Motor Evoked Potentials as Potential Biomarkers of Early Atypical Corticospinal Tract Development in Infants with Perinatal Stroke

Jesse L Kowalski, Samuel T Nemanich, Tanjila Nawshin, Mo Chen, Colleen Peyton, Elizabeth Zorn, Marie Hickey, Raghavendra Rao, Michael Georgieff, Kyle Rudser, Bernadette T Gillick, Jesse L Kowalski, Samuel T Nemanich, Tanjila Nawshin, Mo Chen, Colleen Peyton, Elizabeth Zorn, Marie Hickey, Raghavendra Rao, Michael Georgieff, Kyle Rudser, Bernadette T Gillick

Abstract

Diagnosis of cerebral palsy (CP) after perinatal stroke is often delayed beyond infancy, a period of rapid neuromotor development with heightened potential for rehabilitation. This study sought to assess whether the presence or absence of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) could be an early biomarker of atypical development within the first year of life. In 10 infants with perinatal stroke, motor outcome was assessed with a standardized movement assessment. Single-pulse TMS was utilized to assess presence of MEPs. Younger infants (3-6 months CA, n = 5, 4/5 (80%)) were more likely to present with an MEP from the more-affected hemisphere (MAH) compared to older infants (7-12 months CA, n = 5, 0/5, (0%)) (p = 0.048). Atypical movement was demonstrated in the majority of infants with an absent MEP from the MAH (5/6, 83%) compared to those with a present MEP (1/4, 25%) (p = 0.191). We found that age influences the ability to elicit an MEP from the MAH, and motor outcome may be related to MAH MEP absence. Assessment of MEPs in conjunction with current practice of neuroimaging and motor assessments could promote early detection and intervention in infants at risk of CP.

Keywords: cerebral palsy; infant; non-invasive brain stimulation; pediatrics; perinatal stroke; transcranial magnetic stimulation.

Conflict of interest statement

Colleen Peyton is a member of the Prechtl General Movements Trust Speaker’s Bureau. All other authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Example of transcranial magnetic stimulation assessment of motor evoked potentials (MEPs) from the more-affected hemisphere (MAH). Presence of MEPs (+MEP) was defined by presence of at least one MEP in either the contralateral (black line), ipsilateral (blue line), or both wrist flexors. MEP absence (−MEP) was defined by lack of MEP presence in the wrist flexor of either arm.
Figure 2
Figure 2
Surface electromyography (EMG) recording from the contralateral (black line) and ipsilateral (blue line) wrist flexors in a 12-month-old infant with unilateral perinatal stroke. (A) Motor evoked potential (MEP) in the contralateral wrist flexor elicited by transcranial magnetic stimulation (TMS) of the less-affected hemisphere. (B) EMG signal displaying absence of MEP in either wrist flexor after TMS of the more-affected hemisphere. Both traces A and B were recorded at a TMS intensity of 85% of maximum stimulator output.

References

    1. Lehman L.L., Rivkin M.J. Perinatal Arterial Ischemic Stroke: Presentation, Risk Factors, Evaluation, and Outcome. Pediatr. Neurol. 2014;51:760–768. doi: 10.1016/j.pediatrneurol.2014.07.031.
    1. Herskind A., Greisen G., Nielsen J.B. Early identification and intervention in cerebral palsy. Dev. Med. Child Neurol. 2015;57:29–36. doi: 10.1111/dmcn.12531.
    1. Raju T.N., Nelson K.B., Ferriero D., Lynch J.K. Ischemic perinatal stroke: Summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke. Pediatrics. 2007;120:609–616. doi: 10.1542/peds.2007-0336.
    1. U.S. Department of Health and Human Services C.D.C. Data & Statistics for Cerebral Palsy. [(accessed on 8 June 2019)]; Available online: .
    1. Baumann R.J. Capute and Accardo’s Neurodevelopmental Disabilities in Infancy and Childhood, 3rd ed.; Volume I: Neurodevelopmental Diagnosis and Treatment; Volume II: The Spectrum of Neurodevelopmental Disabilities (Book Review) Pediatr. Neurol. 2008;39:71. doi: 10.1016/j.pediatrneurol.2008.03.015.
    1. Eyre J.A., Smith M., Dabydeen L., Clowry G.J., Petacchi E., Battini R., Guzzetta A., Cioni G. Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system? Ann. Neurol. 2007;62:493–503. doi: 10.1002/ana.21108.
    1. Holmefur M., Krumlinde-Sundholm L., Bergstrom J., Eliasson A.C. Longitudinal development of hand function in children with unilateral cerebral palsy. Dev. Med. Child Neurol. 2010;52:352–357. doi: 10.1111/j.1469-8749.2009.03364.x.
    1. Hubermann L., Boychuck Z., Shevell M., Majnemer A. Age at Referral of Children for Initial Diagnosis of Cerebral Palsy and Rehabilitation: Current Practices. J. Child Neurol. 2016;31:364–369. doi: 10.1177/0883073815596610.
    1. Golomb M.R., Garg B.P., Saha C., Azzouz F., Williams L.S. Cerebral palsy after perinatal arterial ischemic stroke. J. Child Neurol. 2008;23:279–286. doi: 10.1177/0883073807309246.
    1. Cusick S.E., Georgieff M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days”. J. Pediatr. 2016;175:16–21. doi: 10.1016/j.jpeds.2016.05.013.
    1. Georgieff M.K., Brunette K.E., Tran P.V. Early life nutrition and neural plasticity. Dev. Psychopathol. 2015;27:411–423. doi: 10.1017/S0954579415000061.
    1. Wachs T.D., Georgieff M., Cusick S., McEwen B.S. Issues in the timing of integrated early interventions: Contributions from nutrition, neuroscience, and psychological research. Ann. N. Y. Acad. Sci. 2014;13081:89–106. doi: 10.1111/nyas.12314.
    1. Rossini P.M., Burke D., Chen R., Cohen L.G., Daskalakis Z., Di Iorio R., Di Lazzaro V., Ferreri F., Fitzgerald P.B., George M.S., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015;126:1071–1107. doi: 10.1016/j.clinph.2015.02.001.
    1. van der Aa N.E., Verhage C.H., Groenendaal F., Vermeulen R.J., de Bode S., van Nieuwenhuizen O., de Vries L.S. Neonatal neuroimaging predicts recruitment of contralesional corticospinal tracts following perinatal brain injury. Dev. Med. Child Neurol. 2013;55:707–712. doi: 10.1111/dmcn.12160.
    1. Mackey A., Stinear C., Stott S., Byblow W.D. Upper limb function and cortical organization in youth with unilateral cerebral palsy. Front. Neurol. 2014;5:117. doi: 10.3389/fneur.2014.00117.
    1. Smorenburg A.R., Gordon A.M., Kuo H.C., Ferre C.L., Brandao M., Bleyenheuft Y., Carmel J.B., Friel K.M. Does Corticospinal Tract Connectivity Influence the Response to Intensive Bimanual Therapy in Children With Unilateral Cerebral Palsy? Neurorehabilit. Neural Repair. 2017;31:250–260. doi: 10.1177/1545968316675427.
    1. Baranello G., Rossi Sebastiano D., Pagliano E., Visani E., Ciano C., Fumarola A., Arnoldi M.T., Corlatti A., Foscan M., Marchi A., et al. Hand function assessment in the first years of life in unilateral cerebral palsy: Correlation with neuroimaging and cortico-spinal reorganization. Eur. J. Paediatr. Neurol. 2016;20:114–124. doi: 10.1016/j.ejpn.2015.09.005.
    1. Novak I., Morgan C., Adde L., Blackman J., Boyd R.N., Brunstrom-Hernandez J., Cioni G., Damiano D., Darrah J., Eliasson A.C., et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatr. 2017;171:897–907. doi: 10.1001/jamapediatrics.2017.1689.
    1. Springer A., Holzinger S.D., Andersen J., Buckley D., Fehlings D., Kirton A., Koclas L., Pigeon N., Van Rensburg E., Wood E., et al. Profile of children with cerebral palsy spectrum disorder and a normal MRI study. Neurology. 2019 doi: 10.1212/WNL.0000000000007726.
    1. Engle W.A. Age terminology during the perinatal period. Pediatrics. 2004;114:1362–1364. doi: 10.1542/peds.2004-1915.
    1. Blencowe H., Cousens S., Oestergaard M.Z., Chou D., Moller A.B., Narwal R., Adler A., Vera Garcia C., Rohde S., Say L., et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet. 2012;379:2162–2172. doi: 10.1016/S0140-6736(12)60820-4.
    1. Chen C.Y., Georgieff M., Elison J., Chen M., Stinear J., Mueller B., Rao R., Rudser K., Gillick B. Understanding Brain Reorganization in Infants With Perinatal Stroke Through Neuroexcitability and Neuroimaging. Pediatr. Phys. 2017;29:173–178. doi: 10.1097/PEP.0000000000000365.
    1. Howell B.R., Styner M.A., Gao W., Yap P.T., Wang L., Baluyot K., Yacoub E., Chen G., Potts T., Salzwedel A., et al. The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development. Neuroimage. 2019;185:891–905. doi: 10.1016/j.neuroimage.2018.03.049.
    1. Nemanich S.T., Chen C.Y., Chen M., Zorn E., Mueller B., Peyton C., Elison J.T., Stinear J., Rao R., Georgieff M., et al. Safety and Feasibility of Transcranial Magnetic Stimulation as an Exploratory Assessment of Corticospinal Connectivity in Infants After Perinatal Brain Injury: An Observational Study. Phys. Ther. 2019;99:689–700. doi: 10.1093/ptj/pzz028.
    1. Fleming S., Thompson M., Stevens R., Heneghan C., Pluddemann A., Maconochie I., Tarassenko L., Mant D. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: A systematic review of observational studies. Lancet. 2011;377:1011–1018. doi: 10.1016/S0140-6736(10)62226-X.
    1. van Lieshout P., Candundo H., Martino R., Shin S., Barakat-Haddad C. Onset factors in cerebral palsy: A systematic review. Neurotoxicology. 2017;61:47–53. doi: 10.1016/j.neuro.2016.03.021.
    1. Colon A.J., Vredeveld J.W., Blaauw G. Motor evoked potentials after transcranial magnetic stimulation support hypothesis of coexisting central mechanism in obstetric brachial palsy. J. Clin. Neurophysiol. 2007;24:48–51. doi: 10.1097/01.wnp.0000237075.85689.33.
    1. Narayana S., Mudigoudar B., Babajani-Feremi A., Choudhri A.F., Boop F.A. Successful motor mapping with transcranial magnetic stimulation in an infant: A case report. Neurology. 2017;89:2115–2117. doi: 10.1212/WNL.0000000000004650.
    1. Thompson R.A., Nelson C.A. Developmental science and the media. Early brain development. Am. Psychol. 2001;56:5–15. doi: 10.1037/0003-066X.56.1.5.
    1. Chaudhury S., Sharma V., Kumar V., Nag T.C., Wadhwa S. Activity-dependent synaptic plasticity modulates the critical phase of brain development. Brain Dev. 2016;38:355–363. doi: 10.1016/j.braindev.2015.10.008.
    1. Hensch T.K. Critical period regulation. Annu. Rev. Neurosci. 2004;27:549–579. doi: 10.1146/annurev.neuro.27.070203.144327.
    1. Buffelli M., Burgess R.W., Feng G., Lobe C.G., Lichtman J.W., Sanes J.R. Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition. Nature. 2003;424:430–434. doi: 10.1038/nature01844.
    1. Lichtman J.W., Colman H. Synapse elimination and indelible memory. Neuron. 2000;25:269–278. doi: 10.1016/S0896-6273(00)80893-4.
    1. Sanes J.R., Lichtman J.W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 1999;22:389–442. doi: 10.1146/annurev.neuro.22.1.389.
    1. Huntley G.W. Differential effects of abnormal tactile experience on shaping representation patterns in developing and adult motor cortex. J. Neurosci. 1997;17:9220–9232. doi: 10.1523/JNEUROSCI.17-23-09220.1997.
    1. Kim S.Y., Hsu J.E., Husbands L.C., Kleim J.A., Jones T.A. Coordinated Plasticity of Synapses and Astrocytes Underlies Practice-Driven Functional Vicariation in Peri-Infarct Motor Cortex. J. Neurosci. 2018;38:93–107. doi: 10.1523/JNEUROSCI.1295-17.2017.
    1. Yasumoto S., Mitsudome A. F-waves in neonates: Increased spinal anterior horn motor neuron excitability. Brain Dev. 2004;26:8–11. doi: 10.1016/S0387-7604(03)00070-6.
    1. Narayana S., Rezaie R., McAfee S.S., Choudhri A.F., Babajani-Feremi A., Fulton S., Boop F.A., Wheless J.W., Papanicolaou A.C. Assessing motor function in young children with transcranial magnetic stimulation. Pediatr. Neurol. 2015;52:94–103. doi: 10.1016/j.pediatrneurol.2014.08.031.
    1. Harmon H.M., Taylor H.G., Minich N., Wilson-Costello D., Hack M. Early school outcomes for extremely preterm infants with transient neurological abnormalities. Dev. Med. Child Neurol. 2015;57:865–871. doi: 10.1111/dmcn.12811.

Source: PubMed

3
Subscribe