Update on infections caused by Stenotrophomonas maltophilia with particular attention to resistance mechanisms and therapeutic options

Ya-Ting Chang, Chun-Yu Lin, Yen-Hsu Chen, Po-Ren Hsueh, Ya-Ting Chang, Chun-Yu Lin, Yen-Hsu Chen, Po-Ren Hsueh

Abstract

Stenotrophomonas maltophilia is a Gram-negative, biofilm-forming bacterium. Although generally regarded as an organism of low virulence, S. maltophilia is an emerging multi-drug resistant opportunistic pathogen in hospital and community settings, especially among immunocompromised hosts. Risk factors associated with S. maltophilia infection include underlying malignancy, cystic fibrosis, corticosteroid or immunosuppressant therapy, the presence of an indwelling central venous catheter and exposure to broad spectrum antibiotics. In this review, we provide a synthesis of information on current global trends in S. maltophilia pathogenicity as well as updated information on the molecular mechanisms contributing to its resistance to an array of antimicrobial agents. The prevalence of S. maltophilia infection in the general population increased from 0.8-1.4% during 1997-2003 to 1.3-1.68% during 2007-2012. The most important molecular mechanisms contributing to its resistance to antibiotics include β-lactamase production, the expression of Qnr genes, and the presence of class 1 integrons and efflux pumps. Trimethoprim/sulfamethoxazole (TMP/SMX) is the antimicrobial drug of choice. Although a few studies have reported increased resistance to TMP/SMX, the majority of studies worldwide show that S. maltophilia continues to be highly susceptible. Drugs with historically good susceptibility results include ceftazidime, ticarcillin-clavulanate, and fluoroquinolones; however, a number of studies show an alarming trend in resistance to those agents. Tetracyclines such as tigecycline, minocycline, and doxycycline are also effective agents and consistently display good activity against S. maltophilia in various geographic regions and across different time periods. Combination therapies, novel agents, and aerosolized forms of antimicrobial drugs are currently being tested for their ability to treat infections caused by this multi-drug resistant organism.

Keywords: Stenotrophomonas maltophilia; prevalence; surveillance; susceptibility; treatment.

References

    1. Al-Anazi K. A., Al-Jasser A. M. (2014). Infections caused by Stenotrophomonas maltophilia in recipients of hematopoietic stem cell transplantation. Front. Oncol. 4:232 10.3389/fonc.2014.00232
    1. Al-Hamad A., Upton M., Burnie J. (2009). Molecular cloning and characterization of SmrA, a novel ABC multidrug efflux pump from Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 64, 731–734. 10.1093/jac/dkp271
    1. Alonso A., Martínez J. L. (2000). Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 44, 3079–3086. 10.1128/AAC.44.11.3079-3086.2000
    1. Arthur C., Tang X., Romero J. R., Gossett J. G., Harik N., Prodhan P. (2015). Stenotrophomonas maltophilia infection among young children in a cardiac intensive care unit: a single institution experience. Pediatr. Cardiol. 36, 509–515. 10.1007/s00246-014-1041-0
    1. Barbolla R., Catalano M., Orman B. E., Famiglietti A., Vay C., Smayevsky J., et al. . (2004). Class 1 integrons increase trimethoprim-sulfamethoxazole MICs against epidemiologically unrelated Stenotrophomonas maltophilia isolates. Antimicrob. Agents Chemother. 48, 666–669. 10.1128/AAC.48.2.666-669.2004
    1. Bassetti M., Della Siega P., Pecori D., Scarparo C., Righi E. (2015). Delafloxacin for the treatment of respiratory and skin infections. Expert Opin. Investig. Drugs 24, 433–442. 10.1517/13543784.2015.1005205
    1. Berenbaum M. C., Yu V. L., Felegie T. P. (1983). Synergy with double and triple antibiotic combinations compared. J. Antimicrob. Chemother. 12, 555–563. 10.1093/jac/12.6.555
    1. Betts J. W., Phee L. M., Woodford N., Wareham D. W. (2014). Activity of colistin in combination with tigecycline or rifampicin against multidrug-resistant Stenotrophomonas maltophilia. Eur. J. Clin. Microbiol. Infect. Dis. 33, 1565–1572. 10.1007/s10096-014-2101-3
    1. Bouchillon S. K., Badal R. E., Hoban D. J., Hawser S. P. (2013). Antimicrobial susceptibility of inpatient urinary tract isolates of gram-negative bacilli in the United States: results from the study for monitoring antimicrobial resistance trends (SMART) program: 2009-2011. Clin. Ther. 35, 872–877. 10.1016/j.clinthera.2013.03.022
    1. Brooke J. S. (2012). Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin. Microbiol. Rev. 25, 2–41. 10.1128/CMR.00019-11
    1. Brooke J. S. (2014). New strategies against Stenotrophomonas maltophilia: a serious worldwide intrinsically drug-resistant opportunistic pathogen. Expert. Rev. Anti. Infect. Ther. 12, 1–4. 10.1586/14787210.2014.864553
    1. Cantón R., Valdezate S., Vindel A., Sánchez Del Saz B., Maíz L., Baquero F. (2003). Antimicrobial susceptibility profile of molecular typed cystic fibrosis Stenotrophomonas maltophilia isolates and differences with noncystic fibrosis isolates. Pediatr. Pulmonol. 35, 99–107. 10.1002/ppul.10216
    1. Castanheira M., Mendes R. E., Jones R. N. (2014). Update on Acinetobacter species: mechanisms of antimicrobial resistance and contemporary in vitro activity of minocycline and other treatment options. Clin. Infect. Dis. 59(Suppl. 6), S367–S373. 10.1093/cid/ciu706
    1. Chang Y. T., Lin C. Y., Lu P. L., Lai C. C., Chen T. C., Chen C. Y., et al. . (2014). Stenotrophomonas maltophilia bloodstream infection: comparison between community-onset and hospital-acquired infections. J. Microbiol. Immunol. Infect. 47, 28–35. 10.1016/j.jmii.2012.08.014
    1. Chen C. H., Huang C. C., Chung T. C., Hu R. M., Huang Y. W., Yang T. C. (2011). Contribution of resistance-nodulation-division efflux pump operon smeU1-V-W-U2-X to multidrug resistance of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 55, 5826–5833. 10.1128/AAC.00317-11
    1. Chen Y. H., Lu P. L., Huang C. H., Liao C. H., Lu C. T., Chuang Y. C., et al. . (2012). Trends in the susceptibility of clinically important resistant bacteria to tigecycline: results from the tigecycline in vitro surveillance in Taiwan study, 2006 to 2010. Antimicrob. Agents Chemother. 56, 1452–1457. 10.1128/AAC.06053-11
    1. Chen X. X., Lo Y. C., Su L. H., Chang C. L. (2014). Investigation of the case number of catheter-related bloodstream infection overestivated by the central line-associated bloodstream infection surveillance definition. J. Microbiol. Immunol. Infect. 10.1016/j.jmii.2014.03.006 [Epub ahead of print].
    1. Cho S. Y., Kang C. I., Kim J., Ha Y. E., Chung D. R., Lee N. Y., et al. . (2014). Can levofloxacin be a useful alternative to trimethoprim-sulfamethoxazole for treating Stenotrophomonas maltophilia bacteremia? Antimicrob. Agents Chemother. 58, 581–583. 10.1128/AAC.01682-13
    1. Chow A. W., Wong J., Bartlett K. H. (1988). Synergistic interactions of ciprofloxacin and extended-spectrum beta-lactams or aminoglycosides against multiply drug-resistant Pseudomonas maltophilia. Antimicrob. Agents Chemother. 32, 782–784. 10.1128/AAC.32.5.782
    1. Chung H. S., Hong S. G., Kim Y. R., Shin K. S., Whang D. H., Ahn J. Y., et al. . (2013). Antimicrobial susceptibility of Stenotrophomonas maltophilia isolates from Korea, and the activity of antimicrobial combinations against the isolates. J. Korean Med. Sci. 28, 62–66. 10.3346/jkms.2013.28.1.62
    1. Chung H. S., Kim K., Hong S. S., Hong S. G., Lee K., Chong Y. (2015). The sul1 gene in Stenotrophomonas maltophilia with high-level resistance to trimethoprim/sulfamethoxazole. Ann. Lab. Med. 35, 246–249. 10.3343/alm.2015.35.2.246
    1. Church D., Lloyd T., Peirano G., Pitout J. (2013). Antimicrobial susceptibility and combination testing of invasive Stenotrophomonas maltophilia isolates. Scand. J. Infect. Dis. 45, 265–270. 10.3109/00365548.2012.732240
    1. Clinical Laboratory Standards Institute (CLSI) (2015). Performance Standards for Antimicrobial Susceptibility Testing; 25th Informational Supplement. CLSI Document M100-S25. Wayne, PA: CLSI.
    1. Correia C. R., Ferreira S. T., Nunes P. (2014). Stenotrophomonas maltophilia: rare cause of meningitis. Pediatr. Int. 56, e21–e22. 10.1111/ped.12352
    1. Crossman L. C., Gould V. C., Dow J. M., Vernikos G. S., Okazaki A., Sebaihia M., et al. . (2008). The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol. 9:R74. 10.1186/gb-2008-9-4-r74
    1. de Oliveira-Garcia D., Dall'agnol M., Rosales M., Azzuz A. C., Alcantara N., Martinez M. B., et al. . (2003). Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cell Microbiol. 5, 625–636. 10.1046/j.1462-5822.2003.00306.x
    1. del Toro M. D., Rodríguez-Bano J., Herrero M., Rivero A., García-Ordoñez M. A., Corzo J., et al. . (2002). Clinical epidemiology of Stenotrophomonas maltophilia colonization and infection: a multicenter study. Medicine (Baltimore) 81, 228–239. 10.1097/00005792-200205000-00006
    1. Diekema D. J., Pfaller M. A., Jones R. N., Doern G. V., Winokur P. L., Gales A. C., et al. . (1999). Survey of bloodstream infections due to gram-negative bacilli: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, and Latin America for the SENTRY Antimicrobial Surveillance Program, 1997. Clin. Infect. Dis. 29, 595–607. 10.1086/598640
    1. Doern G. V., Jones R. N., Pfaller M. A., Kugler K. C., Beach M. L. (1999). Bacterial pathogens isolated from patients with skin and soft tissue infections: frequency of occurrence and antimicrobial susceptibility patterns from the SENTRY Antimicrobial Surveillance Program (United States and Canada, 1997). SENTRY Study Group (North America). Diagn. Microbiol. Infect. Dis. 34, 65–72. 10.1016/S0732-8893(98)00162-X
    1. Entenza J. M., Moreillon P. (2009). Tigecycline in combination with other antimicrobials: a review of in vitro, animal and case report studies. Int. J. Antimicrob. Agents 34, 8.e1–8.e9. 10.1016/j.ijantimicag.2008.11.006
    1. Falagas M. E., Kasiakou S. K. (2005). Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin. Infect. Dis. 40, 1333–1341. 10.1086/429323
    1. Falagas M. E., Kastoris A. C., Vouloumanou E. K., Dimopoulos G. (2009a). Community-acquired Stenotrophomonas maltophilia infections: a systematic review. Eur. J. Clin. Microbiol. Infect. Dis. 28, 719–730. 10.1007/s10096-009-0709-5
    1. Falagas M. E., Kastoris A. C., Vouloumanou E. K., Rafailidis P. I., Kapaskelis A. M., Dimopoulos G. (2009b). Attributable mortality of Stenotrophomonas maltophilia infections: a systematic review of the literature. Future Microbiol. 4, 1103–1109. 10.2217/fmb.09.84
    1. Falagas M. E., Valkimadi P. E., Huang Y. T., Matthaiou D. K., Hsueh P. R. (2008). Therapeutic options for Stenotrophomonas maltophilia infections beyond co-trimoxazole: a systematic review. J Antimicrob. Chemother. 62, 889–894. 10.1093/jac/dkn301
    1. Falagas M. E., Vardakas K. Z., Tsiveriotis K. P., Triarides N. A., Tansarli G. S. (2014). Effectiveness and safety of high-dose tigecycline-containing regimens for the treatment of severe bacterial infections. Int. J. Antimicrob. Agents 44, 1–7. 10.1016/j.ijantimicag.2014.01.006
    1. Farrell D. J., Sader H. S., Flamm R. K., Jones R. N. (2014). Ceftolozane/tazobactam activity tested against Gram-negative bacterial isolates from hospitalised patients with pneumonia in US and European medical centres (2012). Int. J. Antimicrob. Agents 43, 533–539. 10.1016/j.ijantimicag.2014.01.032
    1. Farrell D. J., Sader H. S., Jones R. N. (2010a). Antimicrobial susceptibilities of a worldwide collection of Stenotrophomonas maltophilia isolates tested against tigecycline and agents commonly used for S. maltophilia infections. Antimicrob. Agents Chemother. 54, 2735–2737. 10.1128/AAC.01774-09
    1. Farrell D. J., Turnidge J. D., Bell J., Sader H. S., Jones R. N. (2010b). The in vitro evaluation of tigecycline tested against pathogens isolated in eight countries in the Asia-Western Pacific region (2008). J. Infect. 60, 440–451. 10.1016/j.jinf.2010.03.024
    1. Fedler K. A., Biedenbach D. J., Jones R. N. (2006a). Assessment of pathogen frequency and resistance patterns among pediatric patient isolates: report from the 2004 SENTRY Antimicrobial Surveillance Program on 3 continents. Diagn. Microbiol. Infect. Dis. 56, 427–436. 10.1016/j.diagmicrobio.2006.07.003
    1. Fedler K. A., Jones R. N., Sader H. S., Fritsche T. R. (2006b). Activity of gatifloxacin tested against isolates from pediatric patients: report from the SENTRY Antimicrobial Surveillance Program (North America, 1998-2003). Diagn. Microbiol. Infect. Dis. 55, 157–164. 10.1016/j.diagmicrobio.2006.01.005
    1. Felegie T. P., Yu V. L., Rumans L. W., Yee R. B. (1979). Susceptibility of Pseudomonas maltophilia to antimicrobial agents, singly and in combination. Antimicrob. Agents Chemother. 16, 833–837. 10.1128/AAC.16.6.833
    1. Fihman V., Le Monnier A., Corvec S., Jaureguy F., Tankovic J., Jacquier H., et al. . (2012). Stenotrophomonas maltophilia–the most worrisome threat among unusual non-fermentative gram-negative bacilli from hospitalized patients: a prospective multicenter study. J. Infect. 64, 391–398. 10.1016/j.jinf.2012.01.001
    1. Flores-Treviño S., Gutiérrez-Ferman J. L., Morfín-Otero R., Rodríguez-Noríega E., Estrada-Rívadeneyra D., Rivas-Morales C., et al. . (2014). Stenotrophomonas maltophilia in Mexico: antimicrobial resistance, biofilm formation and clonal diversity. J. Med. Microbiol. 63, 1524–1530. 10.1099/jmm.0.074385-0
    1. Fluit A. C., Schmitz F. J., Verhoef J., European S. P. G. (2001a). Frequency of isolation of pathogens from bloodstream, nosocomial pneumonia, skin and soft tissue, and urinary tract infections occurring in European patients. Eur. J. Clin. Microbiol. Infect. Dis. 20, 188–191. 10.1007/s100960100455
    1. Fluit A. C., Verhoef J., Schmitz F. J., European S. P. (2001b). Frequency of isolation and antimicrobial resistance of gram-negative and gram-positive bacteria from patients in intensive care units of 25 European university hospitals participating in the European arm of the SENTRY Antimicrobial Surveillance Program 1997-1998. Eur. J. Clin. Microbiol. Infect. Dis. 20, 617–625. 10.1007/s10096-001-8078-8
    1. Fujita J., Yamadori I., Xu G., Hojo S., Negayama K., Miyawaki H., et al. . (1996). Clinical features of Stenotrophomonas maltophilia pneumonia in immunocompromised patients. Respir. Med. 90, 35–38. 10.1016/S0954-6111(96)90242-5
    1. Gales A. C., Jones R. N., Forward K. R., Liñares J., Sader H. S., Verhoef J. (2001a). Emerging importance of multidrug-resistant Acinetobacter species and Stenotrophomonas maltophilia as pathogens in seriously ill patients: geographic patterns, epidemiological features, and trends in the SENTRY Antimicrobial Surveillance Program (1997-1999). Clin. Infect. Dis. 32(Suppl. 2), S104–S113. 10.1086/320183
    1. Gales A. C., Jones R. N., Sader H. S. (2006). Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001-2004). Clin. Microbiol. Infect. 12, 315–321. 10.1111/j.1469-0691.2005.01351.x
    1. Gales A. C., Reis A. O., Jones R. N. (2001b). Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: review of available interpretative criteria and quality control guidelines. J. Clin. Microbiol. 39, 183–190. 10.1128/JCM.39.1.183-190.2001
    1. Gales A. C., Sader H. H., Jones R. N. (2002). Respiratory tract pathogens isolated from patients hospitalized with suspected pneumonia in Latin America: frequency of occurrence and antimicrobial susceptibility profile: results from the SENTRY Antimicrobial Surveillance Program (1997-2000). Diagn. Microbiol. Infect. Dis. 44, 301–311. 10.1016/S0732-8893(02)00499-6
    1. Gales A. C., Sader H. S., Fritsche T. R. (2008). Tigecycline activity tested against 11808 bacterial pathogens recently collected from US medical centers. Diagn. Microbiol. Infect. Dis. 60, 421–427. 10.1016/j.diagmicrobio.2007.10.017
    1. García-León G., Hernández A., Hernando-Amado S., Alavi P., Berg G., Martínez J. L. (2014a). A function of SmeDEF, the major quinolone resistance determinant of Stenotrophomonas maltophilia, is the colonization of plant roots. Appl. Environ. Microbiol. 80, 4559–4565. 10.1128/AEM.01058-14
    1. García-León G., Ruiz de Alegría Puig C., García de la Fuente C., Martínez-Martínez L., Martínez J. L., Sánchez M. B. (2015). High-level quinolone resistance is associated with the overexpression of smeVWX in Stenotrophomonas maltophilia clinical isolates. Clin. Microbiol. Infect. 21, 464–467. 10.1016/j.cmi.2015.01.007
    1. García-León G., Salgado F., Oliveros J. C., Sánchez M. B., Martínez J. L. (2014b). Interplay between intrinsic and acquired resistance to quinolones in Stenotrophomonas maltophilia. Environ. Microbiol. 16, 1282–1296. 10.1111/1462-2920.12408
    1. Giamarellos-Bourboulis E. J., Karnesis L., Giamarellou H. (2002). Synergy of colistin with rifampin and trimethoprim/sulfamethoxazole on multidrug-resistant Stenotrophomonas maltophilia. Diagn. Microbiol. Infect. Dis. 44, 259–263. 10.1016/S0732-8893(02)00443-1
    1. Gould V. C., Okazaki A., Avison M. B. (2013). Coordinate hyperproduction of SmeZ and SmeJK efflux pumps extends drug resistance in Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 57, 655–657. 10.1128/AAC.01020-12
    1. Guembe M., Cercenado E., Alcalá L., Marin M., Insa R., Bouza E. (2008). Evolution of antimicrobial susceptibility patterns of aerobic and facultative gram-negative bacilli causing intra-abdominal infections: results from the SMART studies 2003-2007. Rev. Esp. Quimioter. 21, 166–173. Retrieved from
    1. Gülmez D., Cakar A., Sener B., Karakaya J., Hasçelik G. (2010). Comparison of different antimicrobial susceptibility testing methods for Stenotrophomonas maltophilia and results of synergy testing. J. Infect. Chemother. 16, 322–328. 10.1007/s10156-010-0068-2
    1. Gülmez D., Hasçelik G. (2005). Stenotrophomonas maltophilia: antimicrobial resistance and molecular typing of an emerging pathogen in a Turkish University Hospital. Clin. Microbiol. Infect. 11, 880–886. 10.1111/j.1469-0691.2005.01257.x
    1. Harthan A. A., Heger M. L. (2013). Stenotrophomonas infection in a patient with glucose-6-phosphate dehydrogenase deficiency. J. Pediatr. Pharmacol. Ther. 18, 137–141. 10.5863/1551-6776-18.2.137
    1. Hernández A., Maté M. J., Sánchez-Díaz P. C., Romero A., Rojo F., Martínez J. L. (2009). Structural and functional analysis of SmeT, the repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. J. Biol. Chem. 284, 14428–14438. 10.1074/jbc.M809221200
    1. Hoban D. J., Biedenbach D. J., Mutnick A. H., Jones R. N. (2003). Pathogen of occurrence and susceptibility patterns associated with pneumonia in hospitalized patients in North America: results of the SENTRY Antimicrobial Surveillance Study (2000). Diagn. Microbiol. Infect. Dis. 45, 279–285. 10.1016/S0732-8893(02)00540-0
    1. Hombach M., Bloemberg G. V., Böttger E. C. (2012). Effects of clinical breakpoint changes in CLSI guidelines 2010/2011 and EUCAST guidelines 2011 on antibiotic susceptibility test reporting of Gram-negative bacilli. J. Antimicrob. Chemother. 67, 622–632. 10.1093/jac/dkr524
    1. Hornsey M., Longshaw C., Phee L., Wareham D. W. (2012). In vitro activity of telavancin in combination with colistin versus Gram-negative bacterial pathogens. Antimicrob. Agents Chemother. 56, 3080–3085. 10.1128/AAC.05870-11
    1. Hotta G., Matsumura Y., Kato K., Nakano S., Yunoki T., Yamamoto M., et al. . (2014). Risk factors and outcomes of Stenotrophomonas maltophilia bacteraemia: a comparison with bacteraemia caused by Pseudomonas aeruginosa and Acinetobacter species. PLoS ONE 9:e112208. 10.1371/journal.pone.0112208
    1. Hu L. F., Chang X., Ye Y., Wang Z. X., Shao Y. B., Shi W., et al. . (2011). Stenotrophomonas maltophilia resistance to trimethoprim/sulfamethoxazole mediated by acquisition of sul and dfrA genes in a plasmid-mediated class 1 integron. Int. J. Antimicrob. Agents 37, 230–234. 10.1016/j.ijantimicag.2010.10.025
    1. Hu L. F., Gao L. P., Ye Y., Chen X., Zhou X. T., Yang H. F., et al. . (2014). Susceptibility of Stenotrophomonas maltophilia clinical strains in China to antimicrobial combinations. J. Chemother. 26, 282–286. 10.1179/1973947814Y.0000000168
    1. Hu R. M., Liao S. T., Huang C. C., Huang Y. W., Yang T. C. (2012). An inducible fusaric acid tripartite efflux pump contributes to the fusaric acid resistance in Stenotrophomonas maltophilia. PLoS ONE 7:e51053. 10.1371/journal.pone.0051053
    1. Huang C. H., Lai C. C., Chen Y. H., Hsueh P. R. (2015). The potential role of nemonoxacin for treatment of common infections. Expert. Opin. Pharmacother. 16, 263–270. 10.1517/14656566.2015.978288
    1. Huang Y. W., Hu R. M., Chu F. Y., Lin H. R., Yang T. C. (2013a). Characterization of a major facilitator superfamily (MFS) tripartite efflux pump EmrCABsm from Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 68, 2498–2505. 10.1093/jac/dkt250
    1. Huang Y. W., Hu R. M., Yang T. C. (2013b). Role of the pcm-tolCsm operon in the multidrug resistance of Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 68, 1987–1993. 10.1093/jac/dkt148
    1. Huang Y. W., Lin C. W., Hu R. M., Lin Y. T., Chung T. C., Yang T. C. (2010). AmpN-AmpG operon is essential for expression of L1 and L2 beta-lactamases in Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 54, 2583–2589. 10.1128/AAC.01283-09
    1. Huang Y. W., Liou R. S., Lin Y. T., Huang H. H., Yang T. C. (2014). A linkage between SmeIJK efflux pump, cell envelope integrity, and sigmaE-mediated envelope stress response in Stenotrophomonas maltophilia. PLoS ONE 9:e111784. 10.1371/journal.pone.0111784
    1. Irifune K., Ishida T., Shimoguchi K., Ohtake J., Tanaka T., Morikawa N., et al. . (1994). Pneumonia caused by Stenotrophomonas maltophilia with a mucoid phenotype. J. Clin. Microbiol. 32, 2856–2857.
    1. Jang T. N., Wang F. D., Wang L. S., Liu C. Y., Liu I. M. (1992). Xanthomonas maltophilia bacteremia: an analysis of 32 cases. J. Formos. Med. Assoc. 91, 1170–1176.
    1. Jean S. S., Lee W. S., Bai K. J., Lam C., Hsu C. W., Yu K. W., et al. . (2015). Relationship between the distribution of cefepime minimum inhibitory concentrations and detection of extended-spectrum β-lactamase production among clinically important Enterobacteriaceae isolates obtained from patients in intensive care units in Taiwan: results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART) in 2007. J. Microbiol. Immunol. Infect. 48, 85–91. 10.1016/j.jmii.2013.07.002
    1. Jones R. N. (2010). Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin. Infect. Dis. 51(Suppl. 1), S81–S87. 10.1086/653053
    1. Jones R. N., Croco M. A., Kugler K. C., Pfaller M. A., Beach M. L. (2000). Respiratory tract pathogens isolated from patients hospitalized with suspected pneumonia: frequency of occurrence and antimicrobial susceptibility patterns from the SENTRY Antimicrobial Surveillance Program (United States and Canada, 1997). Diagn. Microbiol. Infect. Dis. 37, 115–125. 10.1016/S0732-8893(00)00115-2
    1. Jones R. N., Croco M. A., Pfaller M. A., Beach M. L., Kugler K. C., SENTRY Antimicrobial Surveillance Program Participants . (1999a). Antimicrobial activity evaluations of gatifloxacin, a new fluoroquinolone: contemporary pathogen results from a global antimicrobial resistance surveillance program (SENTRY, 1997). Clin. Microbiol. Infect. 5, 540–546. 10.1111/j.1469-0691.1999.tb00432.x
    1. Jones R. N., Kugler K. C., Pfaller M. A., Winokur P. L. (1999b). Characteristics of pathogens causing urinary tract infections in hospitals in North America: results from the SENTRY Antimicrobial Surveillance Program, 1997. Diagn. Microbiol. Infect. Dis. 35, 55–63. 10.1016/S0732-8893(98)00158-8
    1. Jones R. N., Pfaller M. A., Marshall S. A., Hollis R. J., Wilke W. W. (1997). Antimicrobial activity of 12 broad-spectrum agents tested against 270 nosocomial blood stream infection isolates caused by non-enteric gram-negative bacilli: occurrence of resistance, molecular epidemiology, and screening for metallo-enzymes. Diagn. Microbiol. Infect. Dis. 29, 187–192. 10.1016/S0732-8893(97)81808-1
    1. Jones R. N., Sader H. S., Beach M. L. (2003). Contemporary in vitro spectrum of activity summary for antimicrobial agents tested against 18569 strains non-fermentative Gram-negative bacilli isolated in the SENTRY Antimicrobial Surveillance Program (1997-2001). Int. J. Antimicrob. Agents 22, 551–556. 10.1016/S0924-8579(03)00245-0
    1. Kerr K. G., Hawkey P. M., Child J. A., Norfolk D. R., Anderson A. W. (1990). Pseudomonas maltophilia infections in neutropenic patients and the use of imipenem. Postgrad. Med. J. 66:1090. 10.1136/pgmj.66.782.1090
    1. Khan I. U., Mirza I. A., Ikram A., Ali S., Hussain A., Ghafoor T. (2014). In vitro activity of fosfomycin tromethamine against extended spectrum beta-lactamase producing urinary tract bacteria. J. Coll. Physicians. Surg. Pak. 24, 914–917.
    1. Kim T., Chong Y. P., Park S. Y., Jeon M. H., Choo E. J., Chung J. W., et al. . (2014). Risk factors for hospital-acquired pneumonia caused by carbapenem-resistant Gram-negative bacteria in critically ill patients: a multicenter study in Korea. Diagn. Microbiol. Infect. Dis. 78, 457–461. 10.1016/j.diagmicrobio.2013.08.011
    1. King P., Lomovskaya O., Griffith D. C., Burns J. L., Dudley M. N. (2010). In vitro pharmacodynamics of levofloxacin and other aerosolized antibiotics under multiple conditions relevant to chronic pulmonary infection in cystic fibrosis. Antimicrob. Agents Chemother. 54, 143–148. 10.1128/AAC.00248-09
    1. Krueger T. S., Clark E. A., Nix D. E. (2001). In vitro susceptibility of Stenotrophomonas maltophilia to various antimicrobial combinations. Diagn. Microbiol. Infect. Dis. 41, 71–78. 10.1016/S0732-8893(01)00281-4
    1. Labarca J. A., Leber A. L., Kern V. L., Territo M. C., Brankovic L. E., Bruckner D. A., et al. . (2000). Outbreak of Stenotrophomonas maltophilia bacteremia in allogenic bone marrow transplant patients: role of severe neutropenia and mucositis. Clin. Infect. Dis. 30, 195–197. 10.1086/313591
    1. Lai C. C., Lee K. Y., Lin S. W., Chen Y. H., Kuo H. Y., Hung C. C., et al. . (2014a). Nemonoxacin (TG-873870) for treatment of community-acquired pneumonia. Expert Rev. Anti. Infect. Ther. 12, 401–417. 10.1586/14787210.2014.894881
    1. Lai C. H., Chi C. Y., Chen H. P., Chen T. L., Lai C. J., Fung C. P., et al. . (2004). Clinical characteristics and prognostic factors of patients with Stenotrophomonas maltophilia bacteremia. J. Microbiol. Immunol. Infect. 37, 350–358.
    1. Lai C. H., Wong W. W., Chin C., Huang C. K., Lin H. H., Chen W. F., et al. . (2006). Central venous catheter-related Stenotrophomonas maltophilia bacteraemia and associated relapsing bacteraemia in haematology and oncology patients. Clin. Microbiol. Infect. 12, 986–991. 10.1111/j.1469-0691.2006.01511.x
    1. Lai W. A., Chen S. F., Tsai N. W., Chang W. N., Lu C. H., Chuang Y. C., et al. . (2014b). Non-cephalosporin-susceptible, glucose non-fermentative Gram-negative bacilli meningitis in post-neurosurgical adults: clinical characteristics and therapeutic outcome. Clin. Neurol. Neurosurg. 116, 61–66. 10.1016/j.clineuro.2013.10.020
    1. Lee M. R., Wang H. C., Yang C. Y., Lin C. K., Kuo H. Y., Ko J. C., et al. . (2014). Clinical characteristics and outcomes of patients with pleural infections due to Stenotrophomonas maltophilia at a medical center in Taiwan, 2004-2012. Eur. J. Clin. Microbiol. Infect. Dis. 33, 1143–1148. 10.1007/s10096-014-2060-8
    1. Lee Y. L., Chen Y. S., Toh H. S., Huang C. C., Liu Y. M., Ho C. M., et al. . (2012). Antimicrobial susceptibility of pathogens isolated from patients with complicated intra-abdominal infections at five medical centers in Taiwan that continuously participated in the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2006 to 2010. Int. J. Antimicrob. Agents 40(Suppl.), S29–S36. 10.1016/s0924-8579(12)70007-9
    1. Li X. Z., Zhang L., Mckay G. A., Poole K. (2003). Role of the acetyltransferase AAC(6')-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 51, 803–811. 10.1093/jac/dkg148
    1. Li X. Z., Zhang L., Poole K. (2002). SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 46, 333–343. 10.1128/AAC.46.2.333-343.2002
    1. Lin C. W., Huang Y. W., Hu R. M., Yang T. C. (2014a). SmeOP-TolCSm efflux pump contributes to the multidrug resistance of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 58, 2405–2408. 10.1128/AAC.01974-13
    1. Lin C. W., Lin H. C., Huang Y. W., Chung T. C., Yang T. C. (2011). Inactivation of mrcA gene derepresses the basal-level expression of L1 and L2 beta-lactamases in Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 66, 2033–2037. 10.1093/jac/dkr276
    1. Lin Y. T., Huang Y. W., Chen S. J., Chang C. W., Yang T. C. (2015). SmeYZ efflux pump of Stenotrophomonas maltophilia contributes to drug resistance, virulence-related characteristics, and virulence to mice. Antimicrob. Agents Chemother. 59, 4067–4073. 10.1128/AAC.00372-15
    1. Lin Y. T., Huang Y. W., Liou R. S., Chang Y. C., Yang T. C. (2014b). MacABCsm, an ABC-type tripartite efflux pump of Stenotrophomonas maltophilia involved in drug resistance, oxidative and envelope stress tolerances and biofilm formation. J. Antimicrob. Chemother. 69, 3221–3226. 10.1093/jac/dku317
    1. Lindberg F., Westman L., Normark S. (1985). Regulatory components in Citrobacter freundii ampC beta-lactamase induction. Proc. Natl. Acad. Sci. U.S.A. 82, 4620–4624. 10.1073/pnas.82.14.4620
    1. Liu Y. M., Chen Y. S., Toh H. S., Huang C. C., Lee Y. L., Ho C. M., et al. (2012). In vitro susceptibilities of non-Enterobacteriaceae isolates from patients with intra-abdominal infections in the Asia-Pacific region from 2003 to 2010: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). Int. J. Antimicrob. Agents 40(Suppl.), S11–S17. 10.1016/s0924-8579(12)70004-3
    1. Livermore D. M., Hope R., Brick G., Lillie M., Reynolds R., BSAC Working Parties on Resistance Surveillance . (2008). Non-susceptibility trends among Pseudomonas aeruginosa and other non-fermentative Gram-negative bacteria from bacteraemias in the UK and Ireland, 2001-06. J. Antimicrob. Chemother. 62(Suppl. 2), ii55–ii63. 10.1093/jac/dkn352
    1. Livermore D. M., Mushtaq S., Warner M., Woodford N. (2014). Comparative in vitro activity of sulfametrole/trimethoprim and sulfamethoxazole/trimethoprim and other agents against multiresistant Gram-negative bacteria. J. Antimicrob. Chemother. 69, 1050–1056. 10.1093/jac/dkt455
    1. Lodge J. M., Minchin S. D., Piddock L. J., Busby S. J. (1990). Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC beta-lactamase. Biochem. J. 272, 627–631. 10.1042/bj2720627
    1. Looney W. J., Narita M., Mühlemann K. (2009). Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect. Dis. 9, 312–323. 10.1016/S1473-3099(09)70083-0
    1. Lu P. L., Liu Y. C., Toh H. S., Lee Y. L., Liu Y. M., Ho C. M., et al. . (2012). Epidemiology and antimicrobial susceptibility profiles of Gram-negative bacteria causing urinary tract infections in the Asia-Pacific region: 2009-2010 results from the Study for Monitoring Antimicrobial Resistance Trends (SMART). Int. J. Antimicrob. Agents 40(Suppl.), S37–S43. 10.1016/s0924-8579(12)70008-0
    1. Macleod D. L., Barker L. M., Sutherland J. L., Moss S. C., Gurgel J. L., Kenney T. F., et al. . (2009). Antibacterial activities of a fosfomycin/tobramycin combination: a novel inhaled antibiotic for bronchiectasis. J. Antimicrob. Chemother. 64, 829–836. 10.1093/jac/dkp282
    1. Magret M., Lisboa T., Martin-Loeches I., Máñez R., Nauwynck M., Wrigge H., et al. . (2011). Bacteremia is an independent risk factor for mortality in nosocomial pneumonia: a prospective and observational multicenter study. Crit. Care 15, R62. 10.1186/cc10036
    1. Mathai D., Lewis M. T., Kugler K. C., Pfaller M. A., Jones R. N., SENTRY Participants Group (North America) . (2001). Antibacterial activity of 41 antimicrobials tested against over 2773 bacterial isolates from hospitalized patients with pneumonia: I–results from the SENTRY Antimicrobial Surveillance Program (North America, 1998). Diagn. Microbiol. Infect. Dis. 39, 105–116. 10.1016/S0732-8893(00)00234-0
    1. Memish Z. A., Shibl A. M., Kambal A. M., Ohaly Y. A., Ishaq A., Livermore D. M. (2012). Antimicrobial resistance among non-fermenting Gram-negative bacteria in Saudi Arabia. J. Antimicrob. Chemother. 67, 1701–1705. 10.1093/jac/dks091
    1. Meyer E., Schwab F., Gastmeier P., Rueden H., Daschner F. D., Jonas D. (2006). Stenotrophomonas maltophilia and antibiotic use in German intensive care units: data from Project SARI (Surveillance of Antimicrobial Use and Antimicrobial Resistance in German Intensive Care Units). J. Hosp. Infect. 64, 238–243. 10.1016/j.jhin.2006.07.006
    1. Micozzi A., Venditti M., Monaco M., Friedrich A., Taglietti F., Santilli S., et al. . (2000). Bacteremia due to Stenotrophomonas maltophilia in patients with hematologic malignancies. Clin. Infect. Dis. 31, 705–711. 10.1086/314043
    1. Milne K. E., Gould I. M. (2012). Combination antimicrobial susceptibility testing of multidrug-resistant Stenotrophomonas maltophilia from cystic fibrosis patients. Antimicrob. Agents Chemother. 56, 4071–4077. 10.1128/AAC.00072-12
    1. Morrissey I., Hackel M., Badal R., Bouchillon S., Hawser S., Biedenbach D. (2013). A review of ten years of the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2002 to 2011. Pharmaceuticals (Basel) 6, 1335–1346. 10.3390/ph6111335
    1. Moskowitz S. M., Garber E., Chen Y., Clock S. A., Tabibi S., Miller A. K., et al. . (2010). Colistin susceptibility testing: evaluation of reliability for cystic fibrosis isolates of Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 65, 1416–1423. 10.1093/jac/dkq131
    1. Moya B., Dötsch A., Juan C., Blázquez J., Zamorano L., Haussler S., et al. . (2009). Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog. 5:e1000353. 10.1371/journal.ppat.1000353
    1. Nicodemo A. C., Araujo M. R., Ruiz A. S., Gales A. C. (2004). In vitro susceptibility of Stenotrophomonas maltophilia isolates: comparison of disc diffusion, Etest and agar dilution methods. J. Antimicrob. Chemother. 53, 604–608. 10.1093/jac/dkh128
    1. Nicodemo A. C., Paez J. I. (2007). Antimicrobial therapy for Stenotrophomonas maltophilia infections. Eur. J. Clin. Microbiol. Infect. Dis. 26, 229–237. 10.1007/s10096-007-0279-3
    1. Ning B. T., Zhang C. M., Liu T., Ye S., Yang Z. H., Chen Z. J. (2013). Pathogenic analysis of sputum from ventilator-associated pneumonia in a pediatric intensive care unit. Exp. Ther. Med. 5, 367–371. 10.3892/etm.2012.757
    1. Nord C. E., Wadström T., Wretlind B. (1974). Synergistic effect of combinations of sulfamethoxazole, trimethoprim, and colistin against Pseudomonas maltophilia and Pseudomonas cepacia. Antimicrob. Agents Chemother. 6, 521–523. 10.1128/AAC.6.4.521
    1. O'Riordan W., Mehra P., Manos P., Kingsley J., Lawrence L., Cammarata S. (2015). A randomized phase 2 study comparing two doses of delafloxacin with tigecycline in adults with complicated skin and skin-structure infections. Int. J. Infect. Dis. 30, 67–73. 10.1016/j.ijid.2014.10.009
    1. Okazaki A., Avison M. B. (2007). Aph(3′)-IIc, an aminoglycoside resistance determinant from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 51, 359–360. 10.1128/AAC.00795-06
    1. Okazaki A., Avison M. B. (2008). Induction of L1 and L2 beta-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. Antimicrob. Agents Chemother. 52, 1525–1528. 10.1128/AAC.01485-07
    1. Paez J. I., Costa S. F. (2008). Risk factors associated with mortality of infections caused by Stenotrophomonas maltophilia: a systematic review. J. Hosp. Infect. 70, 101–108. 10.1016/j.jhin.2008.05.020
    1. Page M. G., Dantier C., Desarbre E., Gaucher B., Gebhardt K., Schmitt-Hoffmann A. (2011). In vitro and in vivo properties of BAL30376, a beta-lactam and dual beta-lactamase inhibitor combination with enhanced activity against Gram-negative Bacilli that express multiple beta-lactamases. Antimicrob. Agents Chemother. 55, 1510–1519. 10.1128/AAC.01370-10
    1. Papadakis K. A., Vartivarian S. E., Vassilaki M. E., Anaissie E. J. (1995). Stenotrophomonas maltophilia: an unusual cause of biliary sepsis. Clin. Infect. Dis. 21, 1032–1034. 10.1093/clinids/21.4.1032
    1. Perez P. N., Ramirez M. A., Fernandez J. A., De Guevara L. L. (2014). A patient presenting with cholangitis due to Stenotrophomonas maltophilia and Pseudomonas aeruginosa successfully treated with intrabiliary colistin. Infect. Dis. Rep. 6:5147. 10.4081/idr.2014.5147
    1. Personne Y., Curtis M. A., Wareham D. W., Waite R. D. (2014). Activity of the type I signal peptidase inhibitor MD3 against multidrug-resistant Gram-negative bacteria alone and in combination with colistin. J. Antimicrob. Chemother. 69, 3236–3243. 10.1093/jac/dku309
    1. Pien C. J., Kuo H. Y., Chang S. W., Chen P. R., Yeh H. W., Liu C. C., et al. . (2015). Risk factors for levofloxacin resistance in Stenotrophomonas maltophilia from respiratory tract in a regional hospital. J. Microbiol. Immunol. Infect. 48, 291–295. 10.1016/j.jmii.2013.09.005
    1. Pfaller M. A., Jones R. N., Doern G. V., Kugler K. (1998). Bacterial pathogens isolated from patients with bloodstream infection: frequencies of occurrence and antimicrobial susceptibility patterns from the SENTRY antimicrobial surveillance program (United States and Canada, 1997). Antimicrob. Agents Chemother. 42, 1762–1770.
    1. Pompilio A., Crocetta V., Confalone P., Nicoletti M., Petrucca A., Guarnieri S., et al. . (2010). Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol. 10:102. 10.1186/1471-2180-10-102
    1. Poulos C. D., Matsumura S. O., Willey B. M., Low D. E., McGeer A. (1995). In vitro activities of antimicrobial combinations against Stenotrophomonas (Xanthomonas) maltophilia. Antimicrob. Agents Chemother. 39, 2220–2223. 10.1128/AAC.39.10.2220
    1. Putman M., Van Veen H. W., Konings W. N. (2000). Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64, 672–693. 10.1128/MMBR.64.4.672-693.2000
    1. Ratjen A., Yau Y., Wettlaufer J., Matukas L., Zlosnik J. E., Speert D. P., et al. . (2015). In vitro efficacy of high-dose tobramycin against Burkholderia cepacia complex and Stenotrophomonas maltophilia isolates from cystic fibrosis patients. Antimicrob. Agents Chemother. 59, 711–713. 10.1128/AAC.04123-14
    1. Rattanaumpawan P., Ussavasodhi P., Kiratisin P., Aswapokee N. (2013). Epidemiology of bacteremia caused by uncommon non-fermentative gram-negative bacteria. BMC Infect. Dis. 13:167. 10.1186/1471-2334-13-167
    1. Renteria M. I., Biedenbach D. J., Bouchillon S. K., Hoban D. J., Raghubir N., Sajben P., et al. . (2014). In vitro activity of tigecycline against isolates collected from complicated skin and skin structure infections and intra-abdominal infections in Africa and Middle East countries: TEST 2007-2012. Diagn. Microbiol. Infect. Dis. 79, 54–59. 10.1016/j.diagmicrobio.2014.01.017
    1. Rhee J. Y., Choi J. Y., Choi M. J., Song J. H., Peck K. R., Ko K. S. (2013). Distinct groups and antimicrobial resistance of clinical Stenotrophomonas maltophilia complex isolates from Korea. J. Med. Microbiol. 62, 748–753. 10.1099/jmm.0.053355-0
    1. Rizek C., Ferraz J. R., Van der Heijden I. M., Giudice M., Mostachio A. K., Paez J., et al. . (2015). In vitro activity of potential old and new drugs against multidrug-resistant gram-negatives. J. Infect. Chemother. 21, 114–117. 10.1016/j.jiac.2014.10.009
    1. Rodríguez C. H., Nastro M., Calvo J. L., Fariña M. E., Dabos L., Famiglietti A. (2014). In vitro activity of colistin against Stenotrophomonas maltophilia. J. Glob. Antimicrob. Resist. 2, 316–317. 10.1016/j.jgar.2014.04.004
    1. Sader H. S., Farrell D. J., Flamm R. K., Jones R. N. (2014a). Antimicrobial susceptibility of Gram-negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: results from the SENTRY Antimicrobial Surveillance Program, 2009-2012. Int. J. Antimicrob. Agents 43, 328–334. 10.1016/j.ijantimicag.2014.01.007
    1. Sader H. S., Farrell D. J., Flamm R. K., Jones R. N. (2014b). Variation in potency and spectrum of tigecycline activity against bacterial strains from U.S. medical centers since its approval for clinical use (2006 to 2012). Antimicrob. Agents Chemother. 58, 2274–2280. 10.1128/AAC.02684-13
    1. Sader H. S., Flamm R. K., Jones R. N. (2013). Tigecycline activity tested against antimicrobial resistant surveillance subsets of clinical bacteria collected worldwide (2011). Diagn. Microbiol. Infect. Dis. 76, 217–221. 10.1016/j.diagmicrobio.2013.02.009
    1. Sader H. S., Jones R. N. (2005). Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int. J. Antimicrob. Agents 25, 95–109. 10.1016/j.ijantimicag.2004.10.002
    1. Sader H. S., Jones R. N., Dowzicky M. J., Fritsche T. R. (2005a). Antimicrobial activity of tigecycline tested against nosocomial bacterial pathogens from patients hospitalized in the intensive care unit. Diagn. Microbiol. Infect. Dis. 52, 203–208. 10.1016/j.diagmicrobio.2005.05.002
    1. Sader H. S., Jones R. N., Gales A. C., Silva J. B., Pignatari A. C., SENTRY Participants Group (Latin America) . (2004). SENTRY antimicrobial surveillance program report: Latin American and Brazilian results for 1997 through 2001. Braz. J. Infect. Dis. 8, 25–79. 10.1590/S1413-86702004000100004
    1. Sader H. S., Jones R. N., Gales A. C., Winokur P., Kugler K. C., Pfaller M. A., et al. . (1998). Antimicrobial susceptibility patterns for pathogens isolated from patients in Latin American medical centers with a diagnosis of pneumonia: analysis of results from the SENTRY Antimicrobial Surveillance Program (1997). SENTRY Latin America Study Group. Diagn. Microbiol. Infect. Dis. 32, 289–301. 10.1016/S0732-8893(98)00124-2
    1. Sader H. S., Jones R. N., Stilwell M. G., Dowzicky M. J., Fritsche T. R. (2005b). Tigecycline activity tested against 26,474 bloodstream infection isolates: a collection from 6 continents. Diagn. Microbiol. Infect. Dis. 52, 181–186. 10.1016/j.diagmicrobio.2005.05.005
    1. Safdar A., Rolston K. V. (2007). Stenotrophomonas maltophilia: changing spectrum of a serious bacterial pathogen in patients with cancer. Clin. Infect. Dis. 45, 1602–1609. 10.1086/522998
    1. Saiman L., Chen Y., Gabriel P. S., Knirsch C. (2002). Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob. Agents Chemother. 46, 1105–1107. 10.1128/AAC.46.4.1105-1107.2002
    1. Samonis G., Karageorgopoulos D. E., Maraki S., Levis P., Dimopoulou D., Spernovasilis N. A., et al. . (2012). Stenotrophomonas maltophilia infections in a general hospital: patient characteristics, antimicrobial susceptibility, and treatment outcome. PLoS ONE 7:e37375. 10.1371/journal.pone.0037375
    1. San Gabriel P., Zhou J., Tabibi S., Chen Y., Trauzzi M., Saiman L. (2004). Antimicrobial susceptibility and synergy studies of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis. Antimicrob. Agents Chemother. 48, 168–171. 10.1128/AAC.48.1.168-171.2004
    1. Sanchez M. B., Hernandez A., Martinez J. L. (2009). Stenotrophomonas maltophilia drug resistance. Future Microbiol. 4, 655–660. 10.2217/fmb.09.45
    1. Sánchez M. B., Hernández A., Rodríguez-Martínez J. M., Martínez-Martínez L., Martínez J. L. (2008). Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants. BMC Microbiol. 8:148. 10.1186/1471-2180-8-148
    1. Sanchez M. B., Martinez J. L. (2010). SmQnr contributes to intrinsic resistance to quinolones in Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 54, 580–581. 10.1128/AAC.00496-09
    1. Sánchez M. B., Martínez L. (2015). The efflux pump SmeDEF contributes to trimethoprim/sulfamethoxazole resistance in Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 59, 4347–4348. 10.1128/AAC.00714-15
    1. Shimizu K., Kikuchi K., Sasaki T., Takahashi N., Ohtsuka M., Ono Y., et al. . (2008). Smqnr, a new chromosome-carried quinolone resistance gene in Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 52, 3823–3825. 10.1128/AAC.00026-08
    1. Sood S., Vaid V. K., Bhartiya H. (2013). Meningitis due to Stenotrophomonas maltophilia after a Neurosurgical Procedure. J. Clin. Diagn. Res. 7, 1696–1697. 10.7860/jcdr/2013/5614.3248
    1. Stein G. E., Babinchak T. (2013). Tigecycline: an update. Diagn. Microbiol. Infect. Dis. 75, 331–336. 10.1016/j.diagmicrobio.2012.12.004
    1. Streit J. M., Jones R. N., Sader H. S., Fritsche T. R. (2004). Assessment of pathogen occurrences and resistance profiles among infected patients in the intensive care unit: report from the SENTRY Antimicrobial Surveillance Program (North America, 2001). Int. J. Antimicrob. Agents 24, 111–118. 10.1016/j.ijantimicag.2003.12.019
    1. Tada T., Miyoshi-Akiyama T., Dahal R. K., Mishra S. K., Shimada K., Ohara H., et al. . (2014). Identification of a novel 6′-N-aminoglycoside acetyltransferase, AAC(6′)-Iak, from a multidrug-resistant clinical isolate of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 58, 6324–6327. 10.1128/AAC.03354-14
    1. Talfan A., Mounsey O., Charman M., Townsend E., Avison M. B. (2013). Involvement of mutation in ampD I, mrcA, and at least one additional gene in beta-lactamase hyperproduction in Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 57, 5486–5491. 10.1128/AAC.01446-13
    1. Tan R., Liu J., Li M., Huang J., Sun J., Qu H. (2014). Epidemiology and antimicrobial resistance among commonly encountered bacteria associated with infections and colonization in intensive care units in a university affiliated hospital in Shanghai. J. Microbiol. Immunol. Infect. 47, 87–94. 10.1016/j.jmii.2012.11.006
    1. Tekçe Y. T., Erbay A., Cabadak H., Sen S. (2012). Tigecycline as a therapeutic option in Stenotrophomonas maltophilia infections. J. Chemother. 24, 150–154. 10.1179/1120009X12Z.00000000022
    1. Toleman M. A., Bennett P. M., Bennett D. M., Jones R. N., Walsh T. R. (2007). Global emergence of trimethoprim/sulfamethoxazole resistance in Stenotrophomonas maltophilia mediated by acquisition of sul genes. Emerg. Infect. Dis. 13, 559–565. 10.3201/eid1304.061378
    1. Valdezate S., Vindel A., Loza E., Baquero F., Cantón R. (2001). Antimicrobial susceptibilities of unique Stenotrophomonas maltophilia clinical strains. Antimicrob. Agents Chemother. 45, 1581–1584. 10.1128/AAC.45.5.1581-1584.2001
    1. Valdezate S., Vindel A., Saéz-Nieto J. A., Baquero F., Cantón R. (2005). Preservation of topoisomerase genetic sequences during in vivo and in vitro development of high-level resistance to ciprofloxacin in isogenic Stenotrophomonas maltophilia strains. J. Antimicrob. Chemother. 56, 220–223. 10.1093/jac/dki182
    1. Valenza G., Tappe D., Turnwald D., Frosch M., König C., Hebestreit H., et al. . (2008). Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. J. Cyst. Fibros. 7, 123–127. 10.1016/j.jcf.2007.06.006
    1. Vartivarian S., Anaissie E., Bodey G., Sprigg H., Rolston K. (1994). A changing pattern of susceptibility of Xanthomonas maltophilia to antimicrobial agents: implications for therapy. Antimicrob. Agents Chemother. 38, 624–627. 10.1128/AAC.38.3.624
    1. Vartivarian S. E., Anaissie E. J., Kiwan E. N., Papadakis K. A. (2000). The clinical spectrum of Stenotrophomonas (Xanthomonas) maltophilia respiratory infection. Semin. Respir. Crit. Care Med. 21, 349–355. 10.1055/s-2000-9859
    1. Vartivarian S. E., Papadakis K. A., Anaissie E. J. (1996). Stenotrophomonas (Xanthomonas) maltophilia urinary tract infection. A disease that is usually severe and complicated. Arch. Intern. Med. 156, 433–435. 10.1001/archinte.1996.00440040111012
    1. Victor M. A., Arpi M., Bruun B., Jønsson V., Hansen M. M. (1994). Xanthomonas maltophilia bacteremia in immunocompromised hematological patients. Scand. J. Infect. Dis. 26, 163–170. 10.3109/00365549409011780
    1. Visalli M. A., Jacobs M. R., Appelbaum P. C. (1998). Activities of three quinolones, alone and in combination with extended-spectrum cephalosporins or gentamicin, against Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 42, 2002–2005.
    1. Walkty A., Adam H., Baxter M., Denisuik A., Lagacé-Wiens P., Karlowsky J. A., et al. . (2014). In vitro activity of plazomicin against 5,015 gram-negative and gram-positive clinical isolates obtained from patients in canadian hospitals as part of the CANWARD study, 2011-2012. Antimicrob. Agents Chemother. 58, 2554–2563. 10.1128/AAC.02744-13
    1. Wang C. H., Lin J. C., Lin H. A., Chang F. Y., Wang N. C., Chiu S. K., et al. . (2014a). Comparisons between patients with trimethoprim-sulfamethoxazole-susceptible and trimethoprim-sulfamethoxazole-resistant Stenotrophomonas maltophilia monomicrobial bacteremia: A 10-year retrospectivestudy. J. Microbiol. Immunol. Infect. 10.1016/j.jmii.2014.06.005 [Epub ahead of print]
    1. Wang Y. L., Scipione M. R., Dubrovskaya Y., Papadopoulos J. (2014b). Monotherapy with fluoroquinolone or trimethoprim-sulfamethoxazole for treatment of Stenotrophomonas maltophilia infections. Antimicrob. Agents Chemother. 58, 176–182. 10.1128/AAC.01324-13
    1. Waters V. (2012). New treatments for emerging cystic fibrosis pathogens other than Pseudomonas. Curr. Pharm. Des. 18, 696–725. 10.2174/138161212799315939
    1. Wood G. C., Underwood E. L., Croce M. A., Swanson J. M., Fabian T. C. (2010). Treatment of recurrent Stenotrophomonas maltophilia ventilator-associated pneumonia with doxycycline and aerosolized colistin. Ann. Pharmacother. 44, 1665–1668. 10.1345/aph.1P217
    1. Wu H., Wang J. T., Shiau Y. R., Wang H. Y., Lauderdale T. L., Chang S. C., et al. . (2012). A multicenter surveillance of antimicrobial resistance on Stenotrophomonas maltophilia in Taiwan. J. Microbiol. Immunol. Infect. 45, 120–126. 10.1016/j.jmii.2011.09.028
    1. Wu K., Yau Y. C., Matukas L., Waters V. (2013). Biofilm compared to conventional antimicrobial susceptibility of Stenotrophomonas maltophilia Isolates from cystic fibrosis patients. Antimicrob. Agents Chemother. 57, 1546–1548. 10.1128/AAC.02215-12
    1. Wu Y., Shao Z. (2014). High-dosage tigecycline for Stenotrophomonas maltophilia bacteremia. Chin. Med. J. (Engl.) 127:3199. 10.3760/cma.j.issn.0366-6999.20140364
    1. Yang Q., Wang H., Chen M., Ni Y., Yu Y., Hu B., et al. . (2010). Surveillance of antimicrobial susceptibility of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in China: the 2002-2009 Study for Monitoring Antimicrobial Resistance Trends (SMART). Int. J. Antimicrob. Agents 36, 507–512. 10.1016/j.ijantimicag.2010.09.001
    1. Yang T. C., Huang Y. W., Hu R. M., Huang S. C., Lin Y. T. (2009). AmpDI is involved in expression of the chromosomal L1 and L2 beta-lactamases of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 53, 2902–2907. 10.1128/AAC.01513-08
    1. Yu V. L., Felegie T. P., Yee R. B., Pasculle A. W., Taylor F. H. (1980). Synergistic interaction in vitro with use of three antibiotics simultaneously against Pseudomonas maltophilia. J. Infect. Dis. 142, 602–607. 10.1093/infdis/142.4.602
    1. Zhanel G. G., Adam H. J., Baxter M. R., Fuller J., Nichol K. A., Denisuik A. J., et al. . (2013). Antimicrobial susceptibility of 22746 pathogens from Canadian hospitals: results of the CANWARD 2007-11 study. J. Antimicrob. Chemother. 68(Suppl. 1), i7–i22. 10.1093/jac/dkt022
    1. Zhanel G. G., Adam H. J., Low D. E., Blondeau J., Decorby M., Karlowsky J. A., et al. . (2011). Antimicrobial susceptibility of 15,644 pathogens from Canadian hospitals: results of the CANWARD 2007-2009 study. Diagn. Microbiol. Infect. Dis. 69, 291–306. 10.1016/j.diagmicrobio.2010.10.025
    1. Zhanel G. G., Decorby M., Adam H., Mulvey M. R., Mccracken M., Lagacé-Wiens P., et al. . (2010). Prevalence of antimicrobial-resistant pathogens in Canadian hospitals: results of the Canadian Ward Surveillance Study (CANWARD 2008). Antimicrob. Agents Chemother. 54, 4684–4693. 10.1128/AAC.00469-10
    1. Zhanel G. G., Decorby M., Nichol K. A., Wierzbowski A., Baudry P. J., Karlowsky J. A., et al. . (2008). Antimicrobial susceptibility of 3931 organisms isolated from intensive care units in Canada: Canadian National Intensive Care Unit Study, 2005/2006. Diagn. Microbiol. Infect. Dis. 62, 67–80. 10.1016/j.diagmicrobio.2008.04.012

Source: PubMed

3
Subscribe