Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women

Olivier Dupuy, Claudine J Gauthier, Sarah A Fraser, Laurence Desjardins-Crèpeau, Michèle Desjardins, Said Mekary, Frederic Lesage, Rick D Hoge, Philippe Pouliot, Louis Bherer, Olivier Dupuy, Claudine J Gauthier, Sarah A Fraser, Laurence Desjardins-Crèpeau, Michèle Desjardins, Said Mekary, Frederic Lesage, Rick D Hoge, Philippe Pouliot, Louis Bherer

Abstract

Aim: Many studies have suggested that physical exercise training improves cognition and more selectively executive functions. There is a growing interest to clarify the neurophysiological mechanisms that underlie this effect. The aim of the current study was to evaluate the neurophysiological changes in cerebral oxygenation associated with physical fitness level and executive functions.

Method: In this study, 22 younger and 36 older women underwent a maximal graded continuous test (i.e., [Formula: see text]O2max ) in order to classify them into a fitness group (higher vs. lower fit). All participants completed neuropsychological paper and pencil testing and a computerized Stroop task (which contained executive and non-executive conditions) in which the change in prefrontal cortex oxygenation was evaluated with near infrared spectroscopy (NIRS).

Results: Our findings revealed a Fitness × Condition interaction (p < 0.05) such that higher fit women scored better on measures of executive functions than lower fit women. In comparison to lower fit women, higher fit women had faster reaction times in the Executive condition of the computerized Stroop task. No significant effect was observed in the non-executive condition of the test and no interactions were found with age. In measures of cerebral oxygenation (ΔHbT and ΔHbO2), we found a main effect of fitness on cerebral oxygenation during the Stroop task such that only high fit women demonstrated a significant increase in the right inferior frontal gyrus.

Discussion/conclusion: Higher fit individuals who demonstrate better cardiorespiratory functions (as measured by [Formula: see text]O2max ) show faster reaction times and greater cerebral oxygenation in the right inferior frontal gyrus than women with lower fitness levels. The lack of interaction with age, suggests that good cardiorespiratory functions can have a positive impact on cognition, regardless of age.

Keywords: cerebral oxygenation; executive function; fitness; prefrontal cortex; right inferior frontal gyrus; stroop.

Figures

Figure 1
Figure 1
Graphical representation of the computerized Stroop task.
Figure 2
Figure 2
Representations of the two arrays of 4 sources (circle) and 8 detectors (square) on plastic helmets covering prefrontal regions. (pDLPFC, posterior dorsolateral prefrontal cortex; aDLPFC, anterior dorsolateral prefrontal; pVLPFC, posterior ventrolateral prefrontal cortex; aVLPFC, anterior ventrolateral prefrontal cortex; Fp1/Fp2, frontal mark according the 10/20 system; see Okamoto et al., 2004).
Figure 3
Figure 3
Representations of 28 channels NIRS (i.e., detectors- sources) covering prefrontal regions (A), Frontal view; (B), Top view; (C), right sagittal view; (D), left sagittal view.
Figure 4
Figure 4
Mean reaction time (ms) in naming and executive conditions for higher fit and lower fit women. *p < 0.05.
Figure 5
Figure 5
Fitness effect between higher fit and lower fit women for HbO2 in frontal (A) and right sagittal view (B), and for HbT in frontal (C) and right sagittal view (D).

References

    1. Ainslie P. N., Cotter J. D., George K. P., Lucas S., Murrell C., Shave R., et al. . (2008). Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. J. Physiol. 586, 4005–4010. 10.1113/jphysiol.2008.158279
    1. Angevaren M., Aufdemkampe G., Verhaar H. J. J., Aleman A., Vanhees L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 16:CD005381 10.1002/14651858.CD005381.pub3
    1. Aron A. R., Robbins T. W., Poldrack R. A. (2004). Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 8, 170–177. 10.1016/j.tics.2004.02.010
    1. Aron A. R., Robbins T. W., Poldrack R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 18, 177–185. 10.1016/j.tics.2013.12.003
    1. Bailey D. M., Marley C. J., Brugniaux J. V., Hodson D., New K. J., Ogoh S., et al. . (2013). Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics. Stroke 44, 3235–3238. 10.1161/STROKEAHA.113.002589
    1. Bangen K. J., Restom K., Liu T. T., Jak A. J., Wierenga C. E., Salmon D. P., et al. . (2009). Differential age effects on cerebral blood flow and BOLD response to encoding: associations with cognition and stroke risk. Neurobiol. Aging 30, 1276–1287. 10.1016/j.neurobiolaging.2007.11.012
    1. Bherer L., Erickson K. I., Liu-Ambrose T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J. Aging Res. 2013:657508. 10.1155/2013/657508
    1. Bishop N. A., Lu T., Yankner B. A. (2010). Neural mechanisms of ageing and cognitive decline. Nature 464, 529–535. 10.1038/nature08983
    1. Bohnen N., Twijnstra A., Jolles J. (1992). Performance in the Stroop color word test in relationship to the persistence of symptoms following mild head injury. Acta Neurol. Scand. 85, 116–121. 10.1111/j.1600-0404.1992.tb04009.x
    1. Bolduc V., Thorin-Trescases N., Thorin E. (2013). Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging. Am. J. Physiol. Heart Circ. Physiol. 305, H620–H633. 10.1152/ajpheart.00624.2012
    1. Boucard G. K., Albinet C. T., Bugaiska A., Bouquet C. A., Clarys D., Audiffren M. (2012). Impact of physical activity on executive functions in aging: a selective effect on inhibition among old adults. J. Sport Exerc. Psychol. 34, 808–827.
    1. Brehmer Y., Kalpouzos G., Wenger E., Lövdén M. (2014). Plasticity of brain and cognition in older adults. Psychol. Res. 78, 790–802. 10.1007/s00426-014-0587-z
    1. Brown A. D., McMorris C. A., Longman R. S., Leigh R., Hill M. D., Friedenreich C. M., et al. . (2010). Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women. Neurobiol. Aging 31, 2047–2057. 10.1016/j.neurobiolaging.2008.11.002
    1. Chaddock L., Erickson K. I., Prakash R. S., Kim J. S., Voss M. W., Vanpatter M., et al. . (2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res. 1358, 172–183. 10.1016/j.brainres.2010.08.049
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd Edn. Hillsdale: L. Erlbaum Associates.
    1. Colcombe S., Kramer A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125–130. 10.1111/1467-9280.t01-1-01430
    1. Colcombe S. J., Erickson K. I., Raz N., Webb A. G., Cohen N. J., McAuley E., et al. . (2003). Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 58, 176–180. 10.1093/gerona/58.2.M176
    1. Colcombe S. J., Kramer A. F., Erickson K. I., Scalf P., McAuley E., Cohen N. J., et al. . (2004). Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. U.S.A. 101, 3316–3321. 10.1073/pnas.0400266101
    1. Cotman C. W., Berchtold N. C., Christie L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472. 10.1016/j.tins.2007.06.011
    1. Davenport M. H., Hogan D. B., Eskes G. A., Longman R. S., Poulin M. J. (2012). Cerebrovascular reserve: the link between fitness and cognitive function? Exerc. Sport Sci. Rev. 40, 153–158. 10.1097/JES.0b013e3182553430
    1. Delpy D. T., Cope M. (1997). Quantification in tissue near-infrared spectroscopy. Philos. Trans. R. Soc. B Biol. Sci. 352, 649–659 10.1098/rstb.1997.0046
    1. DeVan A. E., Seals D. R. (2012). Vascular health in the ageing athlete. Exp. Physiol. 97, 305–310. 10.1113/expphysiol.2011.058792
    1. Deweerdt S. (2011). PREVENTION Activity is the best medicine. Nature 475, S16–S17. 10.1038/475S16a
    1. Drag L. L., Bieliauskas L. A. (2010). Contemporary review 2009: cognitive aging. J. Geriatr. Psychiatry Neurol. 23, 75–93. 10.1177/0891988709358590
    1. Duncan G. E., Howley E. T., Johnson B. N. (1997). Applicability of VO2max criteria: discontinuous versus continuous protocols. Med. Sci. Sports Exerc. 29, 273–278. 10.1097/00005768-199702000-00017
    1. Dupuy O., Renaud M., Bherer L., Bosquet L. (2010). Effect of functional overreaching on executive functions. Int. J. Sports Med. 31, 617–623. 10.1055/s-0030-1255029
    1. Erickson K. I., Prakash R. S., Voss M. W., Chaddock L., Hu L., Morris K. S., et al. . (2009). Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19, 1030–1039. 10.1002/hipo.20547
    1. Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., et al. . (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U.S.A. 108, 3017–3022. 10.1073/pnas.1015950108
    1. Etnier J. L., Nowell P. M., Landers D. M., Sibley B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res. Rev. 52, 119–130. 10.1016/j.brainresrev.2006.01.002
    1. Fabiani M., Gordon B. A., Maclin E. L., Pearson M. A., Brumback-Peltz C. R., Low K. A., et al. . (2014). Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study. Neuroimage 85, 592–607. 10.1016/j.neuroimage.2013.04.113
    1. Ferrari M., Quaresima V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63, 921–935. 10.1016/j.neuroimage.2012.03.049
    1. Fisher J. P., Hartwich D., Seifert T., Olesen N. D., McNulty C. L., Nielsen H. B., et al. . (2013). Cerebral perfusion, oxygenation and metabolism during exercise in young and elderly individuals. J. Physiol. 591(Pt 7), 1859–1870. 10.1113/jphysiol.2012.244905
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198.
    1. Forstmann B. U., Jahfari S., Scholte H. S., Wolfensteller U., Van Den Wildenberg W. P., Ridderinkhof K. R. (2008). Function and structure of the right inferior frontal cortex predict individual differences in response inhibition: a model-based approach. J. Neurosci. 28, 9790–9796. 10.1523/JNEUROSCI.1465-08.2008
    1. Fu T.-C., Wang C.-H., Lin P.-S., Hsu C.-C., Cherng W.-J., Huang S.-C., et al. . (2013). Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int. J. Cardiol. 167, 41–50. 10.1016/j.ijcard.2011.11.086
    1. Fuster J. M. (2000). Executive frontal functions. Exp. Brain Res. 133, 66–70 10.1007/s002210000401
    1. Gagnon C., Desjardins-Crepeau L., Tournier I., Desjardins M., Lesage F., Greenwood C. E., et al. . (2012). Near-infrared imaging of the effects of glucose ingestion and regulation on prefrontal activation during dual-task execution in healthy fasting older adults. Behav. Brain Res. 232, 137–147. 10.1016/j.bbr.2012.03.039
    1. Guiney H., Machado L. (2013). Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon. Bull. Rev. 20, 73–86. 10.3758/s13423-012-0345-4
    1. Hall C. D., Smith A. L., Keele S. W. (2001). The impact of aerobic activity on cognitive function in older adults: a new synthesis based on the concept of executive control. Eur. J. Cogn. Psychol. 13, 279–300 10.1080/09541440126012
    1. Hampshire A., Chamberlain S. R., Monti M. M., Duncan J., Owen A. M. (2010). The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage 50, 1313–1319. 10.1016/j.neuroimage.2009.12.109
    1. Hoshi Y. (2003). Functional near-infrared optical imaging: utility and limitations in human brain mapping. Psychophysiology 40, 511–520. 10.1111/1469-8986.00053
    1. Huang C. J. I., Webb H. E., Zourdos M. C., Acevedo E. O. (2014). Cardiovascular reactivity, stress, and physical activity. Front. Physiol. 4:314. 10.3389/fphys.2013.00314
    1. Johnson N. F., Kim C., Clasey J. L., Bailey A., Gold B. T. (2012). Cardiorespiratory fitness is positively correlated with cerebral white matter integrity in healthy seniors. Neuroimage 59, 1514–1523. 10.1016/j.neuroimage.2011.08.032
    1. Labelle V., Bosquet L., Mekary S., Bherer L. (2013). Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level. Brain Cogn. 81, 10–17. 10.1016/j.bandc.2012.10.001
    1. Lague-Beauvais M., Brunet J., Gagnon L., Lesage F., Bherer L. (2012). A fNIRS investigation of switching and inhibition during the modified Stroop task in younger and older adults. Neuroimage 64C, 485–495. 10.1016/j.neuroimage.2012.09.042
    1. Li H., Tak S., Ye J. C. (2012). Lipschitz-Killing curvature based expected Euler characteristics for p-value correction in fNIRS. J. Neurosci. Methods 204, 61–67. 10.1016/j.jneumeth.2011.10.016
    1. Lieberman P., Protopapas A., Reed E., Youngs J. W., Kanki B. G. (1994). Cognitive defects at altitude. Nature 372, 325–325. 10.1038/372325a0
    1. McAuley E., Kramer A. F., Colcombe S. J. (2004). Cardiovascular fitness and neurocognitive function in older adults: a brief review. Brain Behav. Immun. 18, 214–220. 10.1016/j.bbi.2003.12.007
    1. McDowd J. M., Shaw R. J. (2000). Attention and aging: a functional perspective, in The Handbook of Aging and Cognition, eds Craik F. I. M., Salthouse T. A. (New Jersey, NJ: Lawrence Erlbaum Associates; ), 221–292.
    1. Mehagnoul-Schipper D. J. I., van der Kallen B. F., Colier W. N., van der Sluijs M. C., van Erning L. J., Thijssen H. O., et al. . (2002). Simultaneous measurements of cerebral oxygenation changes during brain activation by nearinfraredspectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Hum. Brain Mapp. 16, 14–23. 10.1002/hbm.10026
    1. Midgley A. W., McNaughton L. R., Polman R., Marchant D. (2007). Criteria for determination of maximal oxygen uptake: a brief critique and recommendations for future research. Sports Med. 37, 1019–1028. 10.2165/00007256-200737120-00002
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100. 10.1006/cogp.1999.0734
    1. Murrell C. J., Cotter J. D., Thomas K. N., Lucas S. J., Williams M. J., Ainslie P. N. (2013). Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: effect of age and 12-week exercise training. Age (Dordr). 35, 905–920. 10.1007/s11357-012-9414-x
    1. Okamoto M., Dan H., Sakamoto K., Takeo K., Shimizu K., Kohno S., et al. . (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. Neuroimage 21, 99–111. 10.1016/j.neuroimage.2003.08.026
    1. Peng K., Nguyen D. K., Tayah T., Vannasing P., Tremblay J., Sawan M., et al. . (2014). fNIRS-EEG study of focal interictal epileptiform discharges. Epilepsy Res. 108, 491–505. 10.1016/j.eplepsyres.2013.12.011
    1. Pereira A. C., Huddleston D. E., Brickman A. M., Sosunov A. A., Hen R., McKhann G. M., et al. . (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. U.S.A. 104, 5638–5643. 10.1073/pnas.0611721104
    1. Pouliot P., Tremblay J., Robert M., Vannasing P., Lepore F., Lassonde M., et al. . (2012). Nonlinear hemodynamic responses in human epilepsy: a multimodal analysis with fNIRS-EEG and fMRI-EEG. J. Neurosci. Methods 204, 326–340. 10.1016/j.jneumeth.2011.11.016
    1. Prakash R. S., Voss M. W., Erickson K. I., Lewis J. M., Chaddock L., Malkowski E., et al. . (2011). Cardiorespiratory fitness and attentional control in the aging brain. Front. Hum. Neurosci. 4:229. 10.3389/fnhum.2010.00229
    1. Predovan D., Fraser S. A., Renaud M., Bherer L. (2012). The effect of three months of aerobic training on stroop performance in older adults. J. Aging Res. 2012:269815. 10.1155/2012/269815
    1. Rosano C., Venkatraman V. K., Guralnik J., Newman A. B., Glynn N. W., Launer L., et al. . (2010). Psychomotor speed and functional brain MRI 2 years after completing a physical activity treatment. J. Gerontol. A Biol. Sci. Med. Sci. 65, 639–647. 10.1093/gerona/glq038
    1. Salthouse T. A. (2010). Selective review of cognitive aging. J. Int. Neuropsychol. Soc. 16, 754–760. 10.1017/S1355617710000706
    1. Shvartz E., Reibold R. C. (1990). Aerobic fitness norms for males and females aged 6 years to 75 years—a review. Aviat. Space Environ. Med. 61, 3–11.
    1. Smiley-Oyen A. L., Lowry K. A., Francois S. J., Kohut M. L., Ekkekakis P. (2008). Exercise, fitness, and neurocognitive function in older adults: the “Selective Improvement” and “Cardiovascular Fitness” hypotheses. Ann. Behav. Med. 36, 280–291. 10.1007/s12160-008-9064-5
    1. Spirduso W. W. (1980). Physical fitness, aging, and psychomotor speed: a review. J. Gerontol. 35, 850–865. 10.1093/geronj/35.6.850
    1. Suhr J. A., Chelberg M. B. (2013). Use of near-infrared spectroscopy as a measure of cerebrovascular health in aging adults. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 20, 243–252. 10.1080/13825585.2012.727976
    1. Szabo A. N., McAuley E., Erickson K. I., Voss M., Prakash R. S., Mailey E. L., et al. . (2011). Cardiorespiratory fitness, hippocampal volume, and frequency of forgetting in older adults. Neuropsychology 25, 545–553. 10.1037/a0022733
    1. Tseng B. Y., Gundapuneedi T., Khan M. A., Diaz-Arrastia R., Levine B. D., Lu H., et al. . (2013). White matter integrity in physically fit older adults. Neuroimage 82, 510–516. 10.1016/j.neuroimage.2013.06.011
    1. Turner G. R., Spreng R. N. (2012). Executive functions and neurocognitive aging: dissociable patterns of brain activity. Neurobiol. Aging 33, 826.e821-826.e813. 10.1016/j.neurobiolaging.2011.06.005
    1. Voelcker-Rehage C., Godde B., Staudinger U. M. (2010). Physical and motor fitness are both related to cognition in old age. Eur. J. Neurosci. 31, 167–176. 10.1111/j.1460-9568.2009.07014.x
    1. Voelcker-Rehage C., Niemann C. (2013). Structural and functional brain changes related to different types of physical activity across the life span. Neurosci. Biobehav. Rev. 37, 2268–2295. 10.1016/j.neubiorev.2013.01.028
    1. Wechsler D. (1997). Wechsler Adult Intelligence Scale, 3rd Edn. San Antonio, TX: Harcourt Assessment.
    1. Weinstein A. M., Voss M. W., Prakash R. S., Chaddock L., Szabo A., White S. M., et al. . (2012). The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behav. Immun. 26, 811–819. 10.1016/j.bbi.2011.11.008
    1. Xu X., Jerskey B. A., Cote D. M., Walsh E. G., Hassenstab J. J., Ladino M. E., et al. . (2014). Cerebrovascular perfusion among older adults is moderated by strength training and gender. Neurosci. Lett. 560, 26–30. 10.1016/j.neulet.2013.12.011
    1. Ye J. C., Tak S., Jang K. E., Jung J., Jang J. (2009). NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage 44, 428–447. 10.1016/j.neuroimage.2008.08.036
    1. Yuki A., Lee S., Kim H., Kozakai R., Ando F., Shimokata H. (2012). Relationship between physical activity and brain atrophy progression. Med. Sci. Sports Exerc. 44, 2362–2368. 10.1249/MSS.0b013e3182667d1d

Source: PubMed

3
Subscribe