Models of osteoarthritis: the good, the bad and the promising

P J Cope, K Ourradi, Y Li, M Sharif, P J Cope, K Ourradi, Y Li, M Sharif

Abstract

Osteoarthritis (OA) is a chronic degenerative disease of diarthrodial joints most commonly affecting people over the age of forty. The causes of OA are still unknown and there is much debate in the literature as to the exact sequence of events that trigger the onset of the heterogeneous disease we recognise as OA. There is currently no consensus model for OA that naturally reflects human disease. Existing ex-vivo models do not incorporate the important inter-tissue communication between joint components required for disease progression and differences in size, anatomy, histology and biomechanics between different animal models makes translation to the human model very difficult. This narrative review highlights the advantages and disadvantages of the current models used to study OA. It discusses the challenges of producing a more reliable OA-model and proposes a direction for the development of a consensus model that reflects the natural environment of human OA. We suggest that a human osteochondral plug-based model may overcome many of the fundamental limitations associated with animal and in-vitro models based on isolated cells. Such a model will also provide a platform for the development and testing of targeted treatment and validation of novel OA markers directly on human tissues.

Keywords: Animal-model; Osteoarthritis; Osteochondral plugs; ex-vivo model; in-vivo model.

Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

References

    1. Bendele A.M. Animal models of osteoarthritis. J Musculoskelet Neuronal Interact. 2001;1(4):363–376.
    1. Kuyinu E.L., Narayanan G., Nair L.S., Laurencin C.T. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res. 2016;11:19.
    1. Amin A.K., Huntley J.S., Simpson A.H., Hall A.C. Chondrocyte survival in articular cartilage: the influence of subchondral bone in a bovine model. J Bone Joint Surg. 2009;91(5):691–699.
    1. Fell H.B., Jubb R.W. The effect of synovial tissue on the breakdown of articular cartilage in organ culture. Arthritis & Rheumatol. 1977;20(7):1359–1371.
    1. Heinemann C., Heinemann S., Worch H., Hanke T. Development of an osteoblast/osteoclast co-culture derived by human bone marrow stromal cells and human monocytes for biomaterials testing. Eur Cell Mater. 2011;21:80–93.
    1. Abramson S.B., Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther. 2009;11(3):227.
    1. Goldring M.B., Marcu K.B. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther. 2009;11(3):224.
    1. Martel-Pelletier J., Pelletier J.P. Is osteoarthritis a disease involving only cartilage or other articular tissues? Eklem Hastalik Cerrahisi. 2010;21(1):2–14.
    1. Helmtrud IS T. First edn. Springer; London: 2007. Bone and Osteoarthritis.
    1. Sharma A., Jagga S., Lee S., Nam J. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis. Int J Mol Sci. 2013;14(10):19805–19830.
    1. Benito M.J., Veale D.J., FitzGerald O., van den Berg W.B., Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. ARD (Ann Rheum Dis) 2005;64(9):1263–1267.
    1. Zamli Z., Robson-Brown K., Tarlton J., Adams M., Torlot G., Cartwright C. Subchondral bone plate thickening precedes chondrocyte apoptosis and cartilage degradation in spontaneous animal models of osteoarthritis. BioMed Res Int. 2014;2014(2014):606870.
    1. Sun Y., Mauerhan D.R., Kneisl J.S., James Norton H., Zinchenko N., Ingram J. Histological examination of collagen and proteoglycan changes in osteoarthritic menisci. Open Rheumatol J. 2012;6:24–32.
    1. Braun H.J., Gold G.E. Diagnosis of osteoarthritis: imaging. Bone. 2012;51(2):278–288.
    1. Man G., Mologhianu G. Osteoarthritis pathogenesis – a complex process that involves the entire joint. J Med Life. 2014;7:37–41.
    1. Burr D.B., Gallant M.A. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2012;8(11):665–673.
    1. Cucchiarini M., de Girolamo L., Filardo G., Oliveira J.M., Orth P., Pape D. Basic science of osteoarthritis. J Exp Orthop. 2016;3(1)
    1. McCoy A.M. Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol. 2015;52(5):803–818.
    1. Radin E.L., Rose R.M. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 1986;(213):34–40.
    1. Sophia Fox A.J., Bedi A., Rodeo S.A. The basic science of articular cartilage: structure, composition, and function. Sport Health. 2009;1(6):461–468.
    1. Lee C., Kisiday J., McIlwraith C., Grodzinsky A., Frisbie D. Synoviocytes protect cartilage from the effects of injury in vitro. BMC Muscoskel Disord. 2013;14(1):54.
    1. Malinin T., Ouellette E.A. Articular cartilage nutrition is mediated by subchondral bone: a long-term autograft study in baboons. Osteoarthritis Cartilage. 2000;8(6):483–491.
    1. Johnson C., Argyle D., Clements D. In vitro models for the study of osteoarthritis. Vet J. 2016;209:40–49.
    1. Edmondson R., Broglie J.J., Adcock A.F., Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207–218.
    1. Nicholson I.P., Gault E.A., Foote C.G., Nasir L., Bennett D. Human telomerase reverse transcriptase (hTERT) extends the lifespan of canine chondrocytes in vitro without inducing neoplastic transformation. Vet J. 2007;174(3):570–576.
    1. Zien A., Aigner T., Zimmer R., Lengauer T. Centralization: a new method for the normalization of gene expression data. Bioinformatics. 2001;17(Suppl 1):S323–S331.
    1. Hendriks J., Riesle J., van Blitterswijk C.A. Co-culture in cartilage tissue engineering. J Tissue Eng Regen Med. 2007;1(3):170–178.
    1. Thysen S., Luyten F.P., Lories R.J.U. Targets, models and challenges in osteoarthritis research. Dis Model Mech. 2015;8(1):17–30.
    1. Spalazzi J., Dionisio K., Jiang J., Lu H. Osteoblast and chondrocyte interactions during co-culture on scaffolds examining matrix and substrate-dependent effects on the formation of functional bone-cartilage interfaces. Eng Med Biol Mag. 2003;22(5):27–34.
    1. Jiang J., Nicoll S.B., Lu H.H. Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem Biophys Res Commun. 2005;338(2):762–770.
    1. Sanchez C., Deberg M.A., Piccardi N., Msika P., Reginster J.Y., Henrotin Y.E. Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthritis Cartilage. 2005;13(11):988–997.
    1. Prasadam I., Crawford R., Xiao Y. Aggravation of ADAMTS and matrix metalloproteinase production and role of ERK1/2 pathway in the interaction of osteoarthritic subchondral bone osteoblasts and articular cartilage chondrocytes -- possible pathogenic role in osteoarthritis. J Rheumatol. 2012;39(3):621–634.
    1. Chitcholtan K., Sykes P.H., Evans J.J. The resistance of intracellular mediators to doxorubicin and cisplatin are distinct in 3D and 2D endometrial cancer. J Transl Med. 2012;10:38.
    1. Lampropoulou-Adamidou K., Lelovas P., Karadimas E.V., Liakou C., Triantafillopoulos I.K., Dontas I. Useful animal models for the research of osteoarthritis. Eur J Orthop Surg Traumatol. 2014;24(3):263–271.
    1. Vincent T.L., Williams R.O., Maciewicz R., Silman A., Garside P. Mapping pathogenesis of arthritis through small animal models. Rheumatology. 2012;51(11):1931–1941.
    1. Fang H., Beier F. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes. Nat Rev Rheumatol. 2014;10(7):413–421.
    1. Blair-Levy J.M., Watts C.E., Fiorentino N.M., Dimitriadis E.K., Marini J.C., Lipsky P.E. A type I collagen defect leads to rapidly progressive osteoarthritis in a mouse model. Arthritis Rheum. 2008;58(4):1096–1106.
    1. Glasson S.S. In vivo osteoarthritis target validation utilizing genetically-modified mice. Curr Drug Targets. 2007;8(2):367–376.
    1. Longo U.G., Loppini M., Fumo C., Rizzello G., Khan W.S., Maffulli N. Osteoarthritis: new insights in animal models. Open Orthop J. 2012;6:558–563.
    1. Little C., Smith M. Animal models of osteoarthritis. Curr Rheumatol Rev. 2008;4(3)
    1. Teeple E., Jay G.D., Elsaid K.A., Fleming B.C. Animal models of osteoarthritis: challenges of model selection and analysis. AAPS J. 2013;15(2):438–446.
    1. Kamekura S., Hoshi K., Shimoaka T., Chung U., Chikuda H., Yamada T. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage. 2005;13(7):632–641.
    1. Lorenz J., Grassel S. Experimental osteoarthritis models in mice. Methods Mol Biol. 2014;1194:401–419.
    1. Xu L., Polur I., Lim C., Servais J.M., Dobeck J., Li Y. Early-onset osteoarthritis of mouse temporomandibular joint induced by partial discectomy. Osteoarthritis Cartilage. 2009;17(7):917–922.
    1. Gregory M.H., Capito N., Kuroki K., Stoker A.M., Cook J.L., Sherman S.L. A review of translational animal models for knee osteoarthritis. Arthritis. 2012;2012:764621.
    1. Pickarski M., Hayami T., Zhuo Y., Duong L.T. Molecular changes in articular cartilage and subchondral bone in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. BMC Muscoskel Disord. 2011;12:197.
    1. Maerz T., Kurdziel M.D., Davidson A.A., Baker K.C., Anderson K., Matthew H.W. Biomechanical characterization of a model of noninvasive, traumatic anterior cruciate ligament injury in the rat. Ann Biomed Eng. 2015;43(10):2467–2476.
    1. Guzman R.E., Evans M.G., Bove S., Morenko B., Kilgore K. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol. 2003;31(6):619–624.
    1. Bendele A.M., Hulman J.F. Effects of body weight restriction on the development and progression of spontaneous osteoarthritis in Guinea pigs. Arthritis Rheum. 1991;34(9):1180–1184.
    1. Pastoureau P., Leduc S., Chomel A., De Ceuninck F. Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized Guinea pig model of osteoarthritis. Osteoarthritis Cartilage. 2003;11(6):412–423.
    1. Huebner J.L., Kraus V.B. Assessment of the utility of biomarkers of osteoarthritis in the Guinea pig. Osteoarthritis Cartilage. 2006;14(9):923–930.
    1. Arzi B., Wisner E.R., Huey D.J., Kass P.H., Hu J., Athanasiou K.A. A proposed model of naturally occurring osteoarthritis in the domestic rabbit. Lab Anim (NY) 2011;41(1):20–25.
    1. Ehrlich M.G., Mankin H.J., Jones H., Grossman A., Crispen C., Ancona D. Biochemical confirmation of an experimental osteoarthritis model. J Bone Joint Surg Am. 1975;57(3):392–396.
    1. Yang F., Shi Z. A study on papain-induced osteoarthritis in rabbit temporomandibular joint. Hua xi kou qiang yi xue za zhi. 2002;20(5):330–332.
    1. Bentley G. Articular cartilage studies and osteoarthrosis. Ann R Coll Surg Engl. 1975;57(2):86–100.
    1. Evans C.H., Mazzocchi R.A., Nelson D.D., Rubash H.E. Experimental arthritis induced by intraarticular injection of allogenic cartilaginous particles into rabbit knees. Arthritis Rheum. 1984;27(2):200–207.
    1. Moreau M., Pelletier J.P., Lussier B., d'Anjou M.A., Blond L., Pelletier J.M. A posteriori comparison of natural and surgical destabilization models of canine osteoarthritis. BioMed Res Int. 2013;2013:180453.
    1. Marijnissen A.C., van Roermund P.M., TeKoppele J.M., Bijlsma J.W., Lafeber F.P. The canine 'groove' model, compared with the ACLT model of osteoarthritis. Osteoarthritis Cartilage. 2002;10(2):145–155.
    1. Pelletier J.P., Boileau C., Brunet J., Boily M., Lajeunesse D., Reboul P. The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K. Bone. 2004;34(3):527–538.
    1. Jovanovic D.V., Fernandes J.C., Martel-Pelletier J., Jolicoeur F.C., Reboul P., Laufer S. In vivo dual inhibition of cyclooxygenase and lipoxygenase by ML-3000 reduces the progression of experimental osteoarthritis: suppression of collagenase 1 and interleukin-1beta synthesis. Arthritis Rheum. 2001;44(10):2320–2330.
    1. Chrisman O.D., Fessel J.M., Southwick W.O. Experimental production of synovitis and marginal articular exostoses in the knee joints of dogs. Yale J Biol Med. 1965;37(5):409–412.
    1. Cake M.A., Read R.A., Corfield G., Daniel A., Burkhardt D., Smith M.M. Comparison of gait and pathology outcomes of three meniscal procedures for induction of knee osteoarthritis in sheep. Osteoarthritis Cartilage. 2013;21(1):226–236.
    1. Little C.B., Smith M.M., Cake M.A., Read R.A., Murphy M.J., Barry F.P. The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in sheep and goats. Osteoarthritis Cartilage. 2010;18(Suppl 3):S80–S92.
    1. Proffen B.L., McElfresh M., Fleming B.C., Murray M.M. A comparative anatomical study of the human knee and six animal species. Knee. 2012;19(4):493–499.
    1. Bolam C.J., Hurtig M.B., Cruz A., McEwen B.J. Characterization of experimentally induced post-traumatic osteoarthritis in the medial femorotibial joint of horses. Am J Vet Res. 2006;67(3):433–447.
    1. Boyce M.K., Trumble T.N., Carlson C.S., Groschen D.M., Merritt K.A., Brown M.P. Non-terminal animal model of post-traumatic osteoarthritis induced by acute joint injury. Osteoarthritis Cartilage. 2013;21(5):746–755.
    1. McIlwraith C.W., Van Sickle D.C. Experimentally induced arthritis of the equine carpus: histologic and histochemical changes in the articular cartilage. Am J Vet Res. 1981;42(2):209–217.
    1. de Grauw J.C., van de Lest C.H., Brama P.A., Rambags B.P., van Weeren P.R. In vivo effects of meloxicam on inflammatory mediators, MMP activity and cartilage biomarkers in equine joints with acute synovitis. Equine Vet J. 2009;41(7):693–699.
    1. Peloso J.G., Stick J.A., Caron J.P., Peloso P.M., Soutas-Little R.W. Effects of hylan on amphotericin-induced carpal lameness in equids. Am J Vet Res. 1993;54(9):1527–1534.
    1. Cornelissen B.P., Rijkenhuizen A.B., van den Hoogen B.M., Rutten V.P., Barneveld A. Experimental model of synovitis/capsulitis in the equine metacarpophalangeal joint. Am J Vet Res. 1998;59(8):978–985.
    1. van der Kraan P.M. Relevance of zebrafish as an OA research model. Osteoarthritis Cartilage. 2013;21(2):261–262.
    1. Tochigi Y., Zhang P., Rudert M.J., Baer T.E., Martin J.A., Hillis S.L. A novel impaction technique to create experimental articular fractures in large animal joints. Osteoarthritis Cartilage. 2013;21(1):200–208.
    1. Cruz R., Ramírez C., Rojas O., Casas-Mejía O., Kouri J., Vega-López M. The pig as an osteoarthritis translational research model. J Osteoarthritis. 2016;1(1):1–2.
    1. Heinola T., Sukura A., Virkki L.M., Sillat T., Lekszycki T., Konttinen Y.T. Osteoarthritic cartilage lesions in the bovine patellar groove: a macroscopic, histological and immunohistological analysis. Vet J. 2014;200(1):88–95.
    1. Hargrave-Thomas E.J., Thambyah A., McGlashan S.R., Broom N.D. The bovine patella as a model of early osteoarthritis. J Anat. 2013;223(6):651–664.
    1. Plate J.F., Bates C.M., Mannava S., Smith T.L., Jorgensen M.J., Register T.C. Age-related degenerative functional, radiographic, and histological changes of the shoulder in nonhuman primates. J Shoulder Elbow Surg. 2013;22(8):1019–1029.
    1. Carlson C.S., Loeser R.F., Jayo M.J., Weaver D.S., Adams M.R., Jerome C.P. Osteoarthritis in cynomolgus macaques: a primate model of naturally occurring disease. J Orthop Res. 1994;12(3):331–339.
    1. Grynpas M.D., Gahunia H.K., Yuan J., Pritzker K.P., Hartmann D., Tupy J.H. Analysis of collagens solubilized from cartilage of normal and spontaneously osteoarthritic rhesus monkeys. Osteoarthritis Cartilage. 1994;2(4):227–234.
    1. Chateauvert J., Pritzker K.P., Kessler M.J., Grynpas M.D. Spontaneous osteoarthritis in rhesus macaques. I. Chemical and biochemical studies. J Rheumatol. 1989;16(8):1098–1104.
    1. Jiang L., Ma A., Song L., Hu Y., Dun H., Daloze P. Cartilage regeneration by selected chondrogenic clonal mesenchymal stem cells in the collagenase-induced monkey osteoarthritis model. J Tissue Eng Regen Med. 2014;8(11):896–905.
    1. McNulty M.A., Loeser R.F., Davey C., Callahan M.F., Ferguson C.M., Carlson C.S. Histopathology of naturally occurring and surgically induced osteoarthritis in mice. Osteoarthritis Cartilage. 2012;20(8):949–956.
    1. Silberberg M., Silberberg R. Age changes of bones and joints in various strains of mice. Dev Dynam. 1941;68(1):69–95.
    1. Cook J.L., Hung C.T., Kuroki K., Stoker A.M., Cook C.R., Pfeiffer F.M. Animal models of cartilage repair. Bone Jt Res. 2014;3(4):89–94.
    1. Kraus V.B., Huebner J.L., DeGroot J., Bendele A. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the Guinea pig. Osteoarthritis Cartilage. 2010;18(Suppl 3):S35–S52.
    1. Guinea Pig Genome Project: Broad Institute. 2008. [updated 2008-09-23. Available from:
    1. Rabbit Genome Project: Broad Institute. 2008. [updated 2008-07-12. Available from:
    1. Poole R., Blake S., Buschmann M., Goldring S., Laverty S., Lockwood S. Recommendations for the use of preclinical models in the study and treatment of osteoarthritis. Osteoarthritis Cartilage. 2010;18(Suppl 3):S10–S16.
    1. Pedersen D.R., Goetz J.E., Kurriger G.L., Martin J.A. Comparative digital cartilage histology for human and common osteoarthritis models. Orthop Res Rev. 2013;(5):13–20.
    1. Chevrier A., Nelea M., Hurtig M.B., Hoemann C.D., Buschmann M.D. Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair. J Orthop Res. 2009;27(9):1197–1203.
    1. Cook J.L., Kuroki K., Visco D., Pelletier J.P., Schulz L., Lafeber F.P. The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog. Osteoarthritis Cartilage. 2010;18(Suppl 3):S66–S79.
    1. Worley K. A golden goat genome. Nat Genet. 2017;49(4):485.
    1. Frisbie D.D., Cross M.W., McIlwraith C.W. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol. 2006;19(3):142–146.
    1. Malda J., Benders K.E., Klein T.J., de Grauw J.C., Kik M.J., Hutmacher D.W. Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles. Osteoarthritis Cartilage. 2012;20(10):1147–1151.
    1. Strauss E.J., Goodrich L.R., Chen C.T., Hidaka C., Nixon A.J. Biochemical and biomechanical properties of lesion and adjacent articular cartilage after chondral defect repair in an equine model. Am J Sports Med. 2005;33(11):1647–1653.
    1. Sandmann H., Adamczyk C., Garcia E.G., Doebele S., Buettner A., Milz S. Biomechanical comparison of menisci from different species and artificial constructs. BMC Muscoskel Disord. 2013;14(1):324.
    1. Zimin A., Delcher A., Florea L., Kelley D., Schatz M., Puiu D. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009;10(4)
    1. Ferdowsian H.R., Durham D.L., Kimwele C., Kranendonk G., Otali E., Akugizibwe T. Signs of mood and anxiety disorders in chimpanzees. PloS One. 2011;6(6)
    1. Mouser V.H.M., Dautzenberg N.M.M., Levato R., van Rijen M.H.P., Dhert W.J.A., Malda J. Ex vivo model unravelling cell distribution effect in hydrogels for cartilage repair. ALTEX. 2018;35(1):65–76.
    1. Bansal P.N., Stewart R.C., Entezari V., Snyder B.D., Grinstaff M.W. Contrast agent electrostatic attraction rather than repulsion to glycosaminoglycans affords a greater contrast uptake ratio and improved quantitative CT imaging in cartilage. Osteoarthritis Cartilage. 2011;19(8):970–976.
    1. Huntley J.S., Bush P.G., McBirnie J.M., Simpson A.H., Hall A.C. Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone Joint Surg Am. 2005;87(2):351–360.

Source: PubMed

3
Subscribe