Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery

Carsten Denkert, Elmar Bucher, Mika Hilvo, Reza Salek, Matej Orešič, Julian Griffin, Scarlet Brockmöller, Frederick Klauschen, Sibylle Loibl, Dinesh Kumar Barupal, Jan Budczies, Kristiina Iljin, Valentina Nekljudova, Oliver Fiehn, Carsten Denkert, Elmar Bucher, Mika Hilvo, Reza Salek, Matej Orešič, Julian Griffin, Scarlet Brockmöller, Frederick Klauschen, Sibylle Loibl, Dinesh Kumar Barupal, Jan Budczies, Kristiina Iljin, Valentina Nekljudova, Oliver Fiehn

Abstract

Breast cancer is the most common cancer in women worldwide, and the development of new technologies for better understanding of the molecular changes involved in breast cancer progression is essential. Metabolic changes precede overt phenotypic changes, because cellular regulation ultimately affects the use of small-molecule substrates for cell division, growth or environmental changes such as hypoxia. Differences in metabolism between normal cells and cancer cells have been identified. Because small alterations in enzyme concentrations or activities can cause large changes in overall metabolite levels, the metabolome can be regarded as the amplified output of a biological system. The metabolome coverage in human breast cancer tissues can be maximized by combining different technologies for metabolic profiling. Researchers are investigating alterations in the steady state concentrations of metabolites that reflect amplified changes in genetic control of metabolism. Metabolomic results can be used to classify breast cancer on the basis of tumor biology, to identify new prognostic and predictive markers and to discover new targets for future therapeutic interventions. Here, we examine recent results, including those from the European FP7 project METAcancer consortium, that show that integrated metabolomic analyses can provide information on the stage, subtype and grade of breast tumors and give mechanistic insights. We predict an intensified use of metabolomic screens in clinical and preclinical studies focusing on the onset and progression of tumor development.

Figures

Figure 1
Figure 1
Workflow of samples in the METAcancer project. Tissue samples were analyzed in parallel with mass spectrometry (GC-MS and LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. The metabolic profiles were linked to the analysis of mRNA markers and protein markers. DASL, cDNA-mediated annealing, selection, extension, and ligation assay; FFPE, formalin-fixed, paraffin-embedded; RT- PCR, reverse transcriptase PCR; TMA, tissue microarray.
Figure 2
Figure 2
Simplified schema of major metabolic fluxes in (a) aerobic non-malignant cells and (b) hypoxic tumor cells of breast carcinoma. Thickness of arrows and bold text indicate relative intensity of fluxes. CL, citrate lyase; CS, citrate synthase; IDH1, isocitrate dehydrogenase 1; PDH, pyruvate dehydrogenase. According to Metallo et al. [21], the increased flux from glutamine into the Krebs cycle by mutation of IDH1 provides the acetyl-CoA for lipid biosynthesis under hypoxic conditions, because most pyruvate in cancer cells is converted to lactate. Increase in flux through the pentose phosphate pathway delivers ribose-5-phosphate needed for DNA synthesis and NADPH required for lipid biosynthesis. Conversely, less NADH is produced through pyruvate dehydrogenase or the Krebs cycle, as mitochondrial respiration for ATP production is less favored.
Figure 3
Figure 3
Heat map derived from the GCTOF MS metabolomics dataset comparing 289 tumor samples and 15 normal samples[14]. Metabolites are plotted on the y-axis and samples on the x-axis. Data were log2-transformed and median centered in a metabolite-wise manner. Blue indicates data points with a value smaller than the median of the respective metabolite and red indicates higher values. The hierarchical clustering reveals that the measured metabolites can separate normal and cancer tissues. Only two cancer samples cluster together with the normal samples, and one normal sample behaves as an outlier.
Figure 4
Figure 4
Overview of the analysis of lipid metabolism in breast tumors. Using LC-MS, lipidomic profiles were measured in breast tumor, and these profiles were linked to analysis of key enzymes by immunohistochemistry (IHC) in corresponding tumor tissue samples. From an in silico analysis of candidate lipid pathways, siRNA knockdown experiments were designed to evaluate the function of these lipid-metabolizing enzymes for breast cancer proliferation and apoptosis. The detailed results of this part of the project have already been published [8].

References

    1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29. doi: 10.3322/caac.20138.
    1. Claudino WM, Quattrone A, Biganzoli L, Pestrin M, Bertini I, Di Leo A. Metabolomics: available results, current research projects in breast cancer, and future applications. J Clin Oncol. 2007;25:2840–2846. doi: 10.1200/JCO.2006.09.7550.
    1. Griffin JL. The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball?. Philos Trans R Soc London B Biol Sci. 2006;361:147–161. doi: 10.1098/rstb.2005.1734.
    1. Fiehn O. Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol. 2002;48:155–171. doi: 10.1023/A:1013713905833.
    1. Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, Niesporek S, Könsgen D, Dietel M, Fiehn O. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res. 2006;66:10795–10804. doi: 10.1158/0008-5472.CAN-06-0755.
    1. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000;18:1157–1161. doi: 10.1038/81137.
    1. Bathen TF, Sitter B, Sjøbakk TE, Tessem MB, Gribbestad IS. Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res. 2010;70:6692–6696. doi: 10.1158/0008-5472.CAN-10-0437.
    1. Hilvo M, Denkert C, Lehtinen L, Müller B, Brockmöller S, Seppänen-Laakso T, Budczies J, Bucher E, Yetukuri L, Castillo S, Berg E, Nygren H, Sysi-Aho M, Griffin JL, Fiehn O, Loibl S, Richter-Ehrenstein C, Radke C, Hyötyläinen T, Kallioniemi O, Iljin K, Oresic M. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 2011;71:3236–3245. doi: 10.1158/0008-5472.CAN-10-3894.
    1. Weljie AM, Jirik FR. Hypoxia-induced metabolic shifts in cancer cells: Moving beyond the Warburg effect. Int J Biochem Cell Biol. 2011;43:981–989. doi: 10.1016/j.biocel.2010.08.009.
    1. Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4:551–561. doi: 10.1038/nrc1390.
    1. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134:703–707. doi: 10.1016/j.cell.2008.08.021.
    1. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–1033. doi: 10.1126/science.1160809.
    1. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–270.
    1. Brockmöller SF, Bucher E, Müller BM, Budczies J, Hilvo M, Griffin JL, Orešč M, Kallioniemi O, Iljin K, Loibl S, Darb-Esfahani S, Sinn BV, Klauschen F, Prinzler J, Bangemann N, Ismaeel F, Fiehn O, Dietel M, Denkert C. Integration of metabolomics and expression of glycerol-3-phosphate acyltransferase (GPAM) in breast cancer-link to patient survival, hormone receptor status, and metabolic profiling. J Proteome Res. 2012;11:850–860. doi: 10.1021/pr200685r.
    1. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95. doi: 10.1038/nrc2981.
    1. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33. doi: 10.1126/science.1160809.
    1. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol Med. 2001;30:1191–1212. doi: 10.1016/S0891-5849(01)00480-4.
    1. DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18:54–61. doi: 10.1016/j.gde.2008.02.003.
    1. Ackerstaff E, Glunde K, Bhujwalla ZM. Choline phospholipid metabolism: a target in cancer cells?. J Cell Biochem. 2003;90:525–533. doi: 10.1002/jcb.10659.
    1. Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11:835–848.
    1. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011;481:380–384.
    1. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–744. doi: 10.1038/nature08617.
    1. Gill S, Small R, Thomas D, Patel P, Porteous R, Van Bruggen N, Gadian D, Kauppinen R, Williams S. Brain metabolites as 1H NMR markers of neuronal and glial disorders. NMR Biomed. 1989;2:196–200. doi: 10.1002/nbm.1940020505.
    1. Peeling J, Sutherland G. High-resolution 1H NMR spectroscopy studies of extracts of human cerebral neoplasms. Magn Reson Med. 1992;24:123–136. doi: 10.1002/mrm.1910240113.
    1. Bhakoo KK, Williams SR, Florian CL, Land H, Noble MD. Immortalization and transformation are associated with specific alterations in choline metabolism. Cancer Res. 1996;56:4630–4635.
    1. Griffin JL, Blenkiron C, Valonen PK, Caldas C, Kauppinen RA. High-resolution magic angle spinning 1H NMR spectroscopy and reverse transcription-PCR analysis of apoptosis in a rat glioma. Anal Chem. 2006;78:1546–1552. doi: 10.1021/ac051418o.
    1. Valonen PK, Griffin JL, Lehtimäki KK, Liimatainen T, Nicholson JK, Gröhn OHJ, Kauppinen RA. High-resolution magic-angle-spinning 1H NMR spectroscopy reveals different responses in choline-containing metabolites upon gene therapy-induced programmed cell death in rat brain glioma. NMR Biomed. 2005;18:252–259. doi: 10.1002/nbm.955.
    1. Rémy C, Fouilhé N, Barba I, Sam-Laï E, Lahrech H, Cucurella MG, Izquierdo M, Moreno A, Ziegler A, Massarelli R. Evidence that mobile lipids detected in rat brain glioma by 1H nuclear magnetic resonance correspond to lipid droplets. Cancer Res. 1997;57:407.
    1. Auer DP, Gössl C, Schirmer T, Czisch M. Improved analysis of 1H-MR spectra in the presence of mobile lipids. Magn Reson Med. 2001;46:615–618. doi: 10.1002/mrm.1235.
    1. Barba I, Cabañas ME, Arús C. The relationship between nuclear magnetic resonance-visible lipids, lipid droplets, and cell proliferation in cultured C6 cells. Cancer Res. 1999;59:1861.
    1. Wilken B, Dechent P, Herms J, Maxton C, Markakis E, Hanefeld F, Frahm J. Quantitative proton magnetic resonance spectroscopy of focal brain lesions. Pediatr Neurol. 2000;23:22–31. doi: 10.1016/S0887-8994(00)00141-7.
    1. Kuesel AC, Donnelly SM, Halliday W, Sutherland GR, Smith ICP. Mobile lipids and metabolic heterogeneity of brain tumours as detectable by Ex Vivo1H MR spectroscopy. NMR Biomed. 1994;7:172–180. doi: 10.1002/nbm.1940070404.
    1. Zoula S, Herigault G, Ziegler A, Farion R, Decorps M, Remy C. Correlation between the occurrence of 1H-MRS lipid signal, necrosis and lipid droplets during C6 rat glioma development. NMR Biomed. 2003;16:199–212. doi: 10.1002/nbm.831.
    1. Liimatainen T, Hakumäki JM, Kauppinen RA, Ala-Korpela M. Monitoring of gliomas in vivo by diffusion MRI and 1H MRS during gene therapy-induced apoptosis: interrelationships between water diffusion and mobile lipids. NMR Biomed. 2009;22:272–279. doi: 10.1002/nbm.1320.
    1. Luciani AM, Grande S, Palma A, Rosi A, Giovannini C, Sapora O, Viti V, Guidoni L. Characterization of 1H NMR detectable mobile lipids in cells from human adenocarcinomas. FEBS J. 2009;276:1333–1346. doi: 10.1111/j.1742-4658.2009.06869.x.
    1. Griffin JL, Lehtimäki KK, Valonen PK, Gröhn OHJ, Kettunen MI, Ylä-Herttuala S, Pitkänen A, Nicholson JK, Kauppinen RA. Assignment of 1H nuclear magnetic resonance visible polyunsaturated fatty acids in BT4C gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death. Cancer Res. 2003;63:3195–31201.
    1. Lehtimäki KK, Valonen PK, Griffin JL, Väisänen TH, Gröhn OHJ, Kettunen MI, Vepsäläinen J, Ylä-Herttuala S, Nicholson J, Kauppinen RA. Metabolite changes in BT4C rat gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death as studied by 1H NMR spectroscopy in vivo, ex vivo, and in vitro. J Biol Chem. 2003;278:45915–45923. doi: 10.1074/jbc.M306209200.
    1. Kind T, Scholz M, Fiehn O. How large is the metabolome? A critical analysis of data exchange practices in chemistry. PLoS One. 2009;4:e5440. doi: 10.1371/journal.pone.0005440.
    1. Kind T, Fiehn O. Advances in structure elucidation of small molecules using mass spectrometry. Bioanalyt Rev. 2010;2:23–60. doi: 10.1007/s12566-010-0015-9.
    1. Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 2004;22:245–252. doi: 10.1016/j.tibtech.2004.03.007.
    1. Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM, Gillet C, Ellis P, Harris A, Bergh J, Foekens JA. Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol. 2007;25:1239–1246. doi: 10.1200/JCO.2006.07.1522.
    1. Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, Sara H, Pisto T, Saarela M, Skotheim RI, Björkman M. Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol. 2008;9:R139. doi: 10.1186/gb-2008-9-9-r139.
    1. Cheng LL, Lean CL, Bogdanova A, Wright SC Jr, Ackerman JL, Brady TJ, Garrido L. Enhanced resolution of proton NMR spectra of malignant lymph nodes using magic-angle spinning. Magn Reson Med. 1996;36:653–658. doi: 10.1002/mrm.1910360502.
    1. Moka D, Vorreuther R, Schicha H, Spraul M, Humpfer E, Lipinski M, Foxall PJD, Nicholson JK, Lindon JC. Biochemical classification of kidney carcinoma biopsy samples using magic-angle-spinning 1H nuclear magnetic resonance spectroscopy. J Pharmaceut Biomed Anal. 1998;17:125–132. doi: 10.1016/S0731-7085(97)00176-3.
    1. Millis K, Weybright P, Campbell N, Fletcher JA, Fletcher CD, Cory DG, Singer S. Classification of human liposarcoma and lipoma using ex vivo proton NMR spectroscopy. Magn Reson Med. 1999;41:257–267. doi: 10.1002/(SICI)1522-2594(199902)41:2<257::AID-MRM8>;2-N.
    1. Cheng LL, Burns MA, Taylor JL, He W, Halpern EF, McDougal WS, Wu CL. Metabolic characterization of human prostate cancer with tissue magnetic resonance spectroscopy. Cancer Res. 2005;65:3030–3034.
    1. Sitter B, Sonnewald U, Spraul M, Fjösne HE, Gribbestad IS. High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed. 2002;15:327–337. doi: 10.1002/nbm.775.
    1. Cheng LL, Chang IW, Smith BL, Gonzalez RG. Evaluating human breast ductal carcinomas with high-resolution magic-angle spinning proton magnetic resonance spectroscopy. J Magn Reson. 1998;135:194–202. doi: 10.1006/jmre.1998.1578.
    1. Marini C, Iacconi C, Giannelli M, Cilotti A, Moretti M, Bartolozzi C. Quantitative diffusion-weighted MR imaging in the differential diagnosis of breast lesion. Eur Radiol. 2007;17:2646–2655. doi: 10.1007/s00330-007-0621-2.
    1. Giskeødegård GF, Grinde MT, Sitter B, Axelson DE, Lundgren S, Fjøsne HE, Dahl S, Gribbestad IS, Bathen TF. Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res. 2010;9:972–979. doi: 10.1021/pr9008783.
    1. Brochez V, Van Heuverswyn D, Diniz JA, De Potter C, Van den Eeckhout E. Cellular uptake and retention measurements of alkylphosphocholines in the SK-BR-3 breast cancer and molt-4 leukemia cell line using capillary gas chromatography. Lipids. 1999;34:511–516. doi: 10.1007/s11745-999-0392-6.
    1. Berzas JJ, Rodríguez J, Contento AM, Cabello MP. Determination of drugs used in advanced breast cancer by capillary gas chromatography of pharmaceutical formulations. J Sep Sci. 2003;26:908–914. doi: 10.1002/jssc.200301334.
    1. Daniel C, Gaskell S, Bishop H, Nicholson R. Determination of tamoxifen and an hydroxylated metabolite in plasma from patients with advanced breast cancer using gas chromatography-mass spectrometry. J Endocrinol. 1979;83:401–408. doi: 10.1677/joe.0.0830401.
    1. Wolff MS, Toniolo PG, Lee EW, Rivera M, Dubin N. Blood levels of organochlorine residues and risk of breast cancer. J Nat Cancer Inst. 1993;85:648–652. doi: 10.1093/jnci/85.8.648.
    1. Ingram D, Sanders K, Kolybaba M, Lopez D. Case-control study of phyto-oestrogens and breast cancer. Lancet. 1997;350:990–994. doi: 10.1016/S0140-6736(97)01339-1.
    1. Nam H, Chung BC, Kim Y, Lee KY, Lee D. Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification. Bioinformatics. 2009;25:3151–3157. doi: 10.1093/bioinformatics/btp558.
    1. Woo HM, Kim KM, Choi MH, Jung BH, Lee J, Kong G, Nam SJ, Kim S, Bai SW, Chung BC. Mass spectrometry based metabolomic approaches in urinary biomarker study of women's cancers. Clin Chim Acta. 2009;400:63–69. doi: 10.1016/j.cca.2008.10.014.
    1. Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, Shahbaz S, Fiehn O. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem. 2009;81:10038–10048. doi: 10.1021/ac9019522.
    1. Kumari S, Stevens D, Kind T, Denkert C, Fiehn O. Applying in-silico retention index and mass spectra matching for identification of unknown metabolites in accurate mass GC-TOF mass spectrometry. Anal Chem. 2011;83:5895–5902. doi: 10.1021/ac2006137.
    1. Abate S, Ahn YG, Kind T, Cataldi TRI, Fiehn O. Determination of elemental compositions by gas chromatography/time-of-flight mass spectrometry using chemical and electron ionization. Rapid Commun Mass Spectrom. 2010;24:1172–1180. doi: 10.1002/rcm.4482.
    1. Schymanski E, Bataineh M, Goss KU, Brack W. Integrated analytical and computer tools for structure elucidation in effect-directed analysis. Trends Anal Chem. 2009;28:550–561. doi: 10.1016/j.trac.2009.03.001.
    1. Hummel J, Strehmel N, Selbig J, Walther D, Kopka J. Decision tree supported substructure prediction of metabolites from GC-MS profiles. Metabolomics. 2010;6:322–333. doi: 10.1007/s11306-010-0198-7.
    1. Neumann S, Böcker S. Computational mass spectrometry for metabolomics: Identification of metabolites and small molecules. Analyt Bioanalyt Chem. 2010;398:2779–2788. doi: 10.1007/s00216-010-4142-5.

Source: PubMed

3
Subscribe