Tissue Conditioner Incorporating a Nano-Sized Surface Pre-Reacted Glass-Ionomer (S-PRG) Filler

Watcharapong Tonprasong, Masanao Inokoshi, Muneaki Tamura, Motohiro Uo, Takahiro Wada, Rena Takahashi, Keita Hatano, Makoto Shimizubata, Shunsuke Minakuchi, Watcharapong Tonprasong, Masanao Inokoshi, Muneaki Tamura, Motohiro Uo, Takahiro Wada, Rena Takahashi, Keita Hatano, Makoto Shimizubata, Shunsuke Minakuchi

Abstract

We aimed to evaluate the properties of a novel tissue conditioner containing a surface pre-reacted glass-ionomer (S-PRG) nanofiller. Tissue conditioners containing 0 (control), 2.5, 5, 10, 20, or 30 wt% S-PRG nanofiller or 10 or 20 wt% S-PRG microfiller were prepared. The S-PRG nanofillers and microfillers were observed using scanning electron microscopy. The ion release, acid buffering capacity, detail reproduction, consistency, Shore A0 hardness, surface roughness, and Candida albicans adhesion of the tissue conditioners were examined. The results indicated that the nanofiller particles were smaller and more homogeneous in size than the microfiller particles. In addition, Al, B, F, and Sr ions eluted from S-PRG were generally found to decrease after 1 day. Acid neutralization was confirmed in a concentration-dependent manner. The mechanical properties of tissue conditioners containing S-PRG nanofiller were clinically acceptable according to ISO standard 10139-1:2018, although the surface roughness increased with increasing filler content. Conditioners with 5-30 wt% nanofiller had a sublethal effect on C. albicans and reduced fungal adhesion in vitro. In summary, tissue conditioner containing at least 5 wt% S-PRG nanofiller can reduce C. albicans adhesion and has potential as an alternative soft lining material.

Keywords: acid buffering capacity; consistency; detail reproduction; fungal adhesion; ion release; nanofiller; shore A0 hardness; surface pre-reacted glass ionomer (S-PRG) filler; surface roughness; tissue conditioner.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
SEM images of pure S-PRG (A) nanoparticles and (B) microparticles. Polygonal particles were observed in both cases.
Figure 2
Figure 2
Concentrations of (A) Al, (B) B, (C) F, and (D) Sr ions released after 1 day from tissue conditioners incorporating different ratios of S-PRG filler and the control. Different letters above the boxplots indicate statistically significant differences.
Figure 3
Figure 3
Ion release behavior from tissue conditioner specimens containing 10 and 20 wt% microfiller and nanofiller particles on days 1, 2, 4, and 7. Panels (AD) show the Al, B, F, and Sr concentrations, respectively.
Figure 4
Figure 4
pH levels of the demineralizing solution after immersing the experimental and control specimens for 24 h. Different letters above the bars indicate significant differences.
Figure 5
Figure 5
(A) Laser scanning micrographs illustrating the surface detail of different tissue conditioners. (B) Boxplots of surface roughness measured for different tissue conditioner specimens. Different letters above the plots indicate significant differences.
Figure 6
Figure 6
(A) Confocal laser scanning fluorescence micrographs showing Candida albicans cell adhesion on tissue conditioner specimens. The red-colored cells were stained using propidium iodide (PI) and considered dead. (B) Number of cell adhesion and (C) dead/living cell ratio on the specimens. The number of living cells (colored green) was calculated as the total cell number minus the dead cell number.

References

    1. Hong G., Li Y., Maeda T., Mizumachi W., Sadamori S., Hamada T., Murata H. Influence of Storage Methods on the Surface Roughness of Tissue Conditioners. Dent. Mater. J. 2008;27:153–158. doi: 10.4012/dmj.27.153.
    1. Hermann C., Mesquita M.F., Consani R.L.X., Henriques G.E.P. The Effect of Aging by Thermal Cycling and Mechanical Brushing on Resilient Denture Liner Hardness and Roughness. J. Prosthodont. 2008;17:318–322. doi: 10.1111/j.1532-849X.2007.00293.x.
    1. Pereira-Cenci T., Cury A.D.B., Crielaard W., Cate J.M.T. Development of Candida-associated denture stomatitis: New insights. J. Appl. Oral Sci. 2008;16:86–94. doi: 10.1590/S1678-77572008000200002.
    1. Ramage G., Tomsett K., Wickes B., Lopez-Ribot J., Redding S.W. Denture stomatitis: A role for Candida biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2004;98:53–59. doi: 10.1016/j.tripleo.2003.04.002.
    1. Araújo de Vasconcellos A., Araújo de Vasconcellos A., Chagas R.B., Gonçalves L.M. Candida-Associated Denture Stomatitis:Clinical Relevant Aspects. Clin. Microbial. 2014;3:160. doi: 10.4172/2327-5073.1000160.
    1. Mayer F.L., Wilson D., Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4:119–128. doi: 10.4161/viru.22913.
    1. O’Donnell L.E., Smith K., Williams C., Nile C., Lappin D.F., Bradshaw D., Lambert M., Robertson D., Bagg J., Hannah V., et al. Dentures are a Reservoir for Respiratory Pathogens. J. Prosthodont. 2016;25:99–104. doi: 10.1111/jopr.12342.
    1. Geerts G.A., Stuhlinger M.E., Basson N.J. Effect of an antifungal denture liner on the saliva yeast count in patients with denture stomatitis: A pilot study. J. Oral. Rehabil. 2008;35:664–669. doi: 10.1111/j.1365-2842.2007.01805.x.
    1. Urban V.M., Seó R.S., Giannini M., Arrais C.A.G. Superficial Distribution and Identification of Antifungal/Antimicrobial Agents on a Modified Tissue Conditioner by SEM-EDS Microanalysis: A Preliminary Study. J. Prosthodont. 2009;18:603–610. doi: 10.1111/j.1532-849X.2009.00479.x.
    1. Falah-Tafti A., Jafari A.A., Kamran M.H.L., Fallahzadeh H., Hayan R.S. A Comparison of the eFficacy of Nystatin and Fluconazole Incorporated into Tissue Conditioner on the In Vitro Attachment and Colonization of Candida Albicans. Dent. Res. J. 2010;7:18–22.
    1. Bueno M., Urban V., Barbério G., Da Silva W.J., Porto V., Pinto L., Neppelenbroek K. Effect of antimicrobial agents incorporated into resilient denture relines on the Candida albicans biofilm. Oral Dis. 2013;21:57–65. doi: 10.1111/odi.12207.
    1. Barua D.R., Basavanna J.M., Varghese R.K. Efficacy of Neem Extract and Three Antimicrobial Agents Incorporated into Tissue Conditioner in Inhibiting the Growth of C. Albicans and S. Mutans. J. Clin. Diagn. Res. 2017;11:ZC97–ZC101. doi: 10.7860/JCDR/2017/23784.9950.
    1. Radnai M., Whiley R., Friel T., Wright P.S. Effect of antifungal gels incorporated into a tissue conditioning material on the growth of Candida albicans. Gerodontology. 2009;27:292–296. doi: 10.1111/j.1741-2358.2009.00337.x.
    1. Urban V.M., De Souza R.F., Arrais C.A.G., Borsato K.T., Vaz L.G. Effect of the Association of Nystatin with a Tissue Conditioner on its Ultimate Tensile Strength. J. Prosthodont. 2006;15:295–299. doi: 10.1111/j.1532-849X.2006.00130.x.
    1. Jadhav V., Kalavathy N., Kumar R., Shetty M., V J., M S.M., N K., R K. Effect of 3 types of antifungal agents on hardness of 2 different commercially available tissue conditioners: An in-vitro study. SRM J. Res. Dent. Sci. 2013;4:150. doi: 10.4103/0976-433X.125590.
    1. Saeed A., Haider A., Zahid S., Khan S.A., Faryal R., Kaleem M. In-vitro antifungal efficacy of tissue conditioner-chitosan composites as potential treatment therapy for denture stomatitis. Int. J. Biol. Macromol. 2019;125:761–766. doi: 10.1016/j.ijbiomac.2018.12.091.
    1. Maior L.D.F.S., Maciel P.P., Ferreira V.Y.N., Dantas C.D.L.G., de Lima J.M., Castellano L., Batista A.U.D., Bonan P.R.F. Antifungal activity and Shore A hardness of a tissue conditioner incorporated with terpinen-4-ol and cinnamaldehyde. Clin. Oral Investig. 2019;23:2837–2848. doi: 10.1007/s00784-019-02925-w.
    1. Mousavi S.A., Ghotaslou R., Akbarzadeh A., Azima N., Aeinfar A., Khorramdel A. Evaluation of antibacterial and antifungal properties of a tissue conditioner used in complete dentures after incorporation of ZnO‒Ag nanoparticles. J. Dent. Res. Dent. Clin. Dent. Prospect. 2019;13:11–18. doi: 10.15171/joddd.2019.002.
    1. Ueshige M., Abe Y., Sato Y., Tsuga K., Akagawa Y., Ishii M. Dynamic viscoelastic properties of antimicrobial tissue conditioners containing silver–zeolite. J. Dent. 1999;27:517–522. doi: 10.1016/S0300-5712(99)00009-3.
    1. Kanathila H., Krishna P.D., Bhat A.M., H K., Am B., D K.P. The effectiveness of magnesium oxide combined with tissue conditioners in inhibiting the growth of Candida albicans: An in vitro study. Indian J. Dent. Res. 2011;22:613. doi: 10.4103/0970-9290.90324.
    1. Takakusaki K., Fueki K., Tsutsumi C., Tsutsumi Y., Iwasaki N., Hanawa T., Takahashi H., Takakuda K., Wakabayashi N. Effect of incorporation of surface pre-reacted glass ionomer filler in tissue conditioner on the inhibition of Candida albicans adhesion. Dent. Mater. J. 2018;37:453–459. doi: 10.4012/dmj.2017-171.
    1. Ogawa A., Wada T., Mori Y., Uo M. Time dependence of multi-ion absorption into human enamel from surface prereacted glass-ionomer (S-PRG) filler eluate. Dent. Mater. J. 2019;38:707–712. doi: 10.4012/dmj.2018-314.
    1. Tamura M., Cueno M.E., Abe K., Kamio N., Ochiai K., Imai K. Ions released from a S-PRG filler induces oxidative stress in Candida albicans inhibiting its growth and pathogenicity. Cell Stress Chaperones. 2018;23:1337–1343. doi: 10.1007/s12192-018-0922-1.
    1. Hotta M., Morikawa T., Tamura D., Kusakabe S. Adherence of Streptococcus sanguinis and Streptococcus mutans to saliva-coated S-PRG resin blocks. Dent. Mater. J. 2014;33:261–267. doi: 10.4012/dmj.2013-242.
    1. Nomura R., Morita Y., Matayoshi S., Nakano K. Inhibitory effect of surface pre-reacted glass-ionomer (S-PRG) eluate against adhesion and colonization by Streptococcus mutans. Sci. Rep. 2018;8:1–18. doi: 10.1038/s41598-018-23354-x.
    1. Kaga M., Kakuda S., Ida Y., Toshima H., Hashimoto M., Endo K., Sano H. Inhibition of enamel demineralization by buffering effect of S-PRG filler-containing dental sealant. Eur. J. Oral Sci. 2013;122:78–83. doi: 10.1111/eos.12107.
    1. Navya P.N., Daima H.K. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg. 2016;3:1–14. doi: 10.1186/s40580-016-0064-z.
    1. International Organization for Standardization . ISO 10193-1: Dentistry—Soft Lining Materials for Removable Partial Dentures—Part 1: Materials for Short-Term Use. 3rd ed. ISO; Geneva, Switzerland: 2018.
    1. Murayama R., Matsuyoshi S., Shibasaki S., Tsuchiya K., Takimoto M., Kawamoto R., Kurokawa H., Miyazaki M. The effect of coating material containing S-PRG filler on the prevention of enamel demineralization detected by optical coherence tomography. Jpn. J. Conserv. Dent. 2014;57:578–588.
    1. Thuy T.T., Nakagaki H., Kato K., Hung P.A., Inukai J., Tsuboi S., Nakagaki H., Hirose M.N., Igarashi S., Robinson C. Effect of strontium in combination with fluoride on enamel remineralization in vitro. Arch Oral. Biol. 2008;53:1017–1022. doi: 10.1016/j.archoralbio.2008.06.005.
    1. Shiiya T., Tomiyama K., Iizuka J., Hasegawa H., Kuramochi E., Fujino F., Ohashi K., Nihei T., Teranaka T., Mukai Y. Effects of resin-based temporary filling materials against dentin demineralization. Dent. Mater. J. 2016;35:70–75. doi: 10.4012/dmj.2015-135.
    1. Fujimoto Y., Iwasa M., Murayama R., Miyazaki M., Nagafuji A., Nakatsuka T. Detection of ions released from S-PRG fillers and their modulation effect. Dent. Mater. J. 2010;29:392–397. doi: 10.4012/dmj.2010-015.
    1. Tsutsumi C., Takakuda K., Wakabayashi N. Reduction of Candida biofilm adhesion by incorporation of prereacted glass ionomer filler in denture base resin. J. Dent. 2016;44:37–43. doi: 10.1016/j.jdent.2015.11.010.
    1. Yoshihara K., Nagaoka N., Maruo Y., Sano H., Yoshida Y., Van Meerbeek B. Bacterial adhesion not inhibited by ion-releasing bioactive glass filler. Dent. Mater. 2017;33:723–734. doi: 10.1016/j.dental.2017.04.002.
    1. Miki S., Kitagawa H., Kitagawa R., Kiba W., Hayashi M., Imazato S. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent. Mater. 2016;32:1095–1102. doi: 10.1016/j.dental.2016.06.018.
    1. Kawasaki K., Kambara M. Effects of Ion-Releasing Tooth-Coating Material on Demineralization of Bovine Tooth Enamel. Int. J. Dent. 2014;2014:1–7. doi: 10.1155/2014/463149.
    1. Kaga M., Masuta J., Hoshino M., Genchou M., Minamikawa H., Hashimoto M., Yawaka Y. Mechanical properties and ions release of S-PRG filler-containing pit and fissure sealant. Nano Biomed. 2011;3:191–199.
    1. Wang Y., Kaga M., Kajiwara D., Minamikawa H., Kakuda S., Hashimoto M., Yawaka Y. Ion release and buffering capacity of S-PRG filler-containing pit and fissure sealant in lactic acid. Nano Biomed. 2011;3:275–281.
    1. Shimazu K., Ogata K., Karibe H. Evaluation of the ion-releasing and recharging abilities of a resin-based fissure sealant containing S-PRG filler. Dent. Mater. J. 2011;30:923–927. doi: 10.4012/dmj.2011-124.
    1. Han L., Okiji T. Evaluation of the ions release/incorporation of the prototype S-PRG filler-containing endodontic sealer. Dent. Mater. J. 2011;30:898–903. doi: 10.4012/dmj.2011-101.
    1. Nakajo K., Imazato S., Takahashi Y., Kiba W., Ebisu S., Takahashi N. Fluoride released from glass-ionomer cement is responsible to inhibit the acid production of caries-related oral streptococci. Dent. Mater. 2009;25:703–708. doi: 10.1016/j.dental.2008.10.014.
    1. Nili M., Abdoulhamidi H. A comparison of the reproduction of surface detail of three tissue conditioning materials over time. J. Dent. Shiraz. Univ. Med. Sci. 2012;13:120–125.
    1. Jones D., Sutow E., Hall G., Tobin W., Graham B. Dental soft polymers: Plasticizer composition and leachability. Dent. Mater. 1988;4:1–7. doi: 10.1016/S0109-5641(88)80080-0.
    1. Urban V.M., Lima T.F., Bueno M.G., Giannini M., Filho J.N.A., De Almeida A.L.P.F., Neppelenbroek K. Effect of the Addition of Antimicrobial Agents on Shore A Hardness and Roughness of Soft Lining Materials. J. Prosthodont. 2014;24:207–214. doi: 10.1111/jopr.12205.
    1. Bulad K., Taylor R.L., Verran J., Mccord J.F. Colonization and penetration of denture soft lining materials by Candida albicans. Dent. Mater. 2004;20:167–175. doi: 10.1016/S0109-5641(03)00088-5.
    1. De Dantas L.C.M., da Silva-Neto J.P., Dantas T.S., Naves L.Z., das Neves F.D., da Mota A.S. Bacterial adhesion and surface roughness for different clinical techniques for acrylic polymethyl methacrylate. Int. J. Dent. 2016;2016:8685796. doi: 10.1155/2016/8685796.
    1. Machado A.L., Giampaolo E.T., Vergani C.E., Pavarina A.C., Salles D.D.S.L., Jorge J.H. Weight loss and changes in surface roughness of denture base and reline materials after simulated toothbrushing in vitro. Gerodontology. 2012;29:e121–e127. doi: 10.1111/j.1741-2358.2010.00422.x.
    1. Pointer B.R., Boyer M.P., Schmidt M. Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans. Yeast. 2015;32:389–398. doi: 10.1002/yea.3066.
    1. McCall A.D., Pathirana R., Prabhakar A., Cullen P.J., Edgerton M. Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms Microbiomes. 2019;5:1–12. doi: 10.1038/s41522-019-0094-5.
    1. Lontsi Djimeli C., Tamsa Arfao A., Ewoti O., Bricheux G., Nola M., Sime-Ngando T. Adhesion of Candida albicans to polythene in Sodium hypochlorite disinfected aquatic microcosm and potential impact of cell surface properties. Curr. Res. Microbiol. Biotechnol. 2014;2:479–489.

Source: PubMed

3
Subscribe