/endo.136.4.7895680
    1. Mariotti S, Barbesino G, Caturegli P, Bartalena L, Sansoni P, Fagnoni F, et al. Complex alteration of thyroid function in healthy centenarians. J Clin Endocrinol Metab (1993) 77:1130–4.10.1210/jcem.77.5.8077303
    1. Mariotti S, Franceschi C, Cossarizza A. The aging thyroid. Endocr Rev (1995) 16:686–715.10.1210/edrv-16-6-686
    1. Bowers J, Terrien J, Clerget-Froidevaux MS, Gothié JD, Rozing MP, Westendorp RGJ, et al. Thyroid hormone signaling and homeostasis during aging. Endocr Rev (2013) 34:556–89.10.1210/er.2012-1056
    1. Johner SA, Thamm M, Stehle P, Nöthlings U, Kriener E, Völzke H, et al. Interrelations between thyrotropin levels and iodine status in thyroid-healthy children. Thyroid (2014) 24:1071–9.10.1089/thy.2013.0480
    1. Führer D, Brix K, Biebermann H. [Thyroid hormone action beyond classical concepts. The priority programme “Thyroid Trans Act” (SPP 1629) of the German Research Foundation]. DMW (2014) 139:492–6.10.1055/s-0034-1369822
    1. Zucchi R, Chiellini G, Scanlan TS, Grandy DK. Trace amine-associated receptors and their ligands. Br J Pharmacol (2006) 149:967–78.10.1038/sj.bjp.0706948
    1. Peeters RP, Wouters PJ, van Toor H, Kaptein E, Visser TJ, Van den Berghe G. Serum 3,3’,5’-triiodothyronine (rT3) and 3,5,3’-triiodothyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities. J Clin Endocrinol Metab (2005) 90:4559–65.10.1210/jc.2005-0535
    1. Mendoza A, Navarrete-Ramírez P, Hernández-Puga G, Villalobos P, Holzer G, Renaud JP, et al. 3,5-T2 is an alternative ligand for the thyroid hormone receptor β1. Endocrinology (2013) 154:2948–58.10.1210/en.2013-1030
    1. Goglia F. The effects of 3,5-diiodothyronine on energy balance. Front Physiol (2014) 5:528.10.3389/fphys.2014.00528
    1. Pinna G, Meinhold H, Hiedra L, Thoma R, Hoell T, Gräf KJ, et al. Elevated 3,5-diiodothyronine concentrations in the sera of patients with nonthyroidal illnesses and brain tumors. J Clin Endocrinol Metab (1997) 82:1535–42.10.1210/jcem.82.5.3939
    1. Dietrich JW, Müller P, Schiedat F, Schlömicher M, Strauch J, Chatzitomaris A, et al. Nonthyroidal illness syndrome in cardiac illness involves elevated concentrations of 3,5-diiodothyronine and correlates with atrial remodeling. Eur Thyroid J (2015) 4:129–37.10.1159/000381543
    1. Engler D, Burger AG. The deiodination of the iodothyronines and of their derivatives in man. Endocr Rev (1984) 5:151–84.10.1210/edrv-5-2-151
    1. Piehl S, Hoefig CS, Scanlan TS, Köhrle J. Thyronamines – past, present, and future. Endocr Rev (2010) 32:1–17.10.1210/er.2009-0040
    1. Soffer RL, Hechtman P, Savage M. L-Triiodothyronine aminotransferase. J Biol Chem (1973) 248:1224–30.
    1. Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U, et al. Biosynthesis of 3-iodothyronamine from T4 in murine intestinal tissue. Endocrinology (2015) 156:4356–64.10.1210/en.2014-1499
    1. Messier N, Laflamme L, Hamann G, Langlois MF. In vitro effect of TRIAC on resistance to thyroid hormone receptor mutants: potential basis for therapy. Mol Cell Endocrinol (2001) 174:59–69.10.1016/S0303-7207(00)00446-9
    1. Lameloise N, Siegrist-Kaiser C, O’Connell M, Burger A. Differences between the effects of thyroxine and tetraiodothyroacetic acid on TSH suppression and cardiac hypertrophy. Eur J Endocrinol (2001) 144:145–54.10.1530/eje.0.1440145
    1. Kunitake JM, Hartman N, Henson LC, Lieberman J, Williams DE, Wong M, et al. 3,5,3’-triiodothyroacetic acid therapy for thyroid hormone resistance. J Clin Endocrinol Metab (1989) 69:461–6.10.1210/jcem-69-2-461
    1. Galli E, Marchini M, Saba A, Berti S, Tonacchera M, Vitti P, et al. Detection of 3-iodothyronamine in human patients: a preliminary study. J Clin Endocrinol Metab (2011) 97:E69–74.10.1210/jc.2011-1115
    1. Dinter J, Mühlhaus J, Jacobi SF, Wienchol CL, Cöster M, Meister J, et al. 3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling. J Mol Endocrinol (2015) 54:205–16.10.1530/JME-15-0003
    1. Liang H, Juge-Aubry CE, O’Connell M, Burger AG. Organ-specific effects of 3,5,3’-triiodothyroacetic acid in rats. Eur J Endocrinol (1997) 137:537–44.10.1530/eje.0.1370537
    1. Padron AS, Neto RAL, Pantaleão TU, de Souza dos Santos MC, Araujo RL, de Andrade BM, et al. Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J Endocrinol (2014) 221:415–27.10.1530/JOE-13-0502
    1. Jonas W, Lietzow J, Wohlgemuth F, Hoefig CS, Wiedmer P, Schweizer U, et al. 3,5-Diiodo-L-thyronine (3,5-T2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology (2015) 156:389–99.10.1210/en.2014-1604
    1. Caldwell G, Kellett HA, Gow SM, Beckett GJ, Sweeting VM, Seth J, et al. A new strategy for thyroid function testing. Lancet (1985) 1:1117–9.10.1016/S0140-6736(85)92429-8
    1. Dietrich JW, Fischer M, Jauch J, Pantke E, Gaertner R, Pickardt CR. SPINA-THYR: a novel systems theoretic approach to determine the secretion capacity of the thyroid gland. Europ J Int Med (1999) 10(Suppl 1):S34.
    1. Midgley JEM, Hoermann R. Measurement of total rather than free thyroxine in pregnancy: the diagnostic implications. Thyroid (2013) 23:259–61.10.1089/thy.2012.0469
    1. Laurberg P, Andersen S, Carlé A, Karmisholt J, Knudsen N, Pedersen IB. The TSH upper reference limit: where are we at? Nat Rev Endocrinol (2011) 7:232–9.10.1038/nrendo.2011.13
    1. Spencer CA, Schwarzbein D, Guttler RB, LoPresti JS, Nicoloff JT. Thyrotropin (TSH)-releasing hormone stimulation test responses employing third and fourth generation TSH assays. J Clin Endocrinol Metab (1993) 76:494–8.10.1210/jcem.76.2.8432796
    1. Walsh JP, Bremner AP, Bulsara MK, O’Leary P, Leedman PJ, Feddema P, et al. Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch Intern Med (2005) 165:2467–72.10.1001/archinte.165.21.2467
    1. Haymart MR, Repplinger DJ, Leverson GE, Elson DF, Sippel RS, Jaume JC, et al. Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage. J Clin Endocrinol Metab (2008) 93:809–14.10.1210/jc.2007-2215
    1. Ochs N, Auer R, Bauer DC, Nanchen D, Gussekloo J, Cornuz J, et al. Meta-analysis: subclinical thyroid dysfunction and the risk for coronary heart disease and mortality. Ann Intern Med (2008) 148:832–45.10.7326/0003-4819-148-11-200806030-00225
    1. Waring AC, Harrison S, Samuels MH, Ensrud KE, LeBLanc ES, Hoffman AR, et al. Thyroid function and mortality in older men: a prospective study. J Clin Endocrinol Metab (2012) 97:862–70.10.1210/jc.2011-2684
    1. Yeap BB, Alfonso H, Hankey GJ, Flicker L, Golledge J, Norman PE, et al. Higher free thyroxine levels are associated with all-cause mortality in euthyroid older men: the Health In Men Study. Eur J Endocrinol (2013) 169:401–8.10.1530/EJE-13-0306
    1. Taylor PN, Razvi S, Pearce SH, Dayan CM. Clinical review: a review of the clinical consequences of variation in thyroid function within the reference range. J Clin Endocrinol Metab (2013) 98:3562–71.10.1210/jc.2013-1315
    1. Tognini S, Pasqualetti G, Calsolaro V, Polini A, Caraccio N, Monzani F. Cardiovascular risk and quality of life in elderly people with mild thyroid hormone deficiency. Front Endocrinol (2014) 5:153.10.3389/fendo.2014.00153
    1. Gharib H, Tuttle RM, Baskin HJ, Fish LH, Singer PA, McDermott MT. Subclinical thyroid dysfunction: a joint statement on management from the American Association of Clinical Endocrinologists, the American Thyroid Association, and the Endocrine Society. J Clin Endocrinol Metab (2005) 90:581–5; discussion 586–7.10.1210/jc.2004-1231
    1. Biondi B, Cooper DS. The clinical significance of subclinical thyroid dysfunction. Endocr Rev (2008) 29:76–131.10.1210/er.2006-0043
    1. Pearce EN, Hennessey JV, McDermott MT. New American Thyroid Association and American Association of Clinical Endocrinologists guidelines for thyrotoxicosis and other forms of hyperthyroidism: significant progress for the clinician and a guide to future research. Thyroid (2011) 21:573–6.10.1089/thy.2011.0104
    1. Völzke H, Lüdemann J, Robinson DM, Spieker KW, Schwahn C, Kramer A, et al. The prevalence of undiagnosed thyroid disorders in a previously iodine-deficient area. Thyroid (2003) 13:803–10.10.1089/105072503768499680
    1. Wartofsky L, Dickey RA. The evidence for a narrower thyrotropin reference range is compelling. J Clin Endocrinol Metab (2005) 90:5483–8.10.1210/jc.2005-0455
    1. Brabant G, Beck-Peccoz P, Jarzab B, Laurberg P, Orgiazzi J, Szabolcs I, et al. Is there a need to redefine the upper normal limit of TSH? Eur J Endocrinol (2006) 154:633–7.10.1530/eje.1.02136
    1. Hoermann R, Midgley JEM. TSH measurement and its implications for personalised clinical decision-making. J Thyroid Res (2012) 2012:1–9.10.1089/thy.2008.0155
    1. Spencer CA, Hollowell JG, Kazarosyan M, Braverman LE. National Health and Nutrition Examination Survey III thyroid-stimulating hormone (TSH)-thyroperoxidase antibody relationships demonstrate that TSH upper reference limits may be skewed by occult thyroid dysfunction. J Clin Endocrinol Metab (2007) 92:4236–40.10.1210/jc.2007-0287
    1. Surks MI, Hollowell JG. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J Clin Endocrinol Metab (2007) 92:4575–82.10.1210/jc.2007-1499
    1. Andersen S, Bruun NH, Pedersen KM, Laurberg P. Biologic variation is important for interpretation of thyroid function tests. Thyroid (2003) 13:1069–78.10.1089/105072503770867237
    1. Karmisholt J, Andersen S, Laurberg P. Interval between tests and thyroxine estimation method influence outcome of monitoring of subclinical hypothyroidism. J Clin Endocrinol Metab (2008) 93:1634–40.10.1210/jc.2008-0101
    1. Karmisholt J, Andersen S, Laurberg P. Variation in thyroid function tests in patients with stable untreated subclinical hypothyroidism. Thyroid (2008) 18:303–8.10.1089/thy.2007.0241
    1. Karmisholt J, Andersen S, Laurberg P. Analytical goals for thyroid function tests when monitoring patients with untreated subclinical hypothyroidism. Scand J Clin Lab Invest (2010) 70:264–8.10.3109/00365511003782778
    1. Karmisholt J, Andersen S, Laurberg P. Variation in thyroid function in subclinical hypothyroidism: importance of clinical follow-up and therapy. Eur J Endocrinol (2011) 164:317–23.10.1530/EJE-10-1021
    1. Andersen S, Pedersen KM, Bruun NH, Laurberg P. Narrow individual variations in serum T(4) and T(3) in normal subjects: a clue to the understanding of subclinical thyroid disease. J Clin Endocrinol Metab (2002) 87:1068–72.10.1210/jcem.87.3.8165
    1. Kagedal B, Sandstroem A, Tibbling G. Determination of a trivariate reference region for free thyroxine index, free triiodothyronineindex, and thyrotropinfrom results obtained in a health survey of middle-aged women. Clin Chem (1978) 24:11744–50.
    1. Meier C, Maisey MN, Lowry A, Müller J, Smith MA. Interindividual differences in the pituitary-thyroid axis influence the interpretation of thyroid function tests. Clin Endocrinol (Oxf) (1993) 39:101–7.10.1111/j.1365-2265.1993.tb01758.x
    1. Jostel A, Ryder WDJ, Shalet SM. The use of thyroid function tests in the diagnosis of hypopituitarism: definition and evaluation of the TSH Index. Clin Endocrinol (Oxf) (2009) 71:529–34.10.1111/j.1365-2265.2009.03534.x
    1. Ross HA, Heijer den M, Hermus ARMM, Sweep FCGJ. Composite reference interval for thyroid-stimulating hormone and free thyroxine, comparison with common cutoff values, and reconsideration of subclinical thyroid disease. Clin Chem (2009) 55:2019–25.10.1373/clinchem.2009.124560
    1. Leow MKS, Goede SL. The homeostatic set point of the hypothalamus-pituitary-thyroid axis – maximum curvature theory for personalized euthyroid targets. Theor Biol Med Model (2014) 11:1–35.10.1186/1742-4682-11-35
    1. Fish LH, Schwartz HL, Cavanaugh J, Steffes MW, Bantle JP, Oppenheimer JH. Replacement dose, metabolism, and bioavailability of levothyroxine in the treatment of hypothyroidism. N Engl J Med (1987) 316:764–70.10.1056/NEJM198703263161302
    1. Woeber KA. Levothyroxine therapy and serum free thyroxine and free triiodothyronine concentrations. J Endocrinol Invest (2002) 25:106–9.10.1007/BF03343972
    1. Gullo D, Latina A, Frasca F, Le Moli R, Pellegriti G, Vigneri R. Levothyroxine monotherapy cannot guarantee euthyroidism in all athyreotic patients. PLoS One (2011) 6:e22552.10.1371/journal.pone.0022552
    1. Ito M, Miyauchi A, Morita S, Kudo T, Nishihara E, Kihara M, et al. TSH-suppressive doses of levothyroxine are required to achieve preoperative native serum triiodothyronine levels in patients who have undergone total thyroidectomy. Eur J Endocrinol (2012) 167:373–8.10.1530/EJE-11-1029
    1. Ito M, Miyauchi A, Kang S, Hisakado M, Yoshioka W, Ide A, et al. Effect of the presence of remnant thyroid tissue on the serum thyroid hormone balance in thyroidectomized patients. Eur J Endocrinol (2015) 173:1–8.10.1530/EJE-15-0138
    1. Solter D, Solter M. Benefit of combined triiodothyronine (LT(3)) and thyroxine (LT(4)) treatment in athyreotic patients unresponsive to LT(4) alone. Exp Clin Endocrinol Diabetes (2012) 120:121–3.10.1055/s-0031-1297253
    1. Escobar-Morreale HF, Obregón MJ, Escobar del Rey F, Morereale de Escobar G. Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats. J Clin Invest (1995) 96:2828–38.10.1172/JCI118353
    1. Escobar-Morreale HF, del Rey FE, Obregón MJ, de Escobar GM. Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomized rat. Endocrinology (1996) 137:2490–502.10.1210/endo.137.6.8641203
    1. Jansen S, Roelfsema F, van der Spoel E, Akintola A, Postmus I, Ballieux B, et al. Familial longevity is associated with higher tsh secretion and strong TSH-fT3 relationship. J Clin Endocrinol Metab (2015) 100(10):3806–13.10.1210/jc.2015-2624
    1. Wiersinga WM. Paradigm shifts in thyroid hormone replacement therapies for hypothyroidism. Nat Rev Endocrinol (2014) 10:164–74.10.1038/nrendo.2013.258
    1. Grozinsky-Glasberg S, Fraser A, Nahshoni E, Weizman A, Leibovici L. Thyroxine-triiodothyronine combination therapy versus thyroxine monotherapy for clinical hypothyroidism: meta-analysis of randomized controlled trials. J Clin Endocrinol Metab (2006) 91:2592–9.10.1210/jc.2006-0448
    1. Fraser CG, Hyltoft Peterson P, Larsen ML. Setting analytical goals for random analytical error in specific clinical monitoring situations. Clin Chem (1990) 36:1625–8.
    1. Biondi B, Wartofsky L. Combination treatment with T4 and T3: toward personalized replacement therapy in hypothyroidism? J Clin Endocrinol Metab (2012) 97:2256–71.10.1210/jc.2011-3399
    1. Jonklaas J, Burman KD, Bianco AC. American Thyroid Association Spring 2013 Program Committee. Treatment of hypothyroidism: possibilities on the horizon. Thyroid (2013) 23:ix–xi.10.1089/thy.2013.0171
    1. Biondi B, Wartofsky L. Treatment with thyroid hormone. Endocr Rev (2014) 35:433–512.10.1210/er.2013-1083
    1. Burch HB, Burman KD, Cooper DS, Hennessey JV. A 2013 survey of clinical practice patterns in the management of primary hypothyroidism. J Clin Endocrinol Metab (2014) 99:2077–85.10.1210/jc.2014-1046
    1. Thienpont LM, Van Uytfanghe K, Beastall G, Faix JD, Ieiri T, Miller WG, et al. Report of the IFCC Working Group for Standardization of Thyroid Function Tests; part 2: free thyroxine and free triiodothyronine. Clin Chem (2010) 56:912–20.10.1373/clinchem.2009.140194

Source: PubMed

3
Subscribe