Trendelenburg maneuver predicts fluid responsiveness in patients on veno-arterial extracorporeal membrane oxygenation

Jing-Chao Luo, Ying Su, Li-Li Dong, Jun-Yi Hou, Xin Li, Ying Zhang, Guo-Guang Ma, Ji-Li Zheng, Guang-Wei Hao, Huan Wang, Yi-Jie Zhang, Zhe Luo, Guo-Wei Tu, Jing-Chao Luo, Ying Su, Li-Li Dong, Jun-Yi Hou, Xin Li, Ying Zhang, Guo-Guang Ma, Ji-Li Zheng, Guang-Wei Hao, Huan Wang, Yi-Jie Zhang, Zhe Luo, Guo-Wei Tu

Abstract

Background: Evaluation of fluid responsiveness during veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support is crucial. The aim of this study was to investigate whether changes in left ventricular outflow tract velocity-time integral (ΔVTI), induced by a Trendelenburg maneuver, could predict fluid responsiveness during VA-ECMO.

Methods: This prospective study was conducted in patients with VA-ECMO support. The protocol included four sequential steps: (1) baseline-1, a supine position with a 15° upward bed angulation; (2) Trendelenburg maneuver, 15° downward bed angulation; (3) baseline-2, the same position as baseline-1, and (4) fluid challenge, administration of 500 mL gelatin over 15 min without postural change. Hemodynamic parameters were recorded at each step. Fluid responsiveness was defined as ΔVTI of 15% or more, after volume expansion.

Results: From June 2018 to December 2019, 22 patients with VA-ECMO were included, and a total of 39 measurements were performed. Of these, 22 measurements (56%) met fluid responsiveness. The R2 of the linear regression was 0.76, between ΔVTIs induced by Trendelenburg maneuver and the fluid challenge. The area under the receiver operating characteristic curve of ΔVTI induced by Trendelenburg maneuver to predict fluid responsiveness was 0.93 [95% confidence interval (CI) 0.81-0.98], with a sensitivity of 82% (95% CI 60-95%), and specificity of 88% (95% CI 64-99%), at a best threshold of 10% (95% CI 6-12%).

Conclusions: Changes in VTI induced by the Trendelenburg maneuver could effectively predict fluid responsiveness in VA-ECMO patients. Trial registration ClinicalTrials.gov, NCT03553459 (the TEMPLE study). Registered on May 30, 2018.

Keywords: Fluid responsiveness; Trendelenburg maneuver; Veno-arterial extracorporeal membrane oxygenation.

Conflict of interest statement

All authors have no competing interests.

Figures

Fig. 1
Fig. 1
The study protocols. a An outline of each step; b a clinical scenery of VA-ECMO patient; c the 15° upward bed angulation for measurements at baselines and fluid challenge. d The 15° downward bed angulation for measurements in the Trendelenburg position
Fig. 2
Fig. 2
Linear regression between changes in velocity–time integral (ΔVTI, a), systolic blood pressure (ΔSBP, b), diastolic blood pressure (ΔDBP, c) and pulse pressure (ΔPP, d) induced by the Trendelenburg position and the fluid challenge. Solid and dashed lines indicate regression lines and their 95% confidential intervals
Fig. 3
Fig. 3
Individual values of velocity–time integral (VTI) of each step in non-responders (a) and responders (b) as well as receiver operating characteristics curve (c) and grey zone analysis (d) of changes in VTI induced by the Trendelenburg position to predict fluid responsiveness

References

    1. Pineton de Chambrun M, Brechot N, Combes A. Venoarterial extracorporeal membrane oxygenation in cardiogenic shock: indications, mode of operation, and current evidence. Curr Opin Crit Care. 2019;25:397–402. doi: 10.1097/MCC.0000000000000627.
    1. Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD. Venoarterial extracorporeal membrane oxygenation for cardiogenic shock and cardiac arrest. Circ Heart Fail. 2018;11:e004905. doi: 10.1161/CIRCHEARTFAILURE.118.004905.
    1. Krishnan S, Schmidt GA. Hemodynamic monitoring in the extracorporeal membrane oxygenation patient. Curr Opin Crit Care. 2019;25:285–291. doi: 10.1097/MCC.0000000000000602.
    1. Ortuno S, Delmas C, Diehl JL, Bailleul C, Lancelot A, Naili M, et al. Weaning from veno-arterial extra-corporeal membrane oxygenation: which strategy to use? Ann Cardiothorac Surg. 2019;8:E1–E8. doi: 10.21037/acs.2018.08.05.
    1. Messmer AS, Zingg C, Muller M, Gerber JL, Schefold JC, Pfortmueller CA. Fluid overload and mortality in adult critical care patients-a systematic review and meta-analysis of observational studies. Crit Care Med. 2020;48:1862–1870. doi: 10.1097/CCM.0000000000004617.
    1. Douglas IS, Alapat PM, Corl KA, Exline MC, Forni LG, Holder AL, et al. Fluid response evaluation in sepsis hypotension and shock: a randomized clinical trial. Chest. 2020;158:1431–1445. doi: 10.1016/j.chest.2020.04.025.
    1. Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016;6:111. doi: 10.1186/s13613-016-0216-7.
    1. Jozwiak M, Monnet X, Teboul JL. Prediction of fluid responsiveness in ventilated patients. Ann Transl Med. 2018;6:352. doi: 10.21037/atm.2018.05.03.
    1. Monnet X, Teboul JL. Assessment of fluid responsiveness: recent advances. Curr Opin Crit Care. 2018;24:190–195. doi: 10.1097/MCC.0000000000000501.
    1. Araos J, Kenny JS, Rousseau-Blass F, Pang DS. Dynamic prediction of fluid responsiveness during positive pressure ventilation: a review of the physiology underlying heart-lung interactions and a critical interpretation. Vet Anaesth Analg. 2020;47:3–14. doi: 10.1016/j.vaa.2019.08.004.
    1. Su Y, Liu K, Zheng JL, Li X, Zhu DM, Zhang Y, et al. Hemodynamic monitoring in patients with venoarterial extracorporeal membrane oxygenation. Ann Transl Med. 2020;8:792. doi: 10.21037/atm.2020.03.186.
    1. Huang H, Shen Q, Liu Y, Xu H, Fang Y. Value of variation index of inferior vena cava diameter in predicting fluid responsiveness in patients with circulatory shock receiving mechanical ventilation: a systematic review and meta-analysis. Crit Care. 2018;22:204. doi: 10.1186/s13054-018-2063-4.
    1. Geerts BF, van den Bergh L, Stijnen T, Aarts LP, Jansen JR. Comprehensive review: is it better to use the Trendelenburg position or passive leg raising for the initial treatment of hypovolemia? J Clin Anesth. 2012;24:668–674. doi: 10.1016/j.jclinane.2012.06.003.
    1. Yonis H, Bitker L, Aublanc M, Perinel Ragey S, Riad Z, Lissonde F, et al. Change in cardiac output during Trendelenburg maneuver is a reliable predictor of fluid responsiveness in patients with acute respiratory distress syndrome in the prone position under protective ventilation. Crit Care. 2017;21:295. doi: 10.1186/s13054-017-1881-0.
    1. Frost H, Mortensen CR, Secher NH, Nielsen HB. Postoperative volume balance: does stroke volume increase in Trendelenburg's position? Clin Physiol Funct Imaging. 2017;37:314–316. doi: 10.1111/cpf.12306.
    1. Expert Round Table on Ultrasound in ICU International expert statement on training standards for critical care ultrasonography. Intensive Care Med. 2011;37:1077–1083. doi: 10.1007/s00134-011-2246-9.
    1. Georges D, de Courson H, Lanchon R, Sesay M, Nouette-Gaulain K, Biais M. End-expiratory occlusion maneuver to predict fluid responsiveness in the intensive care unit: an echocardiographic study. Crit Care. 2018;22:32. doi: 10.1186/s13054-017-1938-0.
    1. Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41:1529–1537. doi: 10.1007/s00134-015-3850-x.
    1. Brechot N, Demondion P, Santi F, Lebreton G, Pham T, Dalakidis A, et al. Intra-aortic balloon pump protects against hydrostatic pulmonary oedema during peripheral venoarterial-extracorporeal membrane oxygenation. Eur Heart J Acute Cardiovasc Care. 2018;7:62–69. doi: 10.1177/2048872617711169.
    1. Le Gall A, Follin A, Cholley B, Mantz J, Aissaoui N, Pirracchio R. Veno-arterial-ECMO in the intensive care unit: from technical aspects to clinical practice. Anaesth Crit Care Pain Med. 2018;37:259–268. doi: 10.1016/j.accpm.2017.08.007.
    1. Ely EW, Truman B, Shintani A, Thomason JW, Wheeler AP, Gordon S, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS) JAMA. 2003;289:2983–2991. doi: 10.1001/jama.289.22.2983.
    1. Nassar B, Deol GRS, Ashby A, Collett N, Schmidt GA. Trendelenburg position does not increase cross-sectional area of the internal jugular vein predictably. Chest. 2013;144:177–182. doi: 10.1378/chest.11-2462.
    1. Jozwiak M, Mercado P, Teboul JL, Benmalek A, Gimenez J, Depret F, et al. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care. 2019;23:116. doi: 10.1186/s13054-019-2413-x.
    1. Lin TW, Tsai MT, Hu YN, Lin WH, Wang WM, Luo CY, et al. Postoperative extracorporeal membrane oxygenation support for acute type A aortic dissection. Ann Thorac Surg. 2017;104:827–833. doi: 10.1016/j.athoracsur.2017.01.059.
    1. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845. doi: 10.2307/2531595.
    1. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–35. doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>;2-3.
    1. Keilwagen J, Grosse I, Grau J. Area under precision–recall curves for weighted and unweighted data. PLoS ONE. 2014;9:e92209. doi: 10.1371/journal.pone.0092209.
    1. Sun L, Qi R, Zhu J, Liu Y, Zheng J. Total arch replacement combined with stented elephant trunk implantation: a new "standard" therapy for type a dissection involving repair of the aortic arch? Circulation. 2011;123:971–978. doi: 10.1161/CIRCULATIONAHA.110.015081.
    1. Dickstein ML. The starling relationship and veno-arterial ECMO: ventricular distension explained. ASAIO J. 2018;64:497–501. doi: 10.1097/MAT.0000000000000660.
    1. Morimont P, Lambermont B, Guiot J, Tchana Sato V, Clotuche C, Goffoy J, et al. Ejection fraction may not reflect contractility: example in veno-arterial extracorporeal membrane oxygenation for heart failure. ASAIO J. 2018;64:e68–e71. doi: 10.1097/MAT.0000000000000661.
    1. Monnet X, Cipriani F, Camous L, Sentenac P, Dres M, Krastinova E, et al. The passive leg raising test to guide fluid removal in critically ill patients. Ann Intensive Care. 2016;6:46. doi: 10.1186/s13613-016-0149-1.
    1. Miller WL. Fluid volume overload and congestion in heart failure: time to reconsider pathophysiology and how volume is assessed. Circ Heart Fail. 2016;9:e002922. doi: 10.1161/CIRCHEARTFAILURE.115.002922.
    1. Claure-Del Granado R, Mehta RL. Fluid overload in the ICU: evaluation and management. BMC Nephrol. 2016;17:109. doi: 10.1186/s12882-016-0323-6.
    1. Besnier E, Boubeche S, Clavier T, Popoff B, Dureuil B, Doguet F, et al. Early positive fluid balance is associated with mortality in patients treated with veno-arterial extra corporeal membrane oxygenation for cardiogenic shock: a retrospective cohort study. Shock. 2020;53:426–433. doi: 10.1097/SHK.0000000000001381.
    1. Vincent F, Rauch A, Loobuyck V, Robin E, Nix C, Vincentelli A, et al. Arterial pulsatility and circulating von Willebrand factor in patients on mechanical circulatory support. J Am Coll Cardiol. 2018;71:2106–2118. doi: 10.1016/j.jacc.2018.02.075.
    1. Park BW, Seo DC, Moon IK, Chung JW, Bang DW, Hyon MS, et al. Pulse pressure as a prognostic marker in patients receiving extracorporeal life support. Resuscitation. 2013;84:1404–1408. doi: 10.1016/j.resuscitation.2013.04.009.
    1. Aissaoui N, Luyt CE, Leprince P, Trouillet JL, Leger P, Pavie A, et al. Predictors of successful extracorporeal membrane oxygenation (ECMO) weaning after assistance for refractory cardiogenic shock. Intensive Care Med. 2011;37:1738–1745. doi: 10.1007/s00134-011-2358-2.
    1. De la Puente-Diaz de Leon V, de Jesus Jaramillo-Rocha V, Teboul JL, Garcia-Miranda S, Martinez-Guerra BA, Dominguez-Cherit G. Changes in radial artery pulse pressure during a fluid challenge cannot assess fluid responsiveness in patients with septic shock. J Intensive Care Med. 2020;35:149–153. doi: 10.1177/0885066617732291.
    1. Dufour N, Chemla D, Teboul JL, Monnet X, Richard C, Osman D. Changes in pulse pressure following fluid loading: a comparison between aortic root (non-invasive tonometry) and femoral artery (invasive recordings) Intensive Care Med. 2011;37:942–949. doi: 10.1007/s00134-011-2154-z.
    1. Wetterslev M, Moller-Sorensen H, Johansen RR, Perner A. Systematic review of cardiac output measurements by echocardiography vs. thermodilution: the techniques are not interchangeable. Intensive Care Med. 2016;42:1223–1233. doi: 10.1007/s00134-016-4258-y.

Source: PubMed

3
Subscribe