Correlation Analysis between Polysomnography Diagnostic Indices and Heart Rate Variability Parameters among Patients with Obstructive Sleep Apnea Hypopnea Syndrome

Xuehao Gong, Leidan Huang, Xin Liu, Chunyue Li, Xuhua Mao, Weizong Liu, Xian Huang, Haiting Chu, Yumei Wang, Wanqing Wu, Jun Lu, Xuehao Gong, Leidan Huang, Xin Liu, Chunyue Li, Xuhua Mao, Weizong Liu, Xian Huang, Haiting Chu, Yumei Wang, Wanqing Wu, Jun Lu

Abstract

Heart rate variability (HRV) can reflect the changes in the autonomic nervous system (ANS) that are affected by apnea or hypopnea events among patients with obstructive sleep apnea hypopnea syndrome (OSAHS). To evaluate the possibility of using HRV to screen for OSAHS, we investigated the relationship between HRV and polysomnography (PSG) diagnostic indices using electrocardiography (ECG) and PSG data from 25 patients with OSAHS and 27 healthy participants. We evaluated the relationship between various PSG diagnostic indices (including the apnea hypopnea index [AHI], micro-arousal index [MI], oxygen desaturation index [ODI]) and heart rate variability (HRV) parameters using Spearman's correlation analysis. Moreover, we used multiple linear regression analyses to construct linear models for the AHI, MI, and ODI. In our analysis, the AHI was significantly associated with relative powers of very low frequency (VLF [%]) (r = 0.641, P = 0.001), relative powers of high frequency (HF [%]) (r = -0.586, P = 0.002), ratio between low frequency and high frequency powers (LF/HF) (r = 0.545, P = 0.049), normalized powers of low frequency (LF [n.u.]) (r = 0.506, P = 0.004), and normalized powers of high frequency (HF [n.u.]) (r = -0.506, P = 0.010) among patients with OSAHS. The MI was significantly related to standard deviation of RR intervals (SDNN) (r = 0.550, P = 0.031), VLF [%] (r = 0.626, P = 0.001), HF [%] (r = -0.632, P = 0.001), LF/HF (r = 0.591, P = 0.011), LF [n.u.] (r = 0.553, P = 0.004), HF [n.u.] (r = -0.553, P = 0.004), and absolute powers of very low frequency (VLF [abs]) (r = 0.525, P = 0.007) among patients with OSAHS. The ODI was significantly correlated with VLF [%] (r = 0.617, P = 0.001), HF [%] (r = -0.574, P = 0.003), LF [n.u.] (r = 0.510, P = 0.012), and HF [n.u.] (r = -0.510, P = 0.012) among patients with OSAHS. The linear models for the PSG diagnostic indices were AHI = -38.357+1.318VLF [%], MI = -13.389+11.297LF/HF+0.266SDNN, and ODI = -55.588+1.715VLF [%]. However, the PSG diagnostic indices were not related to the HRV parameters among healthy participants. Our analysis suggests that HRV parameters are powerful tools to screen for OSAHS patients in place of PSG monitoring.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. The relationship between the frequency…
Fig 1. The relationship between the frequency domain parameters and the AHI with regard to the OSAHS group.
(A) Scatterplot of VLF [%] with AHI; (B) Scatterplot of HF [%] with AHI; (C) Scatterplot of LF/HF with AHI; (D) Scatterplot of LF [n.u.] with AHI; (E) Scatterplot of HF [n.u.] with AHI.
Fig 2. The relationship between the HRV…
Fig 2. The relationship between the HRV domain parameters and the MI regarding the OSAHS group.
(A) Scatterplot of SDNN with MI; (B) Scatterplot of VLF [%] with MI; (C) Scatterplot of HF [%] with MI; (D) Scatterplot of LF/HF with MI; (E) Scatterplot of LF [n.u.] with MI; (F) Scatterplot of HF [n.u.] with MI; (G) Scatterplot of VLF [abs] with MI.
Fig 3. The relationship between the frequency…
Fig 3. The relationship between the frequency domain parameters and the ODI with regard to the OSAHS group.
(A) Scatterplot of VLF [%] with ODI; (B) Scatterplot of HF [%] with ODI; (C) Scatterplot of LF [n.u.] with ODI; (D) Scatterplot of HF [n.u.] with ODI.

References

    1. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. New England Journal of Medicine. 1993;328(17):1230–5.
    1. Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S, et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. Jama. 2000;283(14):1829–36. .
    1. Arzt M, Young T, Finn L, Skatrud JB, Bradley TD. Association of sleep-disordered breathing and the occurrence of stroke. Am J Respir Crit Care Med. 2005;172(11):1447–51. 10.1164/rccm.200505-702OC
    1. Peker Y, Carlson J, Hedner J. Increased incidence of coronary artery disease in sleep apnoea: a long-term follow-up. European Respiratory Journal. 2006;28(3):596–602.
    1. Shahar E, Whitney CW, REdline S, Lee ET, Newman AB, Javier Nieto F, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. American journal of respiratory and critical care medicine. 2001;163(1):19–25.
    1. Gami AS, Hodge DO, Herges RM, Olson EJ, Nykodym J, Kara T, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. Journal of the American College of Cardiology. 2007;49(5):565–71. 10.1016/j.jacc.2006.08.060 .
    1. Reichmuth KJ, Austin D, Skatrud JB, Young T. Association of sleep apnea and type II diabetes: a population-based study. Am J Respir Crit Care Med. 2005;172(12):1590–5. 10.1164/rccm.200504-637OC
    1. Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KS. Obstructive sleep apnea is independently associated with insulin resistance. American journal of respiratory and critical care medicine. 2002;165(5):670–6.
    1. Sateia MJ. Neuropsychological impairment and quality of life in obstructive sleep apnea. Clinics in chest medicine. 2003;24(2):249–59. .
    1. Saunamaki T, Jehkonen M. Depression and anxiety in obstructive sleep apnea syndrome: a review. Acta neurologica Scandinavica. 2007;116(5):277–88. 10.1111/j.1600-0404.2007.00901.x .
    1. Teran-Santos J, Jimenez-Gomez A, Cordero-Guevara J. The association between sleep apnea and the risk of traffic accidents. New England Journal of Medicine. 1999;340(11):847–51.
    1. Albarrak M, Banno K, Sabbagh A, Delaive K, Walld R, Manfreda J, et al. Utilization of healthcare resources in obstructive sleep apnea syndrome: a 5-year follow-up study in men using CPAP. SLEEP-NEW YORK THEN WESTCHESTER-. 2005;28(10):1306.
    1. American Sleep Disorders Association. Diagnostic Classification Steering Committee. The International classification of sleep disorders: diagnostic and coding manual. Rochester, Minn.: American Sleep Disorders Association; 1990. xii, 396 p. p.
    1. Kushida CA, Littner MR, Morgenthaler T, Alessi CA, Bailey D, Coleman J Jr., et al. Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep. 2005;28(4):499–521. .
    1. Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Medical and biological engineering and computing. 2006;44(12):1031–51.
    1. Guilleminault C, Winkle R, Connolly S, Melvin K, Tilkian A. Cyclical variation of the heart rate in sleep apnoea syndrome: Mechanisms, and usefulness of 24 h electrocardiography as a screening technique. The Lancet. 1984;323(8369):126–31.
    1. Park D-H, Shin C-J, Hong S-C, Yu J, Ryu S-H, Kim E-J, et al. Correlation between the severity of obstructive sleep apnea and heart rate variability indices. Journal of Korean medical science. 2008;23(2):226–31. 10.3346/jkms.2008.23.2.226
    1. Gula LJ, Krahn AD, Skanes A, Ferguson KA, George C, Yee R, et al. Heart rate variability in obstructive sleep apnea: a prospective study and frequency domain analysis. Annals of Noninvasive Electrocardiology. 2003;8(2):144–9.
    1. Olson EJ, Moore WR, Morgenthaler TI, Gay PC, Staats BA. Obstructive sleep apnea-hypopnea syndrome. Mayo Clinic proceedings. 2003;78(12):1545–52. 10.4065/78.12.1545 .
    1. Guilleminault C, Connolly S, Winkle R, Melvin K, Tilkian A. Cyclical variation of the heart rate in sleep apnoea syndrome. Mechanisms, and usefulness of 24 h electrocardiography as a screening technique. Lancet. 1984;1(8369):126–31. .
    1. Ewing DJ, Campbell IW, Clarke BF. The natural history of diabetic autonomic neuropathy. The Quarterly journal of medicine. 1980;49(193):95–108. .
    1. Tascilar E, Yokusoglu M, Dundaroz R, Baysan O, Ozturk S, Yozgat Y, et al. Cardiac autonomic imbalance in children with allergic rhinitis. The Tohoku journal of experimental medicine. 2009;219(3):187–91. .
    1. Roche F, Gaspoz JM, Court-Fortune I, Minini P, Pichot V, Duverney D, et al. Screening of obstructive sleep apnea syndrome by heart rate variability analysis. Circulation. 1999;100(13):1411–5. .
    1. Kim YS, Kim SY, Wu HW, Hwang G-S, Kim HJ. Clinical Implication of Heart Rate Variability in Obstructive Sleep Apnea Syndrome Patients. Journal of Craniofacial Surgery. 2015;26(5):1592–5. 10.1097/SCS.0000000000001782
    1. Pumprla J, Howorka K, Groves D, Chester M, Nolan J. Functional assessment of heart rate variability: physiological basis and practical applications. International journal of cardiology. 2002;84(1):1–14. .
    1. Aydin M, Altin R, Ozeren A, Kart L, Bilge M, Unalacak M. Cardiac autonomic activity in obstructive sleep apnea: time-dependent and spectral analysis of heart rate variability using 24-hour Holter electrocardiograms. Texas Heart Institute journal / from the Texas Heart Institute of St Luke's Episcopal Hospital, Texas Children's Hospital. 2004;31(2):132–6.
    1. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 1996;93(5):1043–65. .
    1. Greenwood J, Batin P, Nolan J. Assessment of cardiac autonomic function. BRITISH JOURNAL OF CARDIOLOGY. 1997;4:154–8.
    1. Greenwood J, Batin P, Nolan J. Clinical application of cardiac autonomic assessment. Br J Cardiol. 1997;4(5):183–7.
    1. Greenwood J, Durham N, Nolan J. Autonomic assessment of cardiovascular disease. Hospital medicine (London, England: 1998). 1998;59(9):714–8.
    1. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation research. 1986;59(2):178–93.
    1. Keselbrener L, Akselrod S. Autonomic responses to blockades and provocations Clinical guide to cardiac autonomic tests: Springer; 1998. p. 101–48.
    1. Lucini D, Pozzi A, De Bernardi F, Pizzinelli P, Pagani M, Malliani A. A noninvasive assessment of the gain in baroceptor control of the heart rate in man. Cardiologia (Rome, Italy). 1992;37(10):729.
    1. Taylor JA, Carr DL, Myers CW, Eckberg DL. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation. 1998;98(6):547–55. .
    1. Duprez D, De Buyzere M, Rietzschel E, Rimbout S, Kaufman JM, Van Hoecke MJ, et al. Renin-angiotensin-aldosterone system, RR-interval and blood pressure variability during postural changes after myocardial infarction. European heart journal. 1995;16(8):1050–6. .
    1. Ponikowski P, Chua TP, Piepoli M, Amadi A, Harrington D, Webb-Peploe K, et al. Chemoreceptor dependence of very low frequency rhythms in advanced chronic heart failure. American Journal of Physiology-Heart and Circulatory Physiology. 1997;272(1):H438–H47.
    1. Francis DP, Davies LC, Willson K, Ponikowski P, Coats AJ, Piepoli M. Very-low-frequency oscillations in heart rate and blood pressure in periodic breathing: role of the cardiovascular limb of the hypoxic chemoreflex. Clinical science. 2000;99(2):125–32. .
    1. Fleisher LA, Frank SM, Sessler DI, Cheng C, Matsukawa T, Vannier CA. Thermoregulation and heart rate variability. Clinical science. 1996;90(2):97–103. .
    1. Saul JP, Berger RD, Chen MH, Cohen RJ. Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia. The American journal of physiology. 1989;256(1 Pt 2):H153–61. .
    1. Fletcher E, Miller J, Schaaf J, Fletcher J. Urinary catecholamines before and after tracheostomy in patients with obstructive sleep apnea and hypertension. Sleep. 1987;10(1):35–44.
    1. Marrone O, Riccobono L, Salvaggio A, Mirabella A, Bonanno A, Bonsignore MR. Catecholamines and blood pressure in obstructive sleep apnea syndrome. CHEST Journal. 1993;103(3):722–7.
    1. Cardiology TFotESo. Heart rate variability standards of measurement, physiological interpretation, and clinical use. European heart journal. 1996;17:354–81.
    1. Shiomi T, Guilleminault C, Sasanabe R, Hirota I, Maekawa M, Kobayashi T. Augmented very low frequency component of heart rate variability during obstructive sleep apnea. Sleep. 1996;19(5):370–7.
    1. Jaffe RS, Fung DL, Behrman KH. Optimal frequency ranges for extracting information on autonomic activity from the heart rate spectrogram. Journal of the autonomic nervous system. 1994;46(1–2):37–46. .
    1. Baharav A, Kotagal S, Gibbons V, Rubin BK, Pratt G, Karin J, et al. Fluctuations in autonomic nervous activity during sleep displayed by power spectrum analysis of heart rate variability. Neurology. 1995;45(6):1183–7. .

Source: PubMed

3
Subscribe