Age-related differences in skeletal muscle microvascular response to exercise as detected by contrast-enhanced ultrasound (CEUS)

Wulf Hildebrandt, Hans Schwarzbach, Anita Pardun, Lena Hannemann, Björn Bogs, Alexander M König, Andreas H Mahnken, Olaf Hildebrandt, Ulrich Koehler, Ralf Kinscherf, Wulf Hildebrandt, Hans Schwarzbach, Anita Pardun, Lena Hannemann, Björn Bogs, Alexander M König, Andreas H Mahnken, Olaf Hildebrandt, Ulrich Koehler, Ralf Kinscherf

Abstract

Background: Aging involves reductions in exercise total limb blood flow and exercise capacity. We hypothesized that this may involve early age-related impairments of skeletal muscle microvascular responsiveness as previously reported for insulin but not for exercise stimuli in humans.

Methods: Using an isometric exercise model, we studied the effect of age on contrast-enhanced ultrasound (CEUS) parameters, i.e. microvascular blood volume (MBV), flow velocity (MFV) and blood flow (MBF) calculated from replenishment of Sonovue contrast-agent microbubbles after their destruction. CEUS was applied to the vastus lateralis (VLat) and intermedius (VInt) muscle in 15 middle-aged (MA, 43.6±1.5 years) and 11 young (YG, 24.1±0.6 years) healthy males before, during, and after 2 min of isometric knee extension at 15% of peak torque (PT). In addition, total leg blood flow as recorded by femoral artery Doppler-flow. Moreover, fiber-type-specific and overall capillarisation as well as fiber composition were additionally assessed in Vlat biopsies obtained from CEUS site. MA and YG had similar quadriceps muscle MRT-volume or PT and maximal oxygen uptake as well as a normal cardiovascular risk factors and intima-media-thickness.

Results: During isometric exercise MA compared to YG reached significantly lower levels in MFV (0.123±0.016 vs. 0.208±0.036 a.u.) and MBF (0.007±0.001 vs. 0.012±0.002 a.u.). In the VInt the (post-occlusive hyperemia) post-exercise peaks in MBV and MBF were significantly lower in MA vs. YG. Capillary density, capillary fiber contacts and femoral artery Doppler were similar between MA and YG.

Conclusions: In the absence of significant age-related reductions in capillarisation, total leg blood flow or muscle mass, healthy middle-aged males reveal impaired skeletal muscle microcirculatory responses to isometric exercise. Whether this limits isometric muscle performance remains to be assessed.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. ‘Experimental protocol’.
Fig 1. ‘Experimental protocol’.
Fig 1a) Study protocol with time schedule for exercise, Sonovue infusion, CEUS recordings, as well as femoral artery Doppler and brachial blood pressure measurements at rest, during isometric exercise and during post-exercise hyperemia. The time points of high-MI US-destruction of the Sonovue microbubbles are indicated by arrows, each of which was followed by a low-MI recording of Sonovue replenishment curves covering 25 s. Fig 1b) Example of a torque recording during isometric knee extension as controlled by the subject through visual feed-back.
Fig 2. ‘Ultrasound and MRT imaging of…
Fig 2. ‘Ultrasound and MRT imaging of CEUS and Biopsy muscle site’.
Fig 2 a) US B-mode image of a typical combined vastus lateralis (VLat) and intermedius (VInt) CEUS scan with the scanner position chosen parallel to the VLat muscle fiber orientation (i.e. from proximal/lateral to distal/medial). The intramuscular septum separating both muscles is indicated, the mean depth was similar between middle aged (MA) and young (YG) subjects and not significantly different between the conditions before, during, and post-exercise (see also the ‘Methods‘ section on Contrast-enhances US (CEUS). d) Thigh MRT-imaging transversal section at the exact site of VLat muscle biopsy (middle) and CEUS recording as well as 1 cm proximal (left) and distal (right). Note that this MRT was obtained 3 h after a muscle biopsy to visualize the exact biopsy site (local fluid /blood accumulation) indicated by the arrow.
Fig 3. ‘Time courses of the mean…
Fig 3. ‘Time courses of the mean contrast-agent CEUS signals’.
Time course of the mean (±SEM) Sonovue microbubble signal in the vastus lateralis (VLat; upper panel) and the vastus intermedius (VInt; lower panel) muscle region of interests (ROI) in middle-aged (MA, n = 15) and young (YG, n = 11) males in the experimental intervals: equilibration at rest (left; initial 180 s of Sonovue infusion), isometric exercise (middle; first 60 s of knee extension at 15% of PT), and post-exercise (right; initial 15 s after cessation of). Note the different time scales on the x-axis with these three conditions. The time intervals for repetitive Sonovue replenishment curve (RC) recording following high-MI US destruction of Sonovue microbubbles (See Fig 1) are presented separately in Fig 4A (mean RC curves) and Fig 4B (means of the individual regression lines obtained from individual RC curves). * for p<0.05 MA vs YG by unpaired Student’s t-test.
Fig 4. ‘Means of measured replenishment curves…
Fig 4. ‘Means of measured replenishment curves and individual regression lines’.
Fig 4a) Mean replenishment curves (RC) in the vastus lateralis (VLat; upper panel) and the vastus intemedius (VInt; lower panel) muscle ROI of middle-aged (MA, n = 15) compared to young (YG, n = 11) males during rest (left), after 70 s isometric exercise (middle), and 15 s post-exercise. Note differences in initial slope or in the plateau reached during or post-exercise. Fig 4b) Mean regression lines, corresponding to mean RC presented above in a) i.e. for the VLat (upper panel) and the VInt (lower panel) muscle ROI of middle-aged (MA, n = 15) compared to young (YG, n = 11) males during rest (left), after 70 s isometric exercise (middle), and 15 s post-exercise. Note the differences in initial slope or reached plateau during or post exercise. Furthermore, note that regression lines represent the mean of individual regression lines calculated for individual RCs (not the regression line calculated for mean RCs, presented above in a). For statistical differences between MA and YG regarding the RC-derived parameters of microvascular blood volume (MBV), flow velocity (MFV), and blood flow (MBF) please see Fig 5.
Fig 5. ‘Microvascular blood volume (MBV), flow…
Fig 5. ‘Microvascular blood volume (MBV), flow velocity (MFV) and blood flow (MBF)’.
Mean (±SEM) microvascular blood volume (MBV, left), flow velocity (MFV, middle), and blood flow (MBF, right) in the vastus lateralis (VLat; upper panel) and the vastus intemedius (VInt; lower panel) muscle ROI of middle-aged (MA, n = 15) compared to young (YG, n = 11) at rest (two measurements), after 70 and 95 s of isometric exercise and 15, 30 60 and 90 s post-exercise. Note that these data were individually calculated from individual RC curve regression before averaging them for MA or YG (for mean RCs and regression lines per group see Fig 4A). # for p<0.05 by unpaired Student’s t-test middle-aged MA vs. YG. * for p<0.05, ** for p<0.01, and *** for p<0.001 by paired Student’s t-test for changes relative to rest (basline) within the group of MA or YG.
Fig 6. ‘Total leg blood flow and…
Fig 6. ‘Total leg blood flow and conductance’.
Mean (±SEM) total leg blood flow (femoral artery Duplex-Doppler flow), calculated total leg vascular conductance (leg blood flow per mean arterial pressure), and systolic as well as diastolic brachial arterial blood pressure at rest in middle-aged (MA, n = 15) compared to young (YG, n = 11) males after ~90 s of isometric exercise and ~60 s post-exercise. # for p

References

    1. Wahren J, Saltin B, Jorfeldt L, Pernow B. Influence of age on the local circulatory adaptation to leg exercise. Scand J Clin Lab Invest. 1974;33: 79–86.
    1. Proctor DN, Shen PH, Dietz NM, Eickhoff TJ, Lawler LA, Ebersold EJ, et al. Reduced leg blood flow during dynamic exercise in older endurance-trained men. J Appl Physiol. 1998;85: 68–75.
    1. Proctor DN and Parker BA. Vasodilation and vascular control in contracting muscle of aging Human. Micorcirculation. 2006;13: 315–327.
    1. Donato AJ, Uberoi A, Wray DW, Nishiyama S., Lawrenson L, and Richardson RS. Differential effects of aging on limb blood flow in humans. Am J Physiol Heart Circ Physiol. 2006;290: H272–H278. 10.1152/ajpheart.00405.2005
    1. Jasperse JL, Seals DR, Callister R. Active forearm blood flow adjustments to handgrip exercise in young and older healthy men. J Physiol. 1994;474: 353–360.
    1. Martin WH, Ogawa T, Kohrt WM, Malley MT, Korte E, Kieffer PS, et al. Effects of aging, gender, and physical training on peripheral vascular function. Circulation. 1991; 84: 654–664.
    1. Irion GL, Vasthare US, Tuma RF. Age-related change in skeletal muscle blood flow in the rat. J Gerontol. 1987;42: 660–665.
    1. Behnke BJ, Delp MD, Dougherty PJ, Musch TI, Poole DC. Effects of aging on microvascular oxygen pressure in rat skeletal muscle. Respir Physiol Neurobiol. 2005;146: 259–268. 10.1016/j.resp.2004.12.009
    1. Ridout SJ, Parker BA, Proctor DN. Age and regional specificity of peak limb vascular conductance in women. J Appl Physiol. 2005; 99: 2067–2074. 10.1152/japplphysiol.00825.2005
    1. Proctor DN, Le KU, Ridout SJ. Age and regional specificity of peak limb vascular conductance in men. J Appl Physiol. 2005; 98: 193–202. 10.1152/japplphysiol.00704.2004
    1. Higginbotham MB, Morris KG, Williams RS, Coleman RE, Cobb FR. Physiologic basis for the age-related decline in aerobic work capacity. Am J Cardiol. 1986;57: 1374–1379.
    1. Dehn MM, Bruce RA. Longitudinal variations in maximal oxygen intake with age and activity. J Appl Physiol. 1972;33: 805–807.
    1. Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol 2003, 95: 1717–1727. 10.1152/japplphysiol.00347.2003
    1. Degens H. Age-related skeletal muscle dysfunction: causes and mechanisms. J Musculoskelet Neuronal Interact. 2007;7: 246–252.
    1. Budui SL, Rossi AP, Zamboni M. The pathogenetic bases of sarcopenia. Clin Cases Miner Bone Metab. 2015;12: 22–26. 10.11138/ccmbm/2015.12.1.022
    1. Celermajer, D S, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE. Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol. 1994;24: 471–476.
    1. Richards JC, Luckasen GJ, Larson DG, Dinenno FA. Role of α-adrenergic vasoconstriction in regulating skeletal muscle blood flow and vascular conductance during forearm exercise in ageing humans. J Physiol. 2014;592: 4775–4788. 10.1113/jphysiol.2014.278358
    1. Dinenno FA, Jones PP, Seals DR, and Tanaka H. Limb blood flow and vascular conductance are reduced with age in healthy humans: relation to elevations in sympathetic nerve activity and declines in oxygen demand. Circulation. 1999;100: 164–170.
    1. McDaniel J, Hayman MA, Ives S, Fjeldstad AS, Trinity JD, Wray DW, et al. Attenuated exercise induced hyperaemia with age: mechanistic insight from passive limb movement. J Physiol. 2010;588: 4507–4517. 10.1113/jphysiol.2010.198770
    1. Beere PA, Russell SD, Morey MC, Kitzman DW, Higginbotham MB. Aerobic exercise training can reverse age-related peripheral circulatory changes in healthy older men. Circulation. 1999;100: 1085–1094.
    1. Dinenno FA, Tanaka H, Monahan KD, Clevenger CM, Eskurza I, DeSouza CA, et al. Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. J Physiol. 2001;534: 287–295. 10.1111/j.1469-7793.2001.00287.x
    1. Groen BB, Hamer HM, Snijders T, van Kranenburg J, Frijns D, Vink H, et al. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol. 2014;116: 998–1005. 10.1152/japplphysiol.00919.2013
    1. Ryan NA, Zwetsloot KA, Westerkamp LM, Hickner RC, Pofahl WE, Gavin TP. Lower skeletal muscle capillarization and VEGF expression in aged vs. young men. J Appl Physiol. 2006;100: 178–185. 10.1152/japplphysiol.00827.2005
    1. Gavin TP, Ruster RS, Carrithers JA, Zwetsloot KA, Kraus RM, Evans CA, et al. No difference in the skeletal muscle angiogenic response to aerobic exercise training between young and aged men. J Physiol. 2007;585: 231–239. 10.1113/jphysiol.2007.143198
    1. Wagenmakers AJM, Strauss JA, Shepherd SO, Keske MA, Cocks M. Increased muscle blood supply and transendothelial nutrient and insulin transport induced by food intake and exercise: effect of obesity and exercise. J Physiol. 2015. January 27.
    1. Frisbee JC, Goodwill AG, Frisbee SJ, Butcher JT, Brock RW, Olfert IM, et al. Distinct temporal phases of microvascular rarefaction in skeletal muscle of obese Zucker rats. Am J Physiol Heart Circ Physiol. 2014;307: H1714–H1728. 10.1152/ajpheart.00605.2014
    1. Dinenno FA, Jones PP, Seals DR, Tanaka H. Age-associated arterial wall thickening is related to elevations in sympathetic activity in healthy humans. Am J Physiol Heart Circ Physiol. 2000;278: H1205–H1210.
    1. Seals DR, Moreau KL, Gates PE, Eskurza I. Modulatory influences on ageing of the vasculature in healthy humans. Exp Gerontol. 2006;41: 501–507. 10.1016/j.exger.2006.01.001
    1. DeSouza CA, Shapiro LF, Clevenger CM, Dinenno FA, Monahan KD, Tanaka H, et al. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation. 2000;102: 1351–1357.
    1. Sinkler SY, Segal SS. Aging alters reactivity of microvascular resistance networks in mouse gluteus maximus muscle. Am J Physiol Heart Circ Physiol. 2014;307: H830–H839. 10.1152/ajpheart.00368.2014
    1. Vincent MA, Dawson D, Clark AD, Lindner JR, Rattigan S, Clark MG, et al. Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes. 2002;51: 42–48.
    1. Vincent MA, Clerk LH, Lindner JR, Price WJ, Jahn LA, Leong-Poi H, et al. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metab. 2006;290: E1191–E1197. 10.1152/ajpendo.00497.2005
    1. Mitchell WK, Phillips BE, Williams JP, Rankin D, Smith K, Lund JN, et al. Develop-ment of a new Sonovue contrast-enhanced ultrasound approach reveals temporal and age-related features of muscle microvascular response to feeding. Physiol Rep. 2013. October;1(5):e00119 10.1002/phy2.119
    1. Clerk LH, Vincent MA, Lindner JR, Clark MG, Rattigan S, Barrett EJ. The vasodilatory actions of insulin on resistance and terminal arterioles and their impact on muscle glucose uptake. Diabetes Metab Res Rev. 2004;20: 3–12. 10.1002/dmrr.414
    1. Laakso M, Edelman SV, Brechtel G, Baron AD. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990;85: 1844–1852. 10.1172/JCI114644
    1. Zhang L, Vincent MA, Richards SM, Clerk LH, Rattigan S, Clark MG, et al. Insulin sensitivity of muscle capillary recruitment in vivo. Diabetes. 2004;53: 447–453.
    1. Skilton MR, Lai NT, Griffiths KA, Molyneaux LM, Yue DK, Sullivan DR, et al. Meal-related increases in vascular reactivity are impaired in older and diabetic adults: insights into roles of aging and insulin in vascular flow. Am J Physiol Heart Circ Physiol. 2005;288: H1404–H1410. 10.1152/ajpheart.00484.2004
    1. Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ. Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes. 2006;55: 1436–1442.
    1. Keske MA, Premilovac D, Bradley EA, Dwyer RM, Richards SM, Rattigan S. Muscle microvascular blood flow responses in insulin resistance and ageing. J Physiol. 2014
    1. Baron AD, Steinberg H, Brechtel G, Johnson A. Skeletal muscle blood flow independently modulates insulin-mediated glucose uptake. Am J Physiol. 1994;266: E248–E253.
    1. Barret EJ and Liu Z. The endothelial cell: an ‘early responder’ in the development of insulin resistance. Rev Endocr Metab Disord. 2013;14: 21–27. 10.1007/s11154-012-9232-6
    1. Clark MG, Barrett EJ, Wallis MG, Vincent MA, Rattigan S. The microvasculature in insulin resistance and type 2 diabetes. Semin Vasc Med. 2002;2: 21–31. 10.1055/s-2002-23506
    1. Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S, et al. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004;53: 1418–1423.
    1. Lind L. and Lithell H.. Decreased peripheral blood flow in the pathogenesis of the metabolic syndrome comprising hypertension, hyperlipidemia, and hyperinsulinemia. Am Heart J. 1993;125: 1494–1497.
    1. Yang YJ, Hope ID, Ader M, Bergmann RN. Insulin transport across capillaries is rate limiting for insulin action in digs. J Clin Invest. 1989;84: 1620–1628. 10.1172/JCI114339
    1. Womack L, Peters D, Barrett EJ, Kaul S, Price W, and Lindner JR. Abnormal skeletal muscle capillary recruitment during exercise in patients with type 2 diabetes mellitus and microvascular complications. J Am Coll Cardiol. 2009;53: 2175–2183. 10.1016/j.jacc.2009.02.042
    1. Frisbee JC, Goodwill AG, Frisbee SJ, Butcher JT, Wu F, Chantler PD. Microvascular perfusion heterogeneity contributes to peripheral vascular disease in metabolic syndrome. J Physiol. 2014. 1–11 10.1113/jphysiol.2013.268060_1
    1. Solomon TPJ, Hasu JM, Li Y, Kirwan JP. Progressive hyperglycemia across the glucose tolerance continuum in older obese adults is related to skeletal muscle capillarization and nitric oxide bioavailability. J Clin Endocrinol Metab. 2011;96: 1377–1384. 10.1210/jc.2010-2069
    1. Dawson D, Vincent MA, Barrett EJ, Kaul S, Clark A, Leong-Poi H, et al. Vascular recruitment in skeletal muscle during exercise and hyperinsulinemia assessed by contrast ultrasound. Am J Physiol Endocrinol Metab. 2002;282: E714–E720. 10.1152/ajpendo.00373.2001
    1. Sjoberg KA, Rattigan S, Hiscock N, Richter EA, Kiens B. A new method to study changes in microvascular blood volume in muscle and adipose tissue: real-time imaging and humans and rat. Am J Physiol Heart Circ Physiol. 2011;301: H450–H458. 10.1152/ajpheart.01174.2010
    1. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation. 1998;97: 473–483.
    1. Krix M, Weber MA, Kauczor HU, Delorme S, Krakowski-Roosen H. Changes in the micro-circulation of skeletal muscle due to varied isometric exercise assessed by contrast-enhanced ultrasound. Eur J Radiol. 2010;76: 110–116. 10.1016/j.ejrad.2009.05.007
    1. Steinberg HO, Bayazeed B, Hook G, Johnson A, Cronin J, Baron AD. Endothelial dysfunction is associated with cholesterol levels in the high normal range in humans. Circulation. 1997;96: 3287–3293.
    1. Hofmann MA, Lalla E, Lu Y, Gleason MR, Wolf BM, Tanji N, et al. Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J Clin Invest. 2001;107: 675–683. 10.1172/JCI10588
    1. Weber MA, Kinscherf R, Krakowski-Roosen H, Aulmann M, Renk H, Künkele A, et al. Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting? J Mol Med. 2007;85(8): 887–896. 10.1007/s00109-007-0220-3
    1. Roth GA, Fihn SD, Mokdad AH, Aekplakorn W, Hasegawa T, Lim TS. High total serum cholesterol, medication coverage and therapeutic control: an analysis of national health examination survey data from eight countries . Bulletin of the World Health Organization 2011; 89 (2):92–101 () 10.2471/BLT.10.079947
    1. Porsch-Özçürümez, MK, Vergleichende Untersuchung der Lipidstoffwechselparameter zwischen 35-64jährigen deutschen und in Deutschland lebenden türkischen Teilnehmern einer Gesundheitsvorsorgeuntersuchung (Check-up 35). Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Medizin des Fachbereichs Humanmedizin der Justus-Liebig-Universität Gießen, 1997
    1. Phillips BE, Atherton PJ, Varadhan K, Limb MC, Wilkinson DJ, Sjoberg KA, et al. The effects of resistance exercise training on macro- and micro-circulatory responses to feeding and skeletal muscle protein anabolism in older men. J Physiol. 2015;593: 2721–2734. 10.1113/JP270343
    1. Credeur DP, Holwerda SW, Restaino RM, King PM, Crutcher KL, Laughlin MH, et al. Characterizing rapid onset vasodilation to single muscle contractions in the human leg. J Appl Physiol. 2015;118: 455–464. 10.1152/japplphysiol.00785.2014
    1. Durham WJ, Casperson SL, Dillon EL, Keske MA, Paddon-Jones D, Sanford AP, et al. Age-related anabolic resistance after endurance-type exercise in healthy humans. FASEB J. 2010; 24: 4117–4127. 10.1096/fj.09-150177
    1. Hirai DM, Copp SW, Holdsworth CT, Ferguson SK, Musch TI, Poole DC. Effects of neuronal nitric oxide synthase inhibition on microvascular and contractile function in skeletal muscle of aged rats. Am J Physiol Heart Circ Physiol. 2012;303: H1076–H1084. 10.1152/ajpheart.00477.2012
    1. Hirai DM, Copp SW, Hagemann KS, Poole DC, Musch TI. Aging alters the contribution of nitric oxide to regional muscle hemodynamic control at rest and during exercise in rats. J Appl Physiol. 2011;11: 989–998.
    1. Musch TI, Eklund KE, Hagemann KS, Poole DC. Altered regional blood flow responses to submaximal exercise in rats. J Appl Physiol. 2004; 96: 81–88. 10.1152/japplphysiol.00729.2003
    1. Poole DC. CrossTalk opposing view: De-novo capillary recruitment in healthy muscle is not necessary to explain physiological outcomes J Physiol.2014; 592: 5133–5135. 10.1113/jphysiol.2014.282145
    1. Poole DC, Copp SW, Ferguson SK, Musch TI. Skeletal muscle capillary function: contemporary observations and novel hypothesis. Exp Physiol. 2013; 98(12): 1645–1658. 10.1113/expphysiol.2013.073874

Source: PubMed

3
Subscribe