The effects of resistance training with blood flow restriction on muscle strength, muscle hypertrophy and functionality in patients with osteoarthritis and rheumatoid arthritis: A systematic review with meta-analysis

Leonardo Peterson Dos Santos, Rafaela Cavalheiro do Espírito Santo, Thiago Rozales Ramis, Juliana Katarina Schoer Portes, Rafael Mendonça da Silva Chakr, Ricardo Machado Xavier, Leonardo Peterson Dos Santos, Rafaela Cavalheiro do Espírito Santo, Thiago Rozales Ramis, Juliana Katarina Schoer Portes, Rafael Mendonça da Silva Chakr, Ricardo Machado Xavier

Abstract

Introduction: Rheumatoid arthritis(RA) and osteoarthritis(OA) patients showed systemic manifestations that may lead to a reduction in muscle strength, muscle mass and, consequently, to a reduction in functionality. On the other hand, moderate intensity resistance training(MIRT) and high intensity resistance training(HIRT) are able to improve muscle strength and muscle mass in RA and OA without affecting the disease course. However, due to the articular manifestations caused by these diseases, these patients may present intolerance to MIRT or HIRT. Thus, the low intensity resistance training combined with blood flow restriction(LIRTBFR) may be a new training strategy for these populations.

Objective: To perform a systematic review with meta-analysis to verify the effects of LIRTBFR on muscle strength, muscle mass and functionality in RA and OA patients.

Materials and methods: A systematic review with meta-analysis of randomized clinical trials(RCTs), published in English, between 1957-2021, was conducted using MEDLINE(PubMed), Embase and Cochrane Library. The methodological quality was assessed using Physiotherapy Evidence Database scale. The risk of bias was assessed using RoB2.0. Mean difference(MD) or standardized mean difference(SMD) and 95% confidence intervals(CI) were pooled using a random-effects model. A P<0.05 was considered statistically significant.

Results: Five RCTs were included. We found no significant differences in the effects between LIRTBFR, MIRT and HIRT on muscle strength, which was assessed by tests of quadriceps strength(SMD = -0.01[-0.57, 0.54], P = 0.96; I² = 58%) and functionality measured by tests with patterns similar to walking(SMD = -0.04[-0.39, 0.31], P = 0.82; I² = 0%). Compared to HIRT, muscle mass gain after LIRTBFR was reported to be similar. When comparing LIRTBFR with low intensity resistance training without blood flow restriction(LIRT), the effect LIRTBFR was reported to be higher on muscle strength, which was evaluated by the knee extension test.

Conclusion: LIRTBFR appears to be a promising strategy for gains in muscle strength, muscle mass and functionality in a predominant sample of RA and OA women.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. PRISMA.
Fig 1. PRISMA.
Flow diagram of search results and study selection.
Fig 2. Forest plot of the comparison…
Fig 2. Forest plot of the comparison between LIRTBFR, MIRT and HIRT on muscle strength assessed by specific tests for quadriceps strength (n = 4 studies).
LIRTBFR: Low intensity resistance training combined with blood flow restriction; MIRT: Moderate intensity resistance training; HIRT: High intensity resistance training; 1RM: 1 maximum repetition; Kg: kilogram; Nm: Newton-meter; I2: Heterogeneity of studies; SD: standard deviation; MD: mean difference; SMD: standardized mean difference; 95% CI: 95% confidence interval; IV: inverse variance; Random: random effects model.
Fig 3. Forest plot of the comparison…
Fig 3. Forest plot of the comparison between LIRTBFR and LIRT on muscle strength assessed by knee extension (n = 2 studies).
LIRTBFR: Low intensity resistance training combined with blood flow restriction; LIRT: Low intensity resistance training without blood flow restriction; 1RM: 1 maximum repetition; 3RM: 3 maximum repetition test; Kg: kilogram; I2: Heterogeneity of studies; SD: standard deviation; MD: mean difference; 95% CI: 95% confidence interval; IV: inverse variance; Random: random effects model.
Fig 4. Forest plot of the comparison…
Fig 4. Forest plot of the comparison between LIRTBFR and HIRT on muscle mass (n = 2 studies).
LIRTBFR: Low intensity resistance training combined with blood flow restriction; HIRT: High intensity resistance training; mm²: square millimeter; I2: Heterogeneity of studies; SD: standard deviation; MD: mean difference; 95% CI: 95% confidence interval; IV: inverse variance; Random: random effects model.
Fig 5. Forest plot of the comparison…
Fig 5. Forest plot of the comparison between LIRTBFR, MIRT and HIRT on functionality assessed by tests with patterns similar to walking (n = 4 studies).
LIRTBFR: Low intensity resistance training combined with blood flow restriction; MIRT: Moderate intensity resistance training; HIRT: High intensity resistance training; TUG test: Time Up and Go test; [s]: seconds; [m/s]: meters per seconds; I2: Heterogeneity of studies; SD: standard deviation; MD: mean difference; SMD: standardized mean difference; 95% CI: 95% confidence interval; IV: inverse variance; Random: random effects model.

References

    1. Roubenoff R, Rall LC. Humoral Mediation of Changing Body Composition During Aging and Chronic Inflammation. Nutr. Rev. 1993;51:1–11. doi: 10.1111/j.1753-4887.1993.tb03045.x
    1. Roubenoff R, Roubenoff RA, Cannon JG, Kehayias JJ, Zhuang H, Dawson-Hughes B, et al.. Rheumatoid Cachexia: Cytokine-Driven Hypermetabolism Accompanying Reduced Body Cell Mass in Chronic Inflammation. J. Clin. Invest. 1994;93:2379–86. doi: 10.1172/JCI117244
    1. Baker JF, Mostoufi-Moab S, Long J, Zemel B, Ibrahim S, Taratuta E, et al.. Intramuscular Fat Accumulation and Associations With Body Composition, Strength, and Physical Functioning in Patients With Rheumatoid Arthritis. Arthritis Care Res. 2018;70:1727–34. doi: 10.1002/acr.23550
    1. Giles JT, Bartlett SJ, Andersen RE, Fontaine KR, Bathon JM. Association of Body Composition with Disability in Rheumatoid Arthritis: Impact of Appendicular Fat and Lean Tissue Mass. Arthritis Care Res. 2008;59:1407–15. doi: 10.1002/art.24109
    1. Weber D, Long J, Leonard MB, Zemel B, Baker JF. Development of Novel Methods to Define Deficits in Appendicular Lean Mass Relative to Fat Mass. PLoS One. 2016;11:1–16. doi: 10.1371/journal.pone.0164385
    1. Lemmey AB, Wilkinson TJ, Clayton RJ, Sheikh F, Whale J, Jones HSJ, et al.. Tight Control of Disease Activity Fails to Improve Body Composition or Physical Function in Rheumatoid Arthritis Patients. Rheumatology. 2016;55:1736–45. doi: 10.1093/rheumatology/kew243
    1. Baker JF, Von Feldt J, Mostoufi-Moab S, Noaiseh G, Taratuta E, Kim W, et al.. Deficits in Muscle Mass, Muscle Density, and Modified Associations with Fat in Rheumatoid Arthritis. Arthritis Care Res. 2014;66:1612–8. doi: 10.1002/acr
    1. Lusa AL, Amigues I, Kramer HR, Dam TT, Giles JT. Indicators of Walking Speed in Rheumatoid Arthritis: Relative Influence of Articular, Psychosocial, and Body Composition Characteristics. Arthritis Care Res. 2015;67:21–31. doi: 10.1002/acr.22433
    1. Giles JT, Allison M, Blumenthal RS, Post W, Gelber AC, Petri M, et al.. Abdominal Adiposity in Rheumatoid Arthritis: Association with Cardiometabolic Risk Factors and Disease Characteristics. Arthritis Rheum. 2010;62:3173–82. doi: 10.1002/art.27629
    1. Katz PP, Yazdany J, Trupin L, Schmajuk G, Margaretten M, Barton J, et al.. Sex Differences in Assessment of Obesity in Rheumatoid Arthritis. Arthritis Care Res. 2013;65:62–70. doi: 10.1002/acr.21810
    1. Summers GD, Metsios GS, Stavropoulos-Kalinoglou A, Kitas GD. Rheumatoid Cachexia and Cardiovascular Disease. Nat. Rev. Rheumatol. 2010;6:445–51. doi: 10.1038/nrrheum.2010.105
    1. Freire MR de M, da Silva PMC, Azevedo AR, Silva DS, da Silva RBB, Cardoso JC. Comparative Effect between Infiltration of Platelet-rich Plasma and the Use of Corticosteroids in the Treatment of Knee Osteoarthritis: A Prospective and Randomized Clinical Trial. Rev. Bras. Ortop. 2020;55:551–556. doi: 10.1016/j.rbo.2018.01.001
    1. Hanada K, Hara M, Hirakawa Y, Hoshi K, Ito K, Gamada K. Immediate Effects of Leg-press Exercises with Tibial Internal Rotation on Individuals With Medial Knee Osteoarthritis. Physiother. Res. Int. 2018;23:e1725. doi: 10.1002/pri.1725
    1. Jørgensen TS, Henriksen M, Rosager S, Klokker L, Ellegaard K, Danneskiold-Samsøe B, et al.. The Dynamics of the Pain System is Intact in Patients with Knee Osteoarthritis: An Exploratory Experimental Study. Scand. J. Pain. 2015;6:43–9. doi: 10.1016/j.sjpain.2014.11.002
    1. Sánchez-Romero EA, Pecos-Martín D, Calvo-Lobo C, Ochoa-Sáez V, Burgos-Caballero V, Fernández-Carnero J. Effects of Dry Needling in an Exercise Program for Older Adults with Knee Osteoarthritis. Medicine. 2018;97:e11255. doi: 10.1097/MD.0000000000011255
    1. Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, et al.. Osteoarthritis: New Insights Part 1: The Disease and Its Risk Factors. Ann. Intern. Med. 2000;133:637–9. doi: 10.7326/0003-4819-133-8-200010170-00016
    1. Laires PA, Laíns J, Miranda LC, Cernadas R, Rajagopalan S, Taylor SD, et al.. Inadequate Pain Relief Among Patients with Primary Knee Osteoarthritis. Rev. Bras. Reumatol. 2016;57:229–37. doi: 10.1016/j.rbre.2016.11.005
    1. Pazit L, Jeremy D, Nancy B, Michael B, George E, Hill KD. Safety and Feasibility of High Speed Resistance Training with and without Balance Exercises for Knee Osteoarthritis: A Pilot Randomised Controlled Trial. Phys. Ther. Sport. 2018;34:154–63. doi: 10.1016/j.ptsp.2018.10.001
    1. Ramis TR, Muller CHL, Boeno FP, Teixeira BC, Rech A, Pompermayer MG, et al.. Effects of traditional and vascular restricted strength training program with equalized volume on isometric and dynamic strength, muscle thickness, electromyographic activity, and endothelial function adaptations in young adults. J. Strength Cond. Res. 2020;34:689–698. doi: 10.1519/JSC.0000000000002717
    1. American College of Sports Medicine Position Stand (ACSM). Progression Models in Resistance Training for Healthy Adults. Med. Sci. Sports Exerc. 2009;41:687–708. doi: 10.1249/MSS.0b013e3181915670
    1. Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, et al.. Progression Models in Resistance Training for Healthy Adults. Med. Sci. Sports Exerc. 2002;34:364–80. doi: 10.1097/00005768-200202000-00027
    1. Harper SA, Roberts LM, Layne AS, Jaeger BC, Gardner AK, Sibille KT, et al.. Blood-Flow Restriction Resistance Exercise for Older Adults with Knee Osteoarthritis: A Pilot Randomized Clinical Trial. J. Clin. Med. 2019;8:265. doi: 10.3390/jcm8020265
    1. Rodrigues R, Ferraz RB, Kurimori CO, Guedes LK, Lima FR, de Sá-Pinto AL, et al.. Low-Load Resistance Training With Blood-Flow Restriction in Relation to Muscle Function, Mass, and Functionality in Women With Rheumatoid Arthritis. Arthritis Care Res. 2020;72:787–97. doi: 10.1002/acr.23911
    1. Ferraz RB, Gualano B, Rodrigues R, Kurimori CO, Fuller R, Lima FR, et al.. Benefits of Resistance Training with Blood Flow Restriction in Knee Osteoarthritis. Med. Sci. Sports Exerc. 2018;50:897–905. doi: 10.1249/MSS.0000000000001530
    1. Bryk FF, dos Reis AC, Fingerhut D, Araujo T, Schutzer M, Cury Rde P, et al.. Exercises with Partial Vascular Occlusion in Patients with Knee Osteoarthritis: A Randomized Clinical Trial. Knee surgery, Sport. Traumatol. Arthrosc. 2016;24:1580–6. doi: 10.1007/s00167-016-4064-7
    1. Van Den Ende CHM, Breedveld FC, Le Cessie S, Dijkmans BAC, De Mug AW, Hazes JMW. Effect of Intensive Exercise on Patients with Active Rheumatoid Arthritis: A Randomised Clinical Trial. Ann. Rheum. Dis. 2000;59:615–21. doi: 10.1136/ard.59.8.615
    1. Lees FD, Clark PG, Nigg CR, Newman P. Barriers to Exercise Behavior Among Older Adults: A Focus-Group Study. J. Aging Phys. Act. 2005;13:23–33. doi: 10.1123/japa.13.1.23
    1. Leveille SG, Fried LP, McMullen W, Guralnik JM. Advancing the Taxonomy of Disability in Older Adults. Journals Gerontol.—Ser. A Biol. Sci. Med. Sci. 2004;59:86–93. doi: 10.1093/gerona/59.1.m86
    1. Buford TW, Fillingim RB, Manini TM, Sibille KT, Vincent KR, Wu SS. Kaatsu Training to Enhance Physical Function of Older Adults with Knee Osteoarthritis: Design Of A Randomized Controlled Trial. Contemp. Clin. Trials. 2015;43:217–22. doi: 10.1016/j.cct.2015.06.016
    1. Sato Y. The History and Future of KAATSU. J. Build. Phys. 2005;18:3–20. doi: 10.3806/ijktr.1.1
    1. Kubo K, Komuro T, Ishiguro N, Tsunoda N, Sato Y, Ishii N, et al.. Effects of Low-load Resistance Training with Vascular Occlusion on the Mechanical Properties of Muscle and Tendon. J. Appl. Biomech. 2006;22:112–9. doi: 10.1123/jab.22.2.112
    1. Shinohara M, Kouzaki M, Yoshihisa T, Fukunaga T. Efficacy of Tourniquet Ischemia for Strength Training with Low Resistance. Eur J Appl Physiol Occup Physiol. 1998;77:189–91. doi: 10.1007/s004210050319
    1. Sumide T, Sakuraba K, Sawaki K, Ohmura H, Tamura Y. Effect of Resistance Exercise Training Combined with Relatively Low Vascular Occlusion. J Sci Med Sport. 2009;12:107–12. doi: 10.1016/j.jsams.2007.09.009
    1. Loenneke JP, Kearney ML, Thrower AD, Collins S, Pujol TJ. The Acute Response of Practical Occlusion in the Knee Extensors. J. Strength Cond. Res. 2010;24:2831–4. doi: 10.1519/JSC.0b013e3181f0ac3a
    1. Loenneke JP, Wilson GJ, Wilson JM. A Mechanistic Approach to Blood Flow Occlusion. Int. J. Sports Med. 2010;31:1–4. doi: 10.1055/s-0029-1239499
    1. Loenneke JP, Wilson JM, Marín PJ, Zourdos MC, Bemben MG. Low Intensity Blood Flow Restriction Training: A Meta-Analysis. Eur. J. Appl. Physiol. 2012;112:1849–59. doi: 10.1007/s00421-011-2167-x
    1. Loenneke JP, Wilson JM, Wilson GJ, Pujol TJ, Bemben MG. Potential Safety Issues with Blood Flow Restriction Training. Scand. J. Med. Sci. Sport. 2011;21:510–8. doi: 10.1111/j.1600-0838.2010.01290.x
    1. Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. British Journal of Sports Medicine. 2017;51(13):1003–1011. doi: 10.1136/bjsports-2016-097071
    1. Lu Y, Patel BH, Kym C, Nwachukwu BU, Beletksy A, Forsythe B, et al.. Perioperative Blood Flow Restriction Rehabilitation in Patients Undergoing ACL Reconstruction: A Systematic Review. Orthop. J. Sport. Med. 2020;8:232596712090682. doi: 10.1177/2325967120906822
    1. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al.. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1. doi: 10.1186/2046-4053-4-1
    1. Mattos CT, Ruellas AC de O. Systematic Review and Meta-Analysis: What are the Implications in the Clinical Practice? Dental Press J. Orthod. 2015;20:17–9. doi: 10.1590/2176-9451.20.1.017-019.ebo
    1. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.2 (updated February 2021). Cochrane, 2021. Available from .
    1. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14, 135. 10.1186/1471-2288-14-135
    1. Cashin AG, McAuley JH. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J. Physiother. 2020;66:59. doi: 10.1016/j.jphys.2019.08.005
    1. Foley NC, Teasell RW, Bhogal SK, Speechley MR. Stroke Rehabilitation Evidence-Based Review: Methodology. Top Stroke Rehabil. 2003;10:1–7. doi: 10.1310/Y6TG-1KQ9-LEDQ-64L8
    1. Gonzalez GZ, Moseley AM, Maher CG, Nascimento DP, Costa L da CM, Costa LO. Methodologic Quality and Statistical Reporting of Physical Therapy Randomized Controlled Trials Relevant to Musculoskeletal Conditions. Arch. Phys. Med. Rehabil. 2018;99:129–36. doi: 10.1016/j.apmr.2017.08.485
    1. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al.. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ. 2019;366:1–8. doi: 10.1136/bmj.l4898
    1. Borenstein M, Hedges L V, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester: John Wiley & Sons, Ltd. 2009.
    1. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring Inconsistency in Meta-Analyses. BMJ. 2003; 327:557–60. doi: 10.1136/bmj.327.7414.557
    1. Jønsson AB, Johansen C V, Rolving N, Pfeiffer-Jensen M. Feasibility and estimated efficacy of blood flow restricted training in female patients with rheumatoid arthritis: a randomized controlled pilot study. Scand J Rheumatol. 2021;50: 169–177. doi: 10.1080/03009742.2020.1829701
    1. Cook SB, LaRoche DP, Villa MR, Barile H, Manini TM. Blood Flow Restricted Resistance Training in Older Adults at Risk of Mobility Limitations. Exp Gerontol. 2017;99:138–45. doi: 10.1016/j.exger.2017.10.004
    1. Law Y, Lee W, Hsu C, Lin Y, Tsai C, Huang C, et al.. miR-let-7c-5p and miR-149-5p inhibit proinflammatory cytokine production in osteoarthritis and rheumatoid arthritis synovial fibroblasts. 2021;13: 1–10.
    1. Enoka RM. Neural Adaptations with Chronic Physical Activity. J. Biomech. 1997;30:447–55. doi: 10.1016/s0021-9290(96)00170-4
    1. Häkkinen K, Pakarinen A, Kraemer WJ, Häkkinen A, Valkeinen H, Alen M. Selective Muscle Hypertrophy, Changes in EMG and Force, and Serum Hormones During Strength Training in Older Women. J. Appl. Physiol. 2001;91:569–80. doi: 10.1152/jappl.2001.91.2.569
    1. Häkkinen K, Hakkinen A. Neuromuscular Adaptations During Intensive Strength Training in Middle-Aged and Elderly Males And Females. Electromyogr Clin Neurophysiol. 1995;35:137–47.
    1. Loenneke JP, Fahs CA, Rossow LM, Abe T, Bemben MG. The Anabolic Benefits of Venous Blood Flow Restriction Training may be Induced by Muscle Cell Swelling. Med. Hypotheses. 2012;78:151–4. doi: 10.1016/j.mehy.2011.10.014
    1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al.. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169
    1. Shepstone TN, Tang JE, Dallaire S, Schuenke MD, Staron RS, Phillips SM. Short-Term High- vs. Low-Velocity Isokinetic Lengthening Training Results in Greater Hypertrophy of the Elbow Flexors in Young Men. J. Appl. Physiol. 2005;98:1768–76. doi: 10.1152/japplphysiol.01027.2004
    1. Biolo G, Tipton KD, Klein S, Wolfe RR. An Abundant Supply of Amino Acids Enhances the Metabolic Effect of Exercise on Muscle Protein. Am. J. Physiol.—Endocrinol. Metab. 1997; 273:E122–9. doi: 10.1152/ajpendo.1997.273.1.E122
    1. Phillips SM, Parise G, Roy BD, Tipton KD, Wolfe RR, Tarnopolsky MA. Resistance-Training-Induced Adaptations in Skeletal Muscle Protein Turnover in the Fed State. Can. J. Physiol. Pharmacol. 2002;80:1045–53. doi: 10.1139/y02-134
    1. McKay BR, Toth KG, Tarnopolsky MA, Parise G. Satellite Cell Number and Cell Cycle Kinetics in Response to Acute Myotrauma in Humans: Immunohistochemistry Versus Flow Cytometry. J. Physiol. 2010;588:3307–20. doi: 10.1113/jphysiol.2010.190876
    1. Petrella JK, Kim JS, Mayhew DL, Cross JM, Bamman MM. Potent Myofiber Hypertrophy During Resistance Training in Humans is Associated with Satellite Cell-Mediated Myonuclear Addition: A Cluster Analysis. J. Appl. Physiol. 2008;104:1736–42. doi: 10.1152/japplphysiol.01215.2007
    1. Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid Increase in Plasma Growth Hormone After Low-Intensity Resistance Exercise with Vascular Occlusion. J. Appl. Physiol. 2000;88:61–5. doi: 10.1152/jappl.2000.88.1.61
    1. Abe T, Kearns CF, Sato Y. Muscle Size and Strength are Increased Following Walk Training with Restricted Venous Blood Flow From The Leg Muscle, Kaatsu-Walk Training. J Appl Physiol. 2006;100:1460–6. doi: 10.1152/japplphysiol.01267.2005
    1. Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, et al.. Strength Training with Blood Flow Restriction Diminishes Myostatin Gene Expression. Med Sci Sport Exerc. 2012;44:406–12. doi: 10.1249/MSS.0b013e318233b4bc
    1. Blum D, Rodrigues R, Geremia JM, Brenol CV, Vaz MA, Xavier RM. Quadriceps Muscle Properties in Rheumatoid Arthritis: Insights About Muscle Morphology, Activation and Functional Capacity. Adv. Rheumatol. 2020;60:28. doi: 10.1186/s42358-020-00132-w
    1. Silva JMS, Alabarse PVG, Teixeira VON, Freitas EC, de Oliveira FH, Chakr R, et al.. Muscle Wasting in Osteoarthritis Model Induced by Anterior Cruciate Ligament Transection. PLoS One. 2018;13:e0196682. doi: 10.1371/journal.pone.0196682
    1. Sakuma K, Yamaguchi A. Sarcopenia and Cachexia: The Adaptations of Negative Regulators of Skeletal Muscle Mass. J. Cachexia. Sarcopenia Muscle. 2012;3:77–94. doi: 10.1007/s13539-011-0052-4
    1. Teixeira VD, Filippin LI, Xavier RM. Mechanisms of Muscle Wasting in Sarcopenia. 2012; 52:252–9. doi: 10.1590/S0482-50042012000200009
    1. Sandri M. Signaling in muscle atrophy and hypertrophy. Physiology. 2008;23:160–70. doi: 10.1152/physiol.00041.2007
    1. Vechin FC, Libardi CA, Conceicao MS, Damas FR, Lixandrao ME, Berton RPB, et al.. Comparisons Between Low-Intensity Resistance Training with Blood Flow Restriction and High-Intensity Resistance Training on quadriceps Muscle Mass and Strength in Elderly. 2015;29:1071–6. doi: 10.1519/JSC.0000000000000703
    1. Segal NA, Williams GN, Davis MC, Wallace RB, Mikesky AE. Efficacy of Blood-Flow Restricted, Low-Load Resistance Training in Women with Risk Factors for Symptomatic Knee Osteoarthritis. PM&R. 2015;7:376–84. doi: 10.1016/j.pmrj.2014.09.014
    1. Toda Y, Segal N, Toda T, Kato A, Toda F. A Decline in Lower Extremity Lean Body Mass per Body Weight is Characteristic of Women with Early Phase Osteoarthritis of the Knee. J Rheumatol. 2000;27:2449–54.
    1. Nur H, Sertkaya BS, Tuncer T. Determinants of Physical Functioning in Women With Knee Osteoarthritis. Aging Clin. Exp. Res. 2018;30:299–306. doi: 10.1007/s40520-017-0784-x
    1. Morita Y, Ito H, Torii M, Hanai A, Furu M, Hashimoto M, et al.. Factors Affecting Walking Ability in Female Patients with Rheumatoid Arthritis. PLoS One. 2018;13:e0195059. doi: 10.1371/journal.pone.0195059
    1. Kemmler W, Teschler M, Goisser S, Bebenek M, von Stengel S, Bollheimer LC, et al.. Prevalence of Sarcopenia in Germany and the Corresponding Effect of Osteoarthritis in Females 70 Years and Older Living in the Community: Results of the FORMoSA Study. Clin. Interv. Aging. 2015;10:1565–73. doi: 10.2147/CIA.S89585
    1. Torii M, Hashimoto M, Hanai A, Fujii T, Furu M, Ito H, et al.. Prevalence and Factors Associated with Sarcopenia in Patients with Rheumatoid Arthritis. Mod. Rheumatol. 2019;29:589–95. doi: 10.1080/14397595.2018.1510565
    1. Alfredo PP, Bjordal JM, Dreyer SH, Meneses SRF, Zaguetti G, Ovanessian V, et al.. Efficacy of low level laser therapy associated with exercises in knee osteoarthritis: A randomized double-blind study. Clin Rehabil. 2012;26: 523–533. doi: 10.1177/0269215511425962
    1. Geuskens GA, Burdorf A, Hazes J. Consequences of rheumatoid arthritis for performance of social roles—a literature review. J Rheumatol. 2007;34(6): 124.
    1. Woollard JD, Gil AB, Sparto P, Kwoh CK, Piva SR, Farrokhi S, et al.. Change in knee cartilage volume in individuals completing a therapeutic exercise program for knee osteoarthritis. J Orthop Sports Phys Ther. 2011;41: 708–722. doi: 10.2519/jospt.2011.3633

Source: PubMed

3
Subscribe