Inflammation suppresses DLG2 expression decreasing inflammasome formation

Simon Keane, Matthew Herring, Peter Rolny, Yvonne Wettergren, Katarina Ejeskär, Simon Keane, Matthew Herring, Peter Rolny, Yvonne Wettergren, Katarina Ejeskär

Abstract

Purpose: Loss of expression of DLG2 has been identified in a number of cancers to contribute to the disease by resulting in increased tumor cell proliferation and poor survival. In light of the previous evidence that DLG2 alters the cell cycle and affects proliferation, combined with indications that DLG2 is involved in NLRP3 inflammasome axis we speculated that DLG2 has an immune function. So far, there is no data that clearly elucidates this role, and this study was designed to investigate DLG2 in inflammatory colon disease and in colon cancer as well as its impact on inflammasome induction.

Methods: The DLG2 expression levels were established in publicly available inflammation, colon cancer and mouse model datasets. The overexpression and silencing of DLG2 in colon cancer cells were used to determine the effect of DLG2 expression on the activation of the inflammasome and subsequent cytokine release.

Results: The expression of DLG2 is repressed in inflammatory colon diseases IBD and Ulcerative colitis as well as colorectal cancer tissue compared to healthy individuals. We subsequently show that induction with inflammatory agents in cell and animal models results in a biphasic alteration of DLG2 with an initial increase followed by an ensuing decrease. DLG2 overexpression leads to a significant increase in expression of IL1B, IκBζ and BAX, components that result in inflammasome formation. DLG2 silencing in THP1 cells resulted in increased release of IL-6 into the microenvironment which once used to treat bystander COLO205 cells resulted in an increase in STAT3 phosphorylation and an increase proliferating cells and more cells in the G2/M phase. Restoration of DLG2 to the colon resulted in reduced AKT and S6 signaling.

Conclusion: DLG2 expression is altered in response to inflammation in the gut as well as colon cancer, resulting in altered ability to form inflammasomes.

Trial registration: NCT03072641.

Keywords: Colon cancer; DLG2; Inflammasome; NFKBIZ; Ulcerative colitis.

Conflict of interest statement

The authors have no relevant financial or non-financial interests to disclose. The authors declare that they have no conflicts of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
The alteration of DLG2, NLRP3 and NFKBIZ gene expression in colon inflammation and cancer. aDLG2, eNLRP3 and iNFKBIZ gene expression by sample type including; 8 Healthy patients, 15 IBD patients, 15 adenoma patients and 15 colon cancer patients (cohort GSE4183). bDLG2, fNLRP3, and jNFKBIZ expression in 20 healthy individuals compared to 206 with Ulcerative colitis (UC) (cohort GSE109142). cDLG2, gNLRP3 and kNFKBIZ expression in 73 patients UC patients with active disease compared to 23 patients with inactive disease (cohort GSE75214). dDLG2, hNLRP3 and lNFKBIZ expression of 24 case-controlled tumor mucosa samples (cohort GSE10950). The expression data are presented as median centered log2 fold change and plotted as Tukeys box and whisker plots showing IQR, line at the median, + at the mean with whiskers ± 1.5-fold of interquartile range. Data outside the whiskers are shown as outliers. The paired data are shown as an individual symbol with a connecting line. *p < 0.05, **p < 0.01, ***p < 0.001
Fig. 2
Fig. 2
The response of DLG2, NLRP3 and NFKBIZ gene expression to inflammation in mouse, cell and fly models. aDLG2, eNLRP3 and hNFKBIZ gene expression in the colon tissue of 5 mice for each time point in response to DSS treatment at 0, 2-, 4- and 6-days post treatment (cohort GSE22307). bDLG2, fNLRP3, and iNFKBIZ expression in the colon tissue of 4 mice in response to T-cell transfer at 0, 2-, 4- and 6- weeks post transfer (cohort GSE27302). cDLG2, gNLRP3 and jNFKBIZ expression in THP1 cells in response to LPS treatment at 0, 12 and 24 h. d The expression of dmDLG in Drosophila melanogaster gut in response to lactate bacteria treatment at 0, 1-, 2-, 3-, 4- days post treatment. The expression data are presented as median centered log2 fold change and plotted as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001
Fig. 3
Fig. 3
The response of NFκβ members to increased DLG2 expression and activation of the inflammasome in THP-1 cells. The expression of aRELA, bRELB, cNFKB1 and dNFKBIZ in response to control conditions (circle symbol), LPS priming (square symbol) and LPS + ATP treatment (triangle symbol) with or without DLG2 overexpression. e Representative immunoblot showing the expression of; DLG2, p-P65 (Ser 536), RELA, RELB, p-P105 (Ser 932), NFκB1, IκBζ and GAPDH. Each experiment was performed in triplicate. The gene expression data are presented as log2 fold change and plotted as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001
Fig. 4
Fig. 4
The response of cytokines and apoptotic proteins to increased DLG2 level and formation of the inflammasome in THP-1 cells. The gene expression of aIL1B, bIL6, cBAX and dBCL2 in response to control conditions (circle symbol), LPS priming (square symbol) and LPS + ATP treatment (triangle symbol) with or without DLG2 overexpression. e Representative immunoblot showing the expression of; BAX, BCL2, p-STAT3, STAT3, p-S6, S6, TIG1 and GAPDH. f Activation of the inflammasome in DLG2 silenced, control and DLG2 overexpressed THP1-ASC-GFP cells, in response to LPS and ATP treatment, as determined by PYCARD/ASC speck formation, presented as a percentage of observed cells. g The transfection efficiency of DLG2 in THP1 cells for silenced, control and DLG2 overexpression. Each experiment was performed in triplicate. The expression data are presented as log2 fold change and plotted as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001
Fig. 5
Fig. 5
The response of THP-1 cytokine production in colon cancer COLO205 cells. a Representative western blot showing the level of IL-1β and IL-6 production and release in the cell medium in DLG2 silenced, control and DLG2 overexpressed THP-1 cells in response to LPS and ATP, normalized to total protein level. b The effect of cell medium from DLG2 silenced (siDLG2), control and DLG2 overexpressed (DLG2) THP-1 cells on COLO205 cell proliferation, and c percentage of COLO205 cells in G2/M phase. Representative immunoblot showing the effect of THP-1 inflammasome growth media on the expression of d RELA, RELB, IκBζ, NFκB1, e BAX, BCL2, p-STAT3, STAT3, normalized to GAPDH. Each experiment was performed in triplicate. The expression data are presented as log2 fold change and plotted as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001
Fig. 6
Fig. 6
The expression of DLG2 in colon cancer and the effect of low DLG2 level in colon cancer cells. a The expression of DLG2 in 20 paired samples from the healthy ascending colon (Healthy A), healthy descending colon (Healthy D), mucosa from colon cancer patients 10 cm adjacent to the tumor (Mucosa) and colon cancer tumor (Tumor). b TheDLG2 expression in colon adenomas comparing 32 samples < 1 cm, 16 samples between 1 and 1.5 cm and 15 samples larger than 1.5 cm. c The effect of DLG2 silencing (siDLG2) and overexpression (DLG2) on SW480 cell proliferation 48 h post transfection. d Kaplan–Meier survival curve showing the 5-year event free survival probability of colon cancer patients. e–g The gene expression of eNLRP3, fNFKBIZ, and gFOXO3 in response to DLG2 overexpression in SW480 cells. Normalized level of protein phosphorylation of h AKT1, i FOXO3 and j S6 in response to DLG2 overexpression in SW480 cells. k Representative immunoblot showing the effect of DLG2 overexpression on SW480 cells showing the expression of DLG2, p-AKT (s473), AKT1, p-FOXO3a (s318/321), FOXO3, p-S6 (s235/236) and S6, normalized to GAPDH. Each experiment was performed in triplicate. The expression data are presented as log2 fold change and plotted as either Tukey’s box and whisker plots showing IQR, line at the median, + at the mean with whiskers ± 1.5-fold of interquartile range or as mean. *p < 0.05, **p < 0.01, ***p < 0.001

References

    1. Agesen TH, Sveen A, Merok MA, Lind GE, Nesbakken A, Skotheim RI, Lothe RA. ColoGuideEx: a robust gene classifier specific for stage II colorectal cancer prognosis. Gut. 2012;61(11):1560–1567. doi: 10.1136/gutjnl-2011-301179.
    1. Alvarez CL, Troncoso MF, Espelt MV (2021) Extracellular ATP and adenosine in tumor microenvironment: Roles in epithelial-mesenchymal transition, cell migration, and invasion. J Cell Physiol
    1. Ang Z, Koean RAG, Er JZ, Lee LT, Tam JKC, Guo H, Ding JL. Novel AU-rich proximal UTR sequences (APS) enhance CXCL8 synthesis upon the induction of rpS6 phosphorylation. PLoS Genet. 2019;15(4):e1008077. doi: 10.1371/journal.pgen.1008077.
    1. Bank S, Andersen PS, Burisch J, Pedersen N, Roug S, Galsgaard J, Turino SY, Brodersen JB, Rashid S, Rasmussen BK, Avlund S, Olesen TB, Hoffmann HJ, Thomsen MK, Thomsen VO, Frydenberg M, Nexo BA, Sode J, Vogel U, Andersen V. Associations between functional polymorphisms in the NFkappaB signaling pathway and response to anti-TNF treatment in Danish patients with inflammatory bowel disease. Pharmacogenomics J. 2014;14(6):526–534. doi: 10.1038/tpj.2014.19.
    1. Cartwright T, Perkins ND, L. W. C, NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J. 2016;283(10):1812–1822. doi: 10.1111/febs.13627.
    1. Chu EC, Chai J, Tarnawski AS. NSAIDs activate PTEN and other phosphatases in human colon cancer cells: novel mechanism for chemopreventive action of NSAIDs. Biochem Biophys Res Commun. 2004;320(3):875–879. doi: 10.1016/j.bbrc.2004.06.036.
    1. Compton C, Fenoglio-Preiser CM, Pettigrew N, Fielding LP. American Joint Committee on cancer prognostic factors consensus conference: colorectal working group. Cancer. 2000;88(7):1739–1757. doi: 10.1002/(SICI)1097-0142(20000401)88:7<1739::AID-CNCR30>;2-T.
    1. Corvinus FM, Orth C, Moriggl R, Tsareva SA, Wagner S, Pfitzner EB, Baus D, Kaufmann R, Huber LA, Zatloukal K, Beug H, Ohlschlager P, Schutz A, Halbhuber KJ, Friedrich K. Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia. 2005;7(6):545–555. doi: 10.1593/neo.04571.
    1. Curtin K, Wolff RK, Herrick JS, Abo R, Slattery ML. Exploring multilocus associations of inflammation genes and colorectal cancer risk using hapConstructor. BMC Med Genet. 2010;11:170. doi: 10.1186/1471-2350-11-170.
    1. Di Virgilio F, Adinolfi E. Extracellular purines, purinergic receptors and tumor growth. Oncogene. 2017;36(3):293–303. doi: 10.1038/onc.2016.206.
    1. Dibra D, Mitra A, Newman M, Xia X, Cutrera JJ, Gagea M, Kleinerman ES, Lozano G, Li S. Lack of immunomodulatory interleukin-27 enhances oncogenic properties of mutant p53 In Vivo. Clin CancerRes. 2016;22(15):3876–3883. doi: 10.1158/1078-0432.CCR-15-2052.
    1. Dibra D, Xia X, Mitra A, Cutrera JJ, Lozano G, Li S. Mutant p53 inconcert with an interleukin-27 receptor alpha deficiency causes spontaneous liver inflammation, fibrosis, andsteatosis in mice. Hepatol. 2016;63(3):1000–1012. doi: 10.1002/hep.28379.
    1. Dupaul-Chicoine J, Arabzadeh A, Dagenais M, Douglas T, Champagne C, Morizot A, Rodrigue-Gervais IG, Breton V, Colpitts SL, Beauchemin N, Saleh M. The Nlrp3 inflammasome suppresses colorectal cancer metastatic growth in the liver by promoting natural killer cell tumoricidal activity. Immunity. 2015;43(4):751–763. doi: 10.1016/j.immuni.2015.08.013.
    1. Esteban-Jurado C, Vila-Casadesus M, Garre P, Lozano JJ, Pristoupilova A, Beltran S, Munoz J, Ocana T, Balaguer F, Lopez-Ceron M, Cuatrecasas M, Franch-Exposito S, Pique JM, Castells A, Carracedo A, Ruiz-Ponte C, Abuli A, Bessa X, Andreu M, Bujanda L, Caldes T, Castellvi-Bel S. Whole-exome sequencing identifies rare pathogenic variants in new predisposition genes for familial colorectal cancer. Genet Med. 2015;17(2):131–142. doi: 10.1038/gim.2014.89.
    1. Fang K, Bruce M, Pattillo CB, Zhang S, Stone R, 2nd, Clifford J, Kevil CG. Temporal genomewide expression profiling of DSS colitis reveals novel inflammatory and angiogenesis genes similar to ulcerative colitis. Physiol Genomics. 2011;43(1):43–56. doi: 10.1152/physiolgenomics.00138.2010.
    1. Fang K, Zhang S, Glawe J, Grisham MB, Kevil CG. Temporal genome expression profile analysis during t-cell-mediated colitis: identification of novel targets and pathways. Inflamm Bowel Dis. 2012;18(8):1411–1423. doi: 10.1002/ibd.22842.
    1. Galamb O, Gyorffy B, Sipos F, Spisak S, Nemeth AM, Miheller P, Tulassay Z, Dinya E, Molnar B. Inflammation, adenoma and cancer: objective classification of colon biopsy specimens with gene expression signature. Dis Markers. 2008;25(1):1–16. doi: 10.1155/2008/586721.
    1. Guadagno J, Swan P, Shaikh R, Cregan SP. Microglia-derived IL-1beta triggers p53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell Death Dis. 2015;6:e1779. doi: 10.1038/cddis.2015.151.
    1. Haberman Y, Karns R, Dexheimer PJ, Schirmer M, Somekh J, Jurickova I, Braun T, Novak E, Bauman L, Collins MH, Mo A, Rosen MJ, Bonkowski E, Gotman N, Marquis A, Nistel M, Rufo PA, Baker SS, Sauer CG, Markowitz J, Pfefferkorn MD, Rosh JR, Boyle BM, Mack DR, Baldassano RN, Shah S, Leleiko NS, Heyman MB, Grifiths AM, Patel AS, Noe JD, Aronow BJ, Kugathasan S, Walters TD, Gibson G, Thomas SD, Mollen K, Shen-Orr S, Huttenhower C, Xavier RJ, Hyams JS, Denson LA. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat Commun. 2019;10(1):38. doi: 10.1038/s41467-018-07841-3.
    1. Hai Ping P, Feng Bo T, Li L, Nan Hui Y, Hong Z. IL-1beta/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis. Arch Biochem Biophys. 2016;604:20–26. doi: 10.1016/j.abb.2016.06.001.
    1. Horber S, Hildebrand DG, Lieb WS, Lorscheid S, Hailfinger S, Schulze-Osthoff K, Essmann F. The atypical inhibitor of NF-kappaB, IkappaBzeta, controls macrophage interleukin-10 expression. J Biol Chem. 2016;291(24):12851–12861. doi: 10.1074/jbc.M116.718825.
    1. Hu S, Chen M, Wang Y, Wang Z, Pei Y, Fan R, Liu X, Wang L, Zhou J, Zheng S, Zhang T, Lin Y, Zhang M, Tao R, Zhong J. mTOR inhibition attenuates dextran sulfate sodium-induced colitis by suppressing T cell proliferation and balancing TH1/TH17/Treg profile. PLoS ONE. 2016;11(4):e0154564. doi: 10.1371/journal.pone.0154564.
    1. Jahani-Sherafat S, Alebouyeh M, Moghim S, Ahmadi Amoli H, Ghasemian-Safaei H. Role of gut microbiota in the pathogenesis of colorectal cancer; a review article. Gastroenterol Hepatol Bed Bench. 2018;11(2):101–109.
    1. Janakiram NB, Rao CV. Role of lipoxins and resolvins as anti-inflammatory and proresolving mediators in colon cancer. Curr Mol Med. 2009;9(5):565–579. doi: 10.2174/156652409788488748.
    1. Jang JH, Kim DH, Surh YJ. Dynamic roles of inflammasomes in inflammatory tumor microenvironment. NPJ Precis Oncol. 2021;5(1):18. doi: 10.1038/s41698-021-00154-7.
    1. Jiang X, Tan J, Li J, Kivimae S, Yang X, Zhuang L, Lee PL, Chan MT, Stanton LW, Liu ET, Cheyette BN, Yu Q. DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell. 2008;13(6):529–541. doi: 10.1016/j.ccr.2008.04.019.
    1. Jones S, Chen WD, Parmigiani G, Diehl F, Beerenwinkel N, Antal T, Traulsen A, Nowak MA, Siegel C, Velculescu VE, Kinzler KW, Vogelstein B, Willis J, Markowitz SD. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A. 2008;105(11):4283–4288. doi: 10.1073/pnas.0712345105.
    1. Keane S, Ameen S, Lindlof A, Ejeskar K. Low DLG2 gene expression, a link between 11q-deleted and MYCN-amplified neuroblastoma, causes forced cell cycle progression, and predicts poor patient survival. Cell Commun Signal. 2020;18(1):65. doi: 10.1186/s12964-020-00553-6.
    1. Keane S, Martinsson T, Kogner P, Ejeskar K. The loss of DLG2 isoform 7/8, but not isoform 2, is critical in advanced staged neuroblastoma. Cancer Cell Int. 2021;21(1):170. doi: 10.1186/s12935-021-01851-w.
    1. Keane S, de Weerd HA, Ejeskar K. DLG2 impairs dsDNA break repair and maintains genome integrity in neuroblastoma. DNA Repair (amst) 2022;112:103302. doi: 10.1016/j.dnarep.2022.103302.
    1. Kim J, Ahn H, Yu S, Ahn JH, Ko HJ, Kweon MN, Hong EJ, An BS, Lee E, Lee GS. IkappaBzeta controls NLRP3 inflammasome activation via upregulation of the Nlrp3 gene. Cytokine. 2020;127:154983. doi: 10.1016/j.cyto.2019.154983.
    1. Kolligs FT. Diagnostics and epidemiology of colorectal cancer. Visceral Med. 2016;32(3):158–164. doi: 10.1159/000446488.
    1. Lai EY, Chen ZG, Zhou X, Fan XR, Wang H, Lai PL, Su YC, Zhang BY, Bai XC, Li YF. DEPTOR expression negatively correlates with mTORC1 activity and tumor progression in colorectal cancer. Asian Pac J Cancer Prev. 2014;15(11):4589–4594. doi: 10.7314/APJCP.2014.15.11.4589.
    1. Lund EK, Belshaw NJ, Elliott GO, Johnson IT. Recent advances in understanding the role of diet and obesity in the development of colorectal cancer. Proc Nutr Soc. 2011;70(2):194–204. doi: 10.1017/S0029665111000073.
    1. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045. doi: 10.1146/annurev.iy.12.040194.005015.
    1. Ostvik AE, Svendsen TD, Granlund AVB, Doseth B, Skovdahl HK, Bakke I, Thorsvik S, Afroz W, Walaas GA, Mollnes TE, Gustafsson BI, Sandvik AK, Bruland T. Intestinal epithelial cells express immunomodulatory ISG15 during active ulcerative colitis and Crohn's disease. J Crohns Colitis. 2020;14(7):920–934. doi: 10.1093/ecco-jcc/jjaa022.
    1. Ozawa N, Yokobori T, Osone K, Katayama C, Suga K, Komine C, Shibasaki Y, Shiraishi T, Okada T, Kato R, Ogawa H, Sano A, Sakai M, Sohda M, Ojima H, Miyazaki T, Motegi Y, Ide M, Yao T, Kuwano H, Shirabe K, Saeki H. PD-L1 upregulation is associated with activation of the DNA double-strand break repair pathway in patients with colitic cancer. Sci Rep. 2021;11(1):13077. doi: 10.1038/s41598-021-92530-3.
    1. Sabates-Beliver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, Laczko E, Kurowski MA, Bujnicki JM, Menigatti M, Luz J, Ranalli TV, Gornes V, Pastorelli A, Faggiani R, Anti M, Jiricny J, Clevers H, Marra G. Transcriptome profile of human colorectal adenomas. Mol Cancer Res. 2007;5(12):1263–1275. doi: 10.1158/1541-7786.MCR-07-0267.
    1. Sahab ZJ, Hall MD, Zhang L, Cheema AK, Byers SW. Tumor suppressor RARRES1 regulates DLG2, PP2A, VCP, EB1, and Ankrd26. J Cancer. 2010;1:14–22. doi: 10.7150/jca.1.14.
    1. Santiago L, Castro M, Sanz-Pamplona R, Garzon M, Ramirez-Labrada A, Tapia E, Moreno V, Layunta E, Gil-Gomez G, Garrido M, Pena R, Lanuza PM, Comas L, Jaime-Sanchez P, Uranga-Murillo I, Del Campo R, Pelegrin P, Camerer E, Martinez-Lostao L, Munoz G, Uranga JA, Alcalde A, Galvez EM, Ferrandez A, Bird PI, Metkar S, Arias MA, Pardo J. Extracellular granzyme a promotes colorectal cancer development by enhancing gut inflammation. Cell Rep. 2020;32(1):107847. doi: 10.1016/j.celrep.2020.107847.
    1. Shao YW, Wood GA, Lu J, Tang QL, Liu J, Molyneux S, Chen Y, Fang H, Adissu H, McKee T, Waterhouse P, Khokha R. Cross-species genomics identifies DLG2 as a tumor suppressor in osteosarcoma. Oncogene. 2019;38(2):291–298. doi: 10.1038/s41388-018-0444-4.
    1. Shao X, Lei Z, Zhou C. NLRP3 promotes colorectal cancer cell proliferation and metastasis via regulating epithelial mesenchymal transformation. Anticancer Agents Med Chem. 2020;20(7):820–827. doi: 10.2174/1871520620666200220112741.
    1. Sharma RA, Gescher A, Plastaras JP, Leuratti C, Singh R, Gallacher-Horley B, Offord E, Marnett LJ, Steward WP, Plummer SM. Cyclooxygenase-2, malondialdehyde and pyrimidopurinone adducts of deoxyguanosine in human colon cells. Carcinogenesis. 2001;22(9):1557–1560. doi: 10.1093/carcin/22.9.1557.
    1. Shi W, Zou R, Yang M, Mai L, Ren J, Wen J, Liu Z, Lai R. Analysis of genes involved in ulcerative colitis activity and tumorigenesis through systematic mining of gene co-expression networks. Front Physiol. 2019;10:662. doi: 10.3389/fphys.2019.00662.
    1. Shi YJ, Zhao QQ, Liu XS, Dong SH, Li X, Liu C, Wang H. Toll-like receptor 4 regulates spontaneous intestinal tumorigenesis by up-regulating IL-6 and GM-CSF. J Cell Mol Med. 2020;24(1):385–397. doi: 10.1111/jcmm.14742.
    1. Shi F, Wei B, Lan T, Xiao Y, Quan X, Chen J, Zhao C, Gao J (2021) Low NLRP3 expression predicts a better prognosis of colorectal cancer. Biosci Rep 41(4)
    1. Siaw JT, Javanmardi N, Eynden JVD, Lind DE, Fransson S, Martinez-Monleon A, Djos A, Sjoberg RM, Ostensson M, Caren H, Troen G, Beiske K, Berbegall AP, Noguera I, Lai WY, Kogner P, Palmer RH, Hallberg B, Martinsson T. 11q deletion or ALK activity curbs DLG2 expression to maintain an undifferentiated state in neuroblastoma. Cell Rep. 2020;32(12):108171. doi: 10.1016/j.celrep.2020.108171.
    1. Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K, Abrouk M, Farahnik B, Nakamura M, Zhu TH, Bhutani T, Liao W. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. doi: 10.1186/s12967-017-1175-y.
    1. Slattery ML, Wolff RK, Herrick JS, Caan BJ, Potter JD. IL6 genotypes and colon and rectal cancer. Cancer Causes Control. 2007;18(10):1095–1105. doi: 10.1007/s10552-007-9049-x.
    1. Ungerback J, Belenki D, Jawad ul-Hassan A, Fredrikson M, Fransen K, Elander N, Verma D, Soderkvist P. Genetic variation and alterations of genes involved in NFkappaB/TNFAIP3- and NLRP3-inflammasome signaling affect susceptibility and outcome of colorectal cancer. Carcinogenesis. 2012;33(11):2126–2134. doi: 10.1093/carcin/bgs256.
    1. Vancamelbeke M, Vanuytsel T, Farre R, Verstockt S, Ferrante M, Van Assche G, Rutgeerts P, Schuit F, Vermeire S, Arijs I, Cleynen I. Genetic and transcriptomic bases of intestinal epithelial barrier dysfunction in inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(10):1718–1729. doi: 10.1097/MIB.0000000000001246.
    1. Verma D, Sarndahl E, Andersson H, Eriksson P, Fredrikson M, Jonsson JI, Lerm M, Soderkvist P. The Q705K polymorphism in NLRP3 is a gain-of-function alteration leading to excessive interleukin-1beta and IL-18 production. PLoS ONE. 2012;7(4):e34977. doi: 10.1371/journal.pone.0034977.
    1. Wang WJ, Chen D, Jiang MZ, Xu B, Li XW, Chu Y, Zhang YJ, Mao R, Liang J, Fan DM. Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins. J Dig Dis. 2018;19(2):74–83. doi: 10.1111/1751-2980.12576.
    1. Wang A, Deng S, Chen X, Yu C, Du Q, Wu Y, Chen G, Hu L, Hu C, Li Y. miR-29a-5p/STAT3 positive feedback loop regulates TETs in colitis-associated colorectal cancer. Inflamm Bowel Dis. 2020;26(4):524–533. doi: 10.1093/ibd/izz281.
    1. Willems M, Dubois N, Musumeci L, Bours V, Robe PA. IkappaBzeta: an emerging player in cancer. Oncotarget. 2016;7(40):66310–66322. doi: 10.18632/oncotarget.11624.
    1. Wu Z, Zhang X, Yang J, Wu G, Zhang Y, Yuan Y, Jin C, Chang Z, Wang J, Yang X, He F. Nuclear protein IkappaB-zeta inhibits the activity of STAT3. Biochem Biophys Res Commun. 2009;387(2):348–352. doi: 10.1016/j.bbrc.2009.07.023.
    1. Xiong H, Zhang ZG, Tian XQ, Sun DF, Liang QC, Zhang YJ, Lu R, Chen YX, Fang JY. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia. 2008;10(3):287–297. doi: 10.1593/neo.07971.
    1. Xu T, Rao T, Yu WM, Ning JZ, Yu X, Zhu SM, Yang K, Bai T, Cheng F (2021) Upregulation of NFKBIZ affects bladder cancer progression via the PTEN/PI3K/Akt signaling pathway. Int J Mol Med 47(6)
    1. Yamazaki S, Muta T, Takeshige K. A novel IkappaB protein, IkappaB-zeta, induced by proinflammatory stimuli, negatively regulates nuclear factor-kappaB in the nuclei. J Biol Chem. 2001;276(29):27657–27662. doi: 10.1074/jbc.M103426200.
    1. Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M, Kanneganti TD. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol. 2010;185(8):4912–4920. doi: 10.4049/jimmunol.1002046.
    1. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–107. doi: 10.1038/nature08780.
    1. Zhang T, Li H, Shi J, Li S, Li M, Zhang L, Zheng L, Zheng D, Tang F, Zhang X, Zhang F, You X. p53 predominantly regulates IL-6 production and suppresses synovial inflammation in fibroblast-like synoviocytes and adjuvant-induced arthritis. Arthritis Res Ther. 2016;18(1):271. doi: 10.1186/s13075-016-1161-4.
    1. Zhang C, Qin J, Zhang S, Zhang N, Tan B, Siwko S, Zhang Y, Wang Q, Chen J, Qian M, Liu M, Du B. ADP/P2Y1 aggravates inflammatory bowel disease through ERK5-mediated NLRP3 inflammasome activation. Mucosal Immunol. 2020;13(6):931–945. doi: 10.1038/s41385-020-0307-5.
    1. Zhang Y, Pu W, Bousquenaud M, Cattin S, Zaric J, Sun LK, Ruegg C. Emodin inhibits inflammation, carcinogenesis, and cancer progression in the AOM/DSS model of colitis-associated intestinal tumorigenesis. Front Oncol. 2020;10:564674. doi: 10.3389/fonc.2020.564674.
    1. Zhuang RJ, Bai XX, Liu W. MicroRNA-23a depletion promotes apoptosis of ovarian cancer stem cell and inhibits cell migration by targeting DLG2. Cancer Biol Ther. 2019;20(6):897–911. doi: 10.1080/15384047.2019.1579960.

Source: PubMed

3
Subscribe