Cortico-Striatal-Thalamic Loop Circuits of the Salience Network: A Central Pathway in Psychiatric Disease and Treatment

Sarah K Peters, Katharine Dunlop, Jonathan Downar, Sarah K Peters, Katharine Dunlop, Jonathan Downar

Abstract

The salience network (SN) plays a central role in cognitive control by integrating sensory input to guide attention, attend to motivationally salient stimuli and recruit appropriate functional brain-behavior networks to modulate behavior. Mounting evidence suggests that disturbances in SN function underlie abnormalities in cognitive control and may be a common etiology underlying many psychiatric disorders. Such functional and anatomical abnormalities have been recently apparent in studies and meta-analyses of psychiatric illness using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). Of particular importance, abnormal structure and function in major cortical nodes of the SN, the dorsal anterior cingulate cortex (dACC) and anterior insula (AI), have been observed as a common neurobiological substrate across a broad spectrum of psychiatric disorders. In addition to cortical nodes of the SN, the network's associated subcortical structures, including the dorsal striatum, mediodorsal thalamus and dopaminergic brainstem nuclei, comprise a discrete regulatory loop circuit. The SN's cortico-striato-thalamo-cortical loop increasingly appears to be central to mechanisms of cognitive control, as well as to a broad spectrum of psychiatric illnesses and their available treatments. Functional imbalances within the SN loop appear to impair cognitive control, and specifically may impair self-regulation of cognition, behavior and emotion, thereby leading to symptoms of psychiatric illness. Furthermore, treating such psychiatric illnesses using invasive or non-invasive brain stimulation techniques appears to modulate SN cortical-subcortical loop integrity, and these effects may be central to the therapeutic mechanisms of brain stimulation treatments in many psychiatric illnesses. Here, we review clinical and experimental evidence for abnormalities in SN cortico-striatal-thalamic loop circuits in major depression, substance use disorders (SUD), anxiety disorders, schizophrenia and eating disorders (ED). We also review emergent therapeutic evidence that novel invasive and non-invasive brain stimulation treatments may exert therapeutic effects by normalizing abnormalities in the SN loop, thereby restoring the capacity for cognitive control. Finally, we consider a series of promising directions for future investigations on the role of SN cortico-striatal-thalamic loop circuits in the pathophysiology and treatment of psychiatric disorders.

Keywords: anxiety disorders; brain stimulation; corticostriatal; depression; repetitive transcranial magnetic stimulation; salience network; substance use disorders.

Figures

Figure 1
Figure 1
Meta-analytic co-activation of salience network (SN) nodes for response selection and inhibition. Neurosynth meta-analytic results following key word searches for “response inhibition”, “response selection” and “SN”. Considerable overlap exists in the dorsal anterior cingulate cortex (dACC) region (A) and lateral parietal cortex (B).
Figure 2
Figure 2
Cortical and subcortical nodes of the SN from meta-analyses of functional magnetic resonance imaging (fMRI) studies of task-based activation during cognitive control. Subcortical components of SN processing are apparent across a variety of executive functioning tasks, including Stroop task, set shifting task, Go-No Go task and Flanker interference task, as shown through meta-analytic functional imaging data.
Figure 3
Figure 3
SN cortico-striatal-thalamo-cortical circuit engagement during therapeutic brain stimulation. (A) In healthy controls, 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (dlPFC) results in increased dopamine transmission in the ipsilateral caudate nucleus and thalamus. (B) In depressed individuals, clinical improvement following 10 Hz dmPFC-rTMS was correlated with increased connectivity between the dACC and the thalamus. (C,D) In obsessive-compulsive disorder (OCD) patients, clinical improvement following 10 Hz dmPFC-rTMS was correlated with decreased functional connectivity between the dACC and the caudate nucleus, thalamus, putamen and midbrain. Adapted from (A) Strafella et al. (2001); (B) Salomons et al. (2014); (C,D) Dunlop et al. (2016).

References

    1. Abraham A., Beudt S., Ott D. V. M., Yves von Cramon D. (2012). Creative cognition and the brain: dissociations between frontal, parietal-temporal and basal ganglia groups. Brain Res. 1482, 55–70. 10.1016/j.brainres.2012.09.007
    1. Admon R., Nickerson L. D., Dillon D. G., Holmes A. J., Bogdan R., Kumar P., et al. . (2015). Dissociable cortico-striatal connectivity abnormalities in major depression in response to monetary gains and penalties. Psychol. Med. 45, 121–131. 10.1017/S0033291714001123
    1. Alexander G. E., DeLong M. R., Strick P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381. 10.1146/annurev.neuro.9.1.357
    1. American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders. 4th Edn. Washington, DC: American Psychiatric Association.
    1. American Psychiatric Association (2013). DSM-V, Diagnostic and Statistical Manual of Mental Disorders. 5th Edn. Arlington, VA: American Psychiatric Publishing Inc.
    1. Amianto F., D’Agata F., Lavagnino L., Caroppo P., Abbate-Daga G., Righi D., et al. . (2013). Intrinsic connectivity networks within cerebellum and beyond in eating disorders. Cerebellum 12, 623–631. 10.1007/s12311-013-0471-1
    1. Anders S., Lotze M., Erb M., Grodd W., Birbaumer N. (2004). Brain activity underlying emotional valence and arousal: a response-related fMRI study. Hum. Brain Mapp. 23, 200–209. 10.1002/hbm.20048
    1. Anticevic A., Hu S., Zhang S., Savic A., Billingslea E., Wasylink S., et al. . (2014). Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol. Psychiatry 75, 595–605. 10.1016/j.biopsych.2013.10.021
    1. Atmaca M., Mermi O., Yildirim H., Gurok M. G. (2016). Orbito-frontal cortex and thalamus volumes in obsessive-compulsive disorder before and after pharmacotherapy. Brain Imaging Behav. 10, 669–674. 10.1007/s11682-015-9426-0
    1. Averbeck B. B., Lehman J., Jacobson M., Haber S. N. (2014). Estimates of projection overlap and zones of convergence within frontal-striatal circuits. J. Neurosci. 34, 9497–9505. 10.1523/JNEUROSCI.5806-12.2014
    1. Bailer U. F., Frank G. K., Price J. C., Meltzer C. C., Becker C., Mathis C. A., et al. . (2013). Interaction between serotonin transporter and dopamine D2/D3 receptor radioligand measures is associated with harm avoidant symptoms in anorexia and bulimia nervosa. Psychiatry Res. 211, 160–168. 10.1016/j.pscychresns.2012.06.010
    1. Bailer U. F., Price J. C., Meltzer C. C., Wagner A., Mathis C. A., Gamst A., et al. . (2016). Dopaminergic activity and altered reward modulation in anorexia nervosa-insight from multimodal imaging. Int. J. Eat. Disord. [Epub ahead of print]. 10.1002/eat.22638
    1. Bakker N., Shahab S., Giacobbe P., Blumberger D. M., Daskalakis Z. J., Kennedy S. H., et al. . (2015). RTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness and outcome predictors for 10 Hz versus intermittent theta-burst stimulation. Brain Stimul. 8, 208–215. 10.1016/j.brs.2014.11.002
    1. Benazzi F. (2006). Various forms of depression. Dialogues Clin. Neurosci. 8, 151–161.
    1. Berlim M. T., Neufeld N. H., Van den Eynde F. (2013a). Repetitive transcranial magnetic stimulation (rTMS) for obsessive-compulsive disorder (OCD): an exploratory meta-analysis of randomized and sham-controlled trials. J. Psychiatr. Res. 47, 999–1006. 10.1016/j.jpsychires.2013.03.022
    1. Berlim M. T., Van den Eynde F., Jeff Daskalakis Z. (2013b). Clinically meaningful efficacy and acceptability of low-frequency repetitive transcranial magnetic stimulation (rTMS) for treating primary major depression: a meta-analysis of randomized, double-blind and sham-controlled trials. Neuropsychopharmacology 38, 543–551. 10.1038/npp.2012.237
    1. Berlim M. T., van den Eynde F., Tovar-Perdomo S., Daskalakis Z. J. (2013c). Response, remission and drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham- controlled trials. Psychol. Med. 44, 225–239. 10.1017/S0033291713000512
    1. Berlim M. T., Van Den Eynde F. (2014). Repetitive transcranial magnetic stimulation over the dorsolateral prefrontal cortex for treating posttraumatic stress disorder: an exploratory meta-analysis of randomized, double-blind and sham-controlled trials. Can. J. Psychiatry 59, 487–496.
    1. Berner L. A., Marsh R. (2014). Frontostriatal circuits and the development of bulimia nervosa. Front. Behav. Neurosci. 8:395. 10.3389/fnbeh.2014.00395
    1. Bernstein G. A., Mueller B. A., Schreiner M. W., Campbell S. M., Regan E. K., Nelson P. M., et al. . (2016). Abnormal striatal resting-state functional connectivity in adolescents with obsessive–compulsive disorder. Psychiatry Res. 247, 49–56. 10.1016/j.pscychresns.2015.11.002
    1. Berridge K. C. (1996). Food reward: brain substrates of wanting and liking. Neurosci. Biobehav. Rev. 20, 1–25. 10.1016/0149-7634(95)00033-b
    1. Bewernick B. H., Hurlemann R., Matusch A., Kayser S., Grubert C., Hadrysiewicz B., et al. . (2010). Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol. Psychiatry 67, 110–116. 10.1016/j.biopsych.2009.09.013
    1. Biezonski D., Cha J., Steinglass J., Posner J. (2015). Evidence for thalamocortical circuit abnormalities and associated cognitive dysfunctions in underweight individuals with anorexia nervosa. Neuropsychopharmacology 41, 1560–1568. 10.1038/npp.2015.314
    1. Bischoff-Grethe A., McCurdy D., Grenesko-Stevens E., Irvine L. E., Wagner A., Yau W. Y., et al. . (2013). Altered brain response to reward and punishment in adolescents with Anorexia nervosa. Psychiatry Res. 214, 331–340. 10.1016/j.pscychresns.2013.07.004
    1. Biswal B., Yetkin F. Z., Haughton V. M., Hyde J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541. 10.1002/mrm.1910340409
    1. Blumberger D. M., Hsu J. H., Daskalakis Z. J. (2015). A review of brain stimulation treatments for late-life depression. Curr. Treat. Options Psychiatry 2, 413–421. 10.1007/s40501-015-0059-0
    1. Bora E., Harrison B. J., Davey C. G., Yücel M., Pantelis C. (2012). Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder. Psychol. Med. 42, 671–681. 10.1017/s0033291711001668
    1. Botvinick M. M., Cohen J. D., Carter C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539–546. 10.1016/j.tics.2004.10.003
    1. Bourne S. K., Eckhardt C. A., Sheth S. A., Eskandar E. N. (2012). Mechanisms of deep brain stimulation for obsessive compulsive disorder: effects upon cells and circuits. Front. Integr. Neurosci. 6:29. 10.3389/fnint.2012.00029
    1. Bressler S. L., Menon V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290. 10.1016/j.tics.2010.04.004
    1. Broft A., Slifstein M., Osborne J., Kothari P., Morim S., Shingleton R., et al. . (2015). Striatal dopamine type 2 receptor availability in anorexia nervosa. Psychiatry Res. 233, 380–387. 10.1016/j.pscychresns.2015.06.013
    1. Brooks S. J., O’Daly O. G., Uher R., Friederich H. C., Giampietro V., Brammer M., et al. . (2011). Differential neural responses to food images in women with bulimia versus anorexia nervosa. PLoS One 6:e22259. 10.1371/journal.pone.0022259
    1. Brunoni A. R., Moffa A. H., Fregni F., Palm U., Padberg F., Blumberger D. M., et al. . (2016). Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient data. Br. J. Psychiatry 208, 522–531. 10.1192/bjp.bp.115.164715
    1. Chantiluke K., Halari R., Simic M., Pariante C. M., Papadopoulos A., Giampietro V., et al. . (2012). Fronto-striato-cerebellar dysregulation in adolescents with depression during motivated attention. Biol. Psychiatry 71, 59–67. 10.1016/j.biopsych.2011.09.005
    1. Chen Q., Chen X., He X., Wang L., Wang K., Qiu B. (2016). Aberrant structural and functional connectivity in the salience network and central executive network circuit in schizophrenia. Neurosci. Lett. 627, 178–184. 10.1016/j.neulet.2016.05.035
    1. Chen X. L., Xiong Y. Y., Xu G. L., Liu X. F. (2013). Deep brain stimulation. Interv. Neurol. 1, 200–212. 10.1159/000353121
    1. Cho S. S., Ko J. H., Pellecchia G., Van Eimeren T., Cilia R., Strafella A. P. (2010). Continuous theta burst stimulation of right dorsolateral prefrontal cortex induces changes in impulsivity level. Brain Stimul. 3, 170–176. 10.1016/j.brs.2009.10.002
    1. Cho S. S., Koshimori Y., Aminian K., Obeso I., Rusjan P., Lang A. E., et al. . (2015). Investing in the future: stimulation of the medial prefrontal cortex reduces discounting of delayed rewards. Neuropsychopharmacology 40, 546–553. 10.1038/npp.2014.211
    1. Choi E. Y., Tanimura Y., Vage P. R., Yates E. H., Haber S. N. (2016). Convergence of prefrontal and parietal anatomical projections in a connectional hub in the striatum. Neuroimage [Epub ahead of print]. 10.1016/j.neuroimage.2016.09.037
    1. Choi E. Y., Yeo B. T. T., Buckner R. L. (2012). The organization of the human striatum estimated by intrinsic functional connectivity. J. Neurophysiol. 108, 2242–2263. 10.1152/jn.00270.2012
    1. Cisler J. M., Steele J. S., Lenow J. K., Smitherman S., Everett B., Messias E., et al. . (2014). Functional reorganization of neural networks during repeated exposure to the traumatic memory in posttraumatic stress disorder: an exploratory fMRI study. J. Psychiatr. Res. 48, 47–55. 10.1016/j.jpsychires.2013.09.013
    1. Corbetta M., Kincade J. M., Ollinger J. M., McAvoy M. P., Shulman G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3, 292–297. 10.1038/73009
    1. Coutinho J., Ramos A. F., Maia L., Castro L., Conceição E., Geliebter A., et al. . (2015). Volumetric alterations in the nucleus accumbens and caudate nucleus in bulimia nervosa: a structural magnetic resonance imaging study. Int. J. Eat. Disord. 48, 206–214. 10.1002/eat.22273
    1. Cowdrey F. A., Park R. J., Harmer C. J., McCabe C. (2011). Increased neural processing of rewarding and aversive food stimuli in recovered anorexia nervosa. Biol. Psychiatry 70, 736–743. 10.1016/j.biopsych.2011.05.028
    1. Craig A. D. (2003). Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13, 500–505. 10.1016/s0959-4388(03)00090-4
    1. Craig A. D. (2009). How do you feel – now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70. 10.1038/nrn2555
    1. Dager A. D., Anderson B. M., Rosen R., Khadka S., Sawyer B., Jiantonio-Kelly R. E., et al. . (2014). Functional magnetic resonance imaging (fMRI) response to alcohol pictures predicts subsequent transition to heavy drinking in college students. Addiction 109, 585–595. 10.1111/add.12437
    1. Davis B., Hasson U. (2016). Predictability of what or where reduces brain activity, but a bottleneck occurs when both are predictable. Neuroimage [Epub ahead of print]. 10.1016/j.neuroimage.2016.06.001
    1. Decker J. H., Figner B., Steinglass J. E. (2015). On weight and waiting: delay discounting in anorexia nervosa pretreatment and posttreatment. Biol. Psychiatry 78, 606–614. 10.1016/j.biopsych.2014.12.016
    1. Delaveau P., Jabourian M., Lemogne C., Guionnet S., Bergouignan L., Fossati P. (2011). Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J. Affect. Disord. 130, 66–74. 10.1016/j.jad.2010.09.032
    1. Delevich K., Tucciarone J., Huang Z. J., Li B. (2015). The mediodorsal thalamus drives feedforward inhibition in the anterior cingulate cortex via parvalbumin interneurons. J. Neurosci. 35, 5743–5753. 10.1523/JNEUROSCI.4565-14.2015
    1. Di Filippo M., Picconi B., Tantucci M., Ghiglieri V., Bagetta V., Sgobio C., et al. . (2009). Short-term and long-term plasticity at corticostriatal synapses: implications for learning and memory. Behav. Brain Res. 199, 108–118. 10.1016/j.bbr.2008.09.025
    1. Dosenbach N. U., Fair D. A., Cohen A. L., Schlaggar B. L., Petersen S. E. (2008). A dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105. 10.1016/j.tics.2008.01.001
    1. Dougherty D. D., Baer L., Cosgrove G. R., Cassem E. H., Price B. H., Nierenberg A. A., et al. . (2002). Prospective long-term follow-up of 44 patients who received cingulotomy for treatment-refractory obsessive-compulsive disorder. Am. J. Psychiatry 159, 269–275. 10.1176/appi.ajp.159.2.269
    1. Downar J., Blumberger D. M., Daskalakis Z. J. (2016). The neural crossroads of psychiatric illness: an emerging target for brain stimulation. Trends Cogn. Sci. 20, 107–120. 10.1016/j.tics.2015.10.007
    1. Downar J., Crawley A. P., Mikulis D. J., Davis K. D. (2000). A multimodal cortical network for the detection of changes in the sensory environment. Nat. Neurosci. 3, 277–283. 10.1038/72991
    1. Downar J., Crawley A. P., Mikulis D. J., Davis K. D. (2001). The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage 14, 1256–1267. 10.1006/nimg.2001.0946
    1. Downar J., Crawley A. P., Mikulis D. J., Davis K. D. (2002). A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J. Neurophysiol. 87, 615–620.
    1. Duarte J. M., Lanz B., Gruetter R. (2011). Compartmentalized cerebral metabolism of [1,6–13C]glucose determined by in vivo 13C NMR spectroscopy at 14.1 T. Front. Neuroenergetics 3:3. 10.3389/fnene.2011.00003
    1. Dunlop K., Hanlon C. A., Downar J. (2015a). Non-invasive brain stimulation treatments for addiction and major depression. Ann. N Y Acad. Sci. [Epub ahead of print]. 10.1111/nyas.12985
    1. Dunlop K., Woodside B., Lam E., Olmsted M., Colton P., Giacobbe P., et al. . (2015b). Increases in frontostriatal connectivity are associated with response to dorsomedial repetitive transcranial magnetic stimulation in refractory binge/purge behaviors. Neuroimage Clin. 8, 611–618. 10.1016/j.nicl.2015.06.008
    1. Dunlop K., Woodside B., Olmsted M., Colton P., Giacobbe P., Downar J. (2016). Reductions in cortico-striatal hyperconnectivity accompany successful treatment of obsessive-compulsive disorder with dorsomedial prefrontal rTMS. Neuropsychopharmacology 41, 1395–1403. 10.1038/npp.2015.292
    1. Dutta A., McKie S., Deakin J. F. (2014). Resting state networks in major depressive disorder. Psychiatry Res. 224, 139–151. 10.1016/j.pscychresns.2014.10.003
    1. Ehrlich S., Lord A. R., Geisler D., Borchardt V., Boehm I., Seidel M., et al. . (2015). Reduced functional connectivity in the thalamo-insular subnetwork in patients with acute anorexia nervosa. Hum. Brain Mapp. 36, 1772–1781. 10.1002/hbm.22736
    1. Eklund A., Nichols T. E., Knutsson H. (2016). Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. U S A 113, 7900–7905. 10.1073/pnas.1602413113
    1. Ersche K. D., Barnes A., Jones P. S., Morein-Zamir S., Robbins T. W., Bullmore E. T. (2011). Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 134, 2013–2024. 10.1093/brain/awr138
    1. Esslinger C., Schüler N., Sauer C., Gass D., Mier D., Braun U., et al. . (2014). Induction and quantification of prefrontal cortical network plasticity using 5 Hz rTMS and fMRI. Hum. Brain Mapp. 35, 140–151. 10.1002/hbm.22165
    1. Falconer E., Allen A., Felmingham K. L., Williams L. M., Bryant R. A. (2013). Inhibitory neural activity predicts response to cognitive-behavioral therapy for posttraumatic stress disorder. J. Clin. Psychiatry 74, 895–901. 10.4088/JCP.12m08020
    1. Fasano A., Lozano A. M. (2015). Deep brain stimulation for movement disorders: 2015 and beyond. Curr. Opin. Neurol. 28, 423–436. 10.1097/WCO.0000000000000226
    1. Fecteau S., Pascual-Leone A., Zald D. H., Liguori P., Théoret H., Boggio P. S., et al. . (2007). Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J. Neurosci. 27, 6212–6218. 10.1523/JNEUROSCI.0314-07.2007
    1. Feinstein J. S., Stein M. B., Paulus M. P. (2006). Anterior insula reactivity during certain decisions is associated with neuroticism. Soc. Cogn. Affect. Neurosci. 1, 136–142. 10.1093/scan/nsl016
    1. Feng D., Yuan K., Li Y., Cai C., Yin J., Bi Y., et al. . (2016). Intra-regional and inter-regional abnormalities and cognitive control deficits in young adult smokers. Brain Imaging Behav. 10, 506–516. 10.1007/s11682-015-9427-z
    1. Ferrari A. J., Charlson F. J., Norman R. E., Patten S. B., Freedman G., Murray C. J. L., et al. . (2013). Burden of depressive disorders by country, sex, age and year: findings from the global burden of disease study 2010. PLoS Med. 10:e1001547. 10.1371/journal.pmed.1001547
    1. Figee M., Luigjes J., Smolders R., Valencia-Alfonso C. E., van Wingen G., de Kwaasteniet B., et al. . (2014). Deep brain stimulation restores frontostriatal network activity in obsessive- compulsive disorder. Nat. Neurosci. 16, 386–387. 10.1038/nn.3344
    1. Figner B., Knoch D., Johnson E. J., Krosch A. R., Lisanby S. H., Fehr E., et al. . (2010). Lateral prefrontal cortex and self-control in intertemporal choice. Nat. Neurosci. 13, 538–539. 10.1038/nn.2516
    1. Fitzgerald P. B., Laird A. R., Maller J., Daskalakis Z. J. (2008). A meta-analytic study of changes in brain activation in depression. Hum. Brain Mapp. 29, 683–695. 10.1002/hbm.20426
    1. Foerde K., Poldrack R. A., Khan B. J., Sabb F. W., Bookheimer S. Y., Bilder R. M., et al. . (2008). Selective corticostriatal dysfunction in schizophrenia: examination of motor and cognitive skill learning. Neuropsychology 22, 100–109. 10.1037/0894-4105.22.1.100
    1. Forbes E. E., Rodriguez E. E., Musselman S., Narendran R. (2014). Prefrontal response and frontostriatal functional connectivity to monetary reward in abstinent alcohol-dependent young adults. PLoS One 9:e94640. 10.1371/journal.pone.0094640
    1. Fox M. D., Buckner R. L., White M. P., Greicius M. D., Pascual-Leone A. (2012). Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 72, 595–603. 10.1016/j.biopsych.2012.04.028
    1. Frank G. K., Reynolds J. R., Shott M. E., Jappe L., Yang T. T., Tregellas J. R., et al. . (2012). Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology 37, 2031–2046. 10.1038/npp.2012.51
    1. Frank G. K., Shott M. E., Hagman J. O., Mittal V. A. (2013). Alterations in brain structures related to taste reward circuitry in ill and recovered anorexia nervosa and in bulimia nervosa. Am. J. Psychiatry 170, 1152–1160. 10.1176/appi.ajp.2013.12101294
    1. Frank G. K., Shott M. E., Riederer J., Pryor T. L. (2016). Altered structural and effective connectivity in anorexia and bulimia nervosa in circuits that regulate energy and reward homeostasis. Transl. Psychiatry 6:e932. 10.1038/tp.2016.199
    1. Fregni F., Boggio P. S., Nitsche M., Bermpohl F., Antal A., Feredoes E., et al. . (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 166, 23–30. 10.1007/s00221-005-2334-6
    1. Friederich H., Walther S., Bendszus M., Biller A., Thomann P., Zeigermann S., et al. . (2012). NeuroImage Grey matter abnormalities within cortico-limbic-striatal circuits in acute and weight-restored anorexia nervosa patients. Neuroimage 59, 1106–1113. 10.1016/j.neuroimage.2011.09.042
    1. Frieling H., Fischer J., Wilhelm J., Engelhorn T., Bleich S., Hillemacher T., et al. . (2012). Microstructural abnormalities of the posterior thalamic radiation and the mediodorsal thalamic nuclei in females with anorexia nervosa–a voxel based diffusion tensor imaging (DTI) study. J. Psychiatr. Res. 46, 1237–1242. 10.1016/j.jpsychires.2012.06.005
    1. Fu C. H., Steiner H., Costafreda S. G. (2013). Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol. Dis. 52, 75–83. 10.1016/j.nbd.2012.05.008
    1. Furman D. J., Hamilton J. P., Gotlib I. H. (2011). Frontostriatal functional connectivity in major depressive disorder. Biol. Mood Anxiety Disord. 1:11. 10.1186/2045-5380-1-11
    1. Gaynes B. N., Lloyd S. W., Lux L., Gartlehner G., Hansen R. A., Brode S., et al. . (2014). Repetitive transcranial magnetic stimulation for treatment-resistant depression: a systematic review and meta-analysis. J. Clin. Psychiatry 75, 477–489; quiz 489. 10.4088/JCP.13r08815
    1. Geisler D., Borchardt V., Lord A. R., Boehm I., Ritschel F., Zwipp J., et al. . (2016). Abnormal functional global and local brain connectivity in female patients with anorexia nervosa. J. Psychiatry Neurosci. 41, 6–15. 10.1503/jpn.140310
    1. George M. S., Wassermann E. M., Williams W. A., Callahan A., Ketter T. A., Basser P., et al. . (1995). Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport 6, 1853–1856. 10.1097/00001756-199510020-00008
    1. Giacobbe P., Mayberg H. S., Lozano A. M. (2009). Treatment resistant depression as a failure of brain homeostatic mechanisms: implications for deep brain stimulation. Exp. Neurol. 219, 44–52. 10.1016/j.expneurol.2009.04.028
    1. Gilbert A. R., Keshavan M. S., Diwadkar V., Nutche J., Macmaster F., Easter P. C., et al. . (2008). Gray matter differences between pediatric obsessive-compulsive disorder patients and high-risk siblings: a preliminary voxel-based morphometry study. Neurosci. Lett. 1, 45–50. 10.1016/j.neulet.2008.02.011
    1. Goldstein R. Z., Craig A. D., Bechara A., Garavan H., Childress A. R., Paulus M. P., et al. . (2009). The neurocircuitry of impaired insight in drug addiction. Trends Cogn. Sci. 13, 372–380. 10.1016/j.tics.2009.06.004
    1. Goodkind M., Eickhoff S. B., Oathes D. J., Jiang Y., Chang A., Jones-hagata L. B., et al. . (2015). Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315. 10.1001/jamapsychiatry.2014.2206
    1. Gorelick D. A., Zangen A., George M. S. (2014). Transcranial magnetic stimulation in the treatment of substance addiction. Ann. N Y Acad. Sci. 1327, 79–93. 10.1111/nyas.12479
    1. Graybiel A. M., Rauch S. L. (2000). Toward a neurobiology of obsessive-compulsive disorder. Neuron 28, 343–347. 10.1016/S0896-6273(00)00113-6
    1. Haber S. N. (2016). Corticostriatal circuitry. Dialogues Clin. Neurosci. 18, 7–21.
    1. Hagan C. C., Graham J. M., Tait R., Widmer B., van Nieuwenhuizen A. O., Ooi C., et al. . (2015). Adolescents with current major depressive disorder show dissimilar patterns of age-related differences in ACC and thalamus. Neuroimage Clin. 7, 391–399. 10.1016/j.nicl.2014.12.019
    1. Hahn A., Haeusler D., Kraus C., Höflich A. S., Kranz G. S., Baldinger P., et al. . (2014). Attenuated serotonin transporter association between dorsal raphe and ventral striatum in major depression. Hum. Brain Mapp. 35, 3857–3866. 10.1002/hbm.22442
    1. Hallett M. (2007). Transcranial magnetic stimulation: a primer. Neuron 55, 187–199. 10.1016/j.neuron.2007.06.026
    1. Ham T., Leff A., de Boissezon X., Joffe A., Sharp D. J. (2013). Cognitive control and the salience network: an investigation of error processing and effective connectivity. J. Neurosci. 33, 7091–7098. 10.1523/JNEUROSCI.4692-12.2013
    1. Hanlon C. A., Canterberry M., Taylor J. J., DeVries W., Li X., Brown T. R., et al. . (2013). Probing the frontostriatal loops involved in executive and limbic processing via interleaved TMS and functional MRI at two prefrontal locations: a pilot study. PLoS One 7:e67917. 10.1371/journal.pone.0067917
    1. Hanlon C. A., Dowdle L. T., Austelle C. W., DeVries W., Mithoefer O., Badran B. W., et al. . (2015). What goes up, can come down: novel brain stimulation paradigms may attenuate craving and craving-related neural circuitry in substance dependent individuals. Brain Res. 1628, 199–209. 10.1016/j.brainres.2015.02.053
    1. Hanlon C. A., Dowdle L. T., Moss H., Canterberry M., George M. S. (2016). Mobilization of medial and lateral frontal-striatal circuits in cocaine users and controls: an interleaved TMS/BOLD functional connectivity study. Neuropsychopharmacology 41, 3032–3041. 10.1038/npp.2016.114
    1. Hayes D. J., Lipsman N., Chen D. Q., Woodside D. B., Davis K. D., Lozano A. M., et al. . (2015). Subcallosal cingulate connectivity in anorexia nervosa patients differs from healthy controls: a multi-tensor tractography study. Brain Stimul. 8, 758–768. 10.1016/j.brs.2015.03.005
    1. Herringa R., Phillips M., Almeida J., Insana S., Germain A. (2012). Post-traumatic stress symptoms correlate with smaller subgenual cingulate, caudate and insula volumes in unmedicated combat veterans. Psychiatry Res. 203, 139–145. 10.1016/j.pscychresns.2012.02.005
    1. Hoexter M. Q., de Souza Duran F. L., D’Alcante C. C., Dougherty D. D., Shavitt R. G., Lopes A. C., et al. . (2012). Gray matter volumes in obsessive- compulsive disorder before and after fluoxetine or cognitive-behavior therapy: a randomized clinical trial. Contemp. Clin. Trials 37, 734–745. 10.1038/npp.2011.250
    1. Hone-Blanchet A., Edden R. A., Fecteau S. (2015). Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites. Biol. Psychiatry 80, 432–438. 10.1016/j.biopsych.2015.11.008
    1. Hou J., Song L., Zhang W., Wu W., Wang J., Zhou D., et al. . (2013). Morphologic and functional connectivity alterations of corticostriatal and default mode network in treatment-naïve patients with obsessive-compulsive disorder. PLoS One 8:e83931. 10.1371/journal.pone.0083931
    1. Hu Y., Salmeron B. J., Gu H., Stein E. A., Yang Y. (2015). Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiatry 72, 584–592. 10.1001/jamapsychiatry.2015.1
    1. Hudson J. I., Hiripi E., Pope H. G., Kessler R. C. (2007). The prevalence and correlates of eating disorders in the National comorbidity survey replication. Biol. Psychiatry 61, 348–358. 10.1016/j.biopsych.2006.03.040
    1. Insel T. R. (2014). The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am. J. Psychiatry 171, 395–397. 10.1176/appi.ajp.2014.14020138
    1. Isserles M., Shalev A. Y., Roth Y., Peri T., Kutz I., Zlotnick E., et al. . (2013). Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder—a pilot study. Brain Stimul. 6, 377–383. 10.1016/j.brs.2012.07.008
    1. Iwabuchi S. J., Liddle P. F., Palaniyappan L. (2015). Structural connectivity of the salience-executive loop in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 265, 163–166. 10.1007/s00406-014-0547-z
    1. Janes A. C., Farmer S., Peechatka A. L., de B Frederick B., Lukas S. E. (2015). Insula-dorsal anterior cingulate cortex coupling is associated with enhanced brain reactivity to smoking cues. Neuropsychopharmacology 40, 1561–1568. 10.1038/npp.2015.9
    1. Jiang J., Beck J., Heller K., Egner T. (2015). An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands. Nat. Commun. 6:8165. 10.1038/ncomms9165
    1. Kapur S. (2003). Psychosis as a state of aberrant salience: a framework linking biology, phenomenology and pharmacology in schizophrenia. Am. J. Psychiatry 160, 13–23. 10.1176/appi.ajp.160.1.13
    1. Karabanov A., Ziemann U., Hamada M., George M. S., Quartarone A., Classen J., et al. . (2015). Consensus paper: probing homeostatic plasticity of human cortex with non-invasive transcranial brain stimulation. Brain Stimul. 8, 993–1006. 10.1016/j.brs.2015.06.016
    1. Ke J., Zhang L., Qi R., Xu Q., Li W., Hou C., et al. . (2015). Altered blood oxygen level-dependent signal variability in chronic post-traumatic stress disorder during symptom provocation. Neuropsychiatr. Dis. Treat. 11, 1805–1815. 10.2147/NDT.s87332
    1. Kennedy S. H., Giacobbe P., Rizvi S. J., Placenza F. M., Nishikawa Y., Mayberg H. S., et al. . (2011). Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am. J. Psychiatry 168, 502–510. 10.1176/appi.ajp.2010.10081187
    1. Kerestes R., Harrison B. J., Dandash O., Stephanou K., Whittle S., Pujol J., et al. . (2015). Specific functional connectivity alterations of the dorsal striatum in young people with depression. Neuroimage Clin. 7, 266–272. 10.1016/j.nicl.2014.12.017
    1. Knable M. B., Weinberger D. R. (1997). Dopamine, the prefrontal cortex and schizophrenia. J. Psychopharmacol. 11, 123–131. 10.1177/026988119701100205
    1. Knoch D., Nitsche M. A., Fischbacher U., Eisenegger C., Pascual-Leone A., Fehr E. (2008). Studying the neurobiology of social interaction with transcranial direct current stimulation–The example of punishing unfairness. Cereb. Cortex 18, 1987–1990. 10.1093/cercor/bhm237
    1. Ko J. H., Monchi O., Ptito A., Bloomfield P., Houle S., Strafella A. P. (2008). Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task: a TMS-[11C]raclopride PET study. Eur. J. Neurosci. 28, 2147–2155. 10.1111/j.1460-9568.2008.06501.x
    1. Koch S. B. J., van Zuiden M., Nawijn L., Frijling J. L., Veltman D. J., Olff M. (2016). Aberrant resting-state brain activity in posttraumatic stress disorder: a meta-analysis and systematic review. Depress. Anxiety 33, 592–605. 10.1002/da.22478
    1. Koehler S., Ovadia-Caro S., van der Meer E., Villringer A., Heinz A., Romanczuk-Seiferth N., et al. . (2013). Increased functional connectivity between prefrontal cortex and reward system in pathological gambling. PLoS One 8:e84565. 10.1371/journal.pone.0084565
    1. Koob G. F., Volkow N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology 35, 217–238. 10.1038/npp.2009.110
    1. Kreuzer P. M., Schecklmann M., Lehner A., Wetter T. C., Poeppl T. B., Rupprecht R., et al. . (2015). The ACDC pilot trial: targeting the anterior cingulate by double cone coil rTMS for the treatment of depression. Brain Stimul. 8, 240–246. 10.1016/j.brs.2014.11.014
    1. Kroemer N. B., Guevara A., Ciocanea Teodorescu I., Wuttig F., Kobiella A., Smolka M. N. (2014). Balancing reward and work: anticipatory brain activation in NAcc and VTA predict effort differentially. Neuroimage 102, 510–519. 10.1016/j.neuroimage.2014.07.060
    1. Kühn A. A., Volkmann J. (2016). Innovations in deep brain stimulation methodology. Mov. Disord. [Epub ahead of print]. 10.1002/mds.26703
    1. Kuo M.-F., Nitsche M. A. (2012). Effects of transcranial electrical stimulation on cognition. Clin. EEG Neurosci. 43, 192–199. 10.1177/1550059412444975
    1. Lamichhane B., Adhikari B. M., Dhamala M. (2016). Salience network activity in perceptual decisions. Brain Connect. 6, 558–571. 10.1089/brain.2015.0392
    1. Lao-Kaim N. P., Fonville L., Giampietro V. P., Williams S. C., Simmons A., Tchanturia K. (2015). Aberrant function of learning and cognitive control networks underlie inefficient cognitive flexibility in anorexia nervosa: a cross- sectional fMRI study. PLoS One 10:e0124027. 10.1371/journal.pone.0124027
    1. Lapenta O. M., Sierve K. D., de Macedo E. C., Fregni F., Boggio P. S. (2014). Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption? Appetite 83, 42–48. 10.1016/j.appet.2014.08.005
    1. Lee S. K., Chun J. W., Lee J. S., Park H. J., Jung Y. C., Seok J. H., et al. . (2014). Abnormal neural processing during emotional salience attribution of affective asymmetry in patients with schizophrenia. PLoS One 9:e90792. 10.1371/journal.pone.0090792
    1. Lefaucheur J. P., André-Obadia N., Antal A., Ayache S. S., Baeken C., Benninger D. H., et al. . (2014). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125, 2150–2206. 10.1016/j.clinph.2014.05.021
    1. Lefebvre S., Demeulemeester M., Leroy A., Delmaire C., Lopes R., Pins D., et al. . (2016). Network dynamics during the different stages of hallucinations in schizophrenia. Hum. Brain Mapp. 7, 2571–2586. 10.1002/hbm.23197
    1. Liberzon I., Taylor S. F., Fig L. M., Koeppe R. A. (1996/1997). Alteration of corticothalamic perfusion ratios during a PTSD flashback. Depress. Anxiety 4, 146–150. 10.1002/(sici)1520-6394(1996)4:3<146::aid-da9>;2-e
    1. Lin H.-C., Pan H.-C., Lin S.-H., Lo Y.-C., Shen E. T.-H., Liao L.-D., et al. . (2016). Central thalamic deep-brain stimulation alters striatal-thalamic connectivity in cognitive neural behavior. Front. Neural Circuits 9:87. 10.3389/fncir.2015.00087
    1. Lipsman N., Giacobbe P., Lozano A. M. (2013a). Deep brain stimulation in obsessive-compulsive disorder: neurocircuitry and clinical experience. Handb. Clin. Neurol. 116, 245–250. 10.1016/B978-0-444-53497-2.00019-X
    1. Lipsman N., Woodside D. B., Giacobbe P., Hamani C., Carter J. C., Norwood S. J., et al. . (2013b). Subcallosal cingulate deep brain stimulation for treatment-refractory anorexia nervosa: a phase 1 pilot trial. Lancet 381, 1361–1370. 10.1016/S0140-6736(12)62188-6
    1. Liston C., Chen A. C., Zebley B. D., Drysdale A. T., Gordon R., Leuchter B., et al. . (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol. Psychiatry 76, 517–526. 10.1016/j.biopsych.2014.01.023
    1. Lozano A. M., Lipsman N. (2013). Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77, 406–424. 10.1016/j.neuron.2013.01.020
    1. Manelis A., Almeida J. R., Stiffler R., Lockovich J. C., Aslam H. A., Phillips M. L. (2016). Anticipation-related brain connectivity in bipolar and unipolar depression: a graph theory approach. Brain 9, 2554–2566. 10.1093/brain/aww157
    1. Manoliu A., Riedl V., Doll A., Bäuml J. G., Mühlau M., Schwerthöffer D., et al. . (2013). Insular dysfunction reflects altered between-network connectivity and severity of negative symptoms in schizophrenia during psychotic remission. Front. Hum. Neurosci. 7:216. 10.3389/fnhum.2013.00216
    1. Mantovani A., Simpson H. B., Fallon B. A., Rossi S., Lisanby S. H. (2010). Randomized sham-controlled trial of repetitive transcranial magnetic stimulation in treatment-resistant obsessive-compulsive disorder. Int. J. Neuropsychopharmacol. 2, 217–227. 10.1017/S1461145709990435
    1. Marsh R., Horga G., Wang Z., Wang P., Klahr K. W., Berner L. A., et al. . (2011). An FMRI study of self-regulatory control and conflict resolution in adolescents with bulimia nervosa. Am. J. Psychiatry 11, 1210–1220. 10.1176/appi.ajp.2011.11010094
    1. Marsh R., Maia T. V., Peterson B. S. (2009a). Functional disturbances within frontostriatal circuits across multiple childhood psychopathologies. Am. J. Psychiatry 166, 664–674. 10.1176/appi.ajp.2009.08091354
    1. Marsh R., Steinglass J. E., Gerber A. J., Graziano O’Leary K., Wang Z., Murphy D., et al. . (2009b). Deficient activity in the neural systems that mediate self-regulatory control in bulimia nervosa. Arch. Gen. Psychiatry 1, 51–63. 10.1001/archgenpsychiatry.2008.504
    1. Mayberg H. S., Lozano A. M., Voon V., McNeely H. E., Seminowicz D., Hamani C., et al. . (2005). Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660. 10.1016/j.neuron.2005.02.014
    1. McClelland J., Bozhilova N., Campbell I., Schmidt U. (2013). A systematic review of the effects of neuromodulation on eating and body weight: evidence from human and animal studies. Eur. Eat. Disord. Rev. 21, 436–455. 10.1002/erv.2256
    1. McGirr A., Karmani S., Arsappa R., Berlim M. T., Thirthalli J., Muralidharan K., et al. . (2016). Clinical efficacy and safety of repetitive transcranial magnetic stimulation in acute bipolar depression. World Psychiatry 1, 85–86. 10.1002/wps.20300
    1. McTeague L. M., Goodkind M. S., Etkin A. (2016). Transdiagnostic impairment of cognitive control in mental illness. J. Psychiatr. Res. 83, 37–46. 10.1016/j.jpsychires.2016.08.001
    1. Meng L., Jiang J., Jin C., Liu J., Zhao Y., Wang W., et al. . (2016). Trauma-specific grey matter alterations in PTSD. Sci. Rep. 6:33748. 10.1038/srep33748
    1. Menon V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506. 10.1016/j.tics.2011.08.003
    1. Menon V., Uddin L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667. 10.1007/s00429-010-0262-0
    1. Meron D., Hedger N., Garner M., Baldwin D. S. (2015). Transcranial direct current stimulation (tDCS) in the treatment of depression: systematic review and meta- analysis of efficacy and tolerability. Neurosci. Biobehav. Rev. 57, 46–62. 10.1016/j.neubiorev.2015.07.012
    1. Metzger C. D., Eckert U., Steiner J., Sartorius A., Buchmann J. E., Stadler J., et al. . (2010). High field FMRI reveals thalamocortical integration of segregated cognitive and emotional processing in mediodorsal and intralaminar thalamic nuclei. Front. Neuroanat. 4:138. 10.3389/fnana.2010.00138
    1. Mikolas P., Melicher T., Skoch A., Matejka M., Slovakova A., Bakstein E., et al. . (2016). Connectivity of the anterior insula differentiates participants with first-episode schizophrenia spectrum disorders from controls: a machine- learning study. Psychol. Med. 46, 2695–2704. 10.1017/s0033291716000878
    1. Milev R. V., Giacobbe P., Kennedy S. H., Blumberger D. M., Daskalakis Z. J., Downar J., et al. . (2016). Canadian network for mood and anxiety treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: section 4. neurostimulation treatments. Can. J. Psychiatry 61, 561–575. 10.1177/0706743716660033
    1. Mir-Moghtadaei A., Caballero R., Fried P., Fox M. D., Lee K., Giacobbe P., et al. . (2015). Concordance between BeamF3 and MRI-neuronavigated target sites for repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex. Brain Stimul. 5, 965–973. 10.1016/j.brs.2015.05.008
    1. Mitchell A. S. (2015). The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci. Biobehav. Rev. 54, 76–88. 10.1016/j.neubiorev.2015.03.001
    1. Morales A. M., Kohno M., Robertson C. L., Dean A. C., Mandelkern M. A., London E. D. (2015). Gray-matter volume, midbrain dopamine D2/D3 receptors and drug craving in methamphetamine users. Mol. Psychiatry 20, 764–771. 10.1038/mp.2015.47
    1. Moran L. V., Tagamets M. A., Sampath H., O’Donnell A., Stein E. A., Kochunov P., et al. . (2013). Disruption of anterior insula modulation of large-scale brain networks in schizophrenia. Biol. Psychiatry 74, 467–474. 10.1016/j.biopsych.2013.02.029
    1. Moreno-López L., Catena A., Fernández-Serrano M. J., Delgado-Rico E., Stamatakis E. A., Pérez-García M., et al. . (2012). Trait impulsivity and prefrontal gray matter reductions in cocaine dependent individuals. Drug Alcohol Depend. 125, 208–214. 10.1016/j.drugalcdep.2012.02.012
    1. Morey R. A., Dunsmoor J. E., Haswell C. C., Brown V. M., Vora A., Weiner J., et al. . (2015). Fear learning circuitry is biased toward generalization of fear associations in posttraumatic stress disorder. Transl. Psychiatry 5:e700. 10.1038/tp.2015.196
    1. Morishita T., Fayad S. M., Higuchi M. A., Nestor K. A., Foote K. D. (2014). Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes. Neurotherapeutics 11, 475–484. 10.1007/s13311-014-0282-1
    1. Morris S. E., Cuthbert B. N. (2012). Research domain criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin. Neurosci. 14, 29–37.
    1. Mueller S. G., Ng P., Neylan T., Mackin S., Wolkowitz O., Mellon S., et al. . (2015). Evidence for disrupted gray matter structural connectivity in posttraumatic stress disorder. Psychiatry Res. 234, 194–201. 10.1016/j.pscychresns.2015.09.006
    1. Nakamae T., Sakai Y., Abe Y., Nishida S., Fukui K., Yamada K., et al. . (2014). Altered fronto-striatal fiber topography and connectivity in obsessive-compulsive disorder. PLoS One 9:e112075. 10.1371/journal.pone.0112075
    1. Naqvi N. H., Bechara A. (2009). The hidden island of addiction: the insula. Trends Neurosci. 32, 56–67. 10.1016/j.tins.2008.09.009
    1. Nekovarova T., Fajnerova I., Horacek J., Spaniel F. (2014). Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory. Front. Behav. Neurosci. 8:171. 10.3389/fnbeh.2014.00171
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al. . (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–223. 10.1016/j.brs.2008.06.004
    1. Noda Y., Silverstein W. K., Barr M. S., Vila-Rodriguez F., Downar J., Rajji T. K., et al. . (2015). Neurobiological mechanisms of repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex in depression: a systematic review. Psychol. Med. 45, 3411–3432. 10.1017/S0033291715001609
    1. Palaniyappan L., Mallikarjun P., Joseph V., White T. P., Liddle P. F. (2011). Reality distortion is related to the structure of the salience network in schizophrenia. Psychol. Med. 41, 1701–1708. 10.1017/S0033291710002205
    1. Palaniyappan L., Simmonite M., White T. P., Liddle E. B., Liddle P. F. (2013). Neural primacy of the salience processing system in schizophrenia. Neuron 79, 814–828. 10.1016/j.neuron.2013.06.027
    1. Park S. Q., Kahnt T., Beck A., Cohen M. X., Dolan R. J., Wrase J., et al. . (2010). Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence. J. Neurosci. 30, 7749–7753. 10.1523/JNEUROSCI.5587-09.2010
    1. Parnaudeau S., O’Neill P. K., Bolkan S. S., Ward R. D., Abbas A. I., Roth B. L., et al. . (2013). Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77, 1151–1162. 10.1016/j.neuron.2013.01.038
    1. Pascual-Leone A., Rubio B., Pallardó F., Catalá M. D. (1996). Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348, 233–237. 10.1016/s0140-6736(96)01219-6
    1. Patel R., Spreng R. N., Shin L. M., Girard T. A. (2012). Neurocircuitry models of posttraumatic stress disorder and beyond: a meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 36, 2130–2142. 10.1016/j.neubiorev.2012.06.003
    1. Paulus M. P., Stein M. B. (2006). An insular view of anxiety. Biol. Psychiatry 60, 383–387. 10.1016/j.biopsych.2006.03.042
    1. Peper J. S., Mandl R. C. W., Braams B. R., de Water E., Heijboer A. C., Koolschijn P. C. M. P., et al. . (2013). Delay discounting and frontostriatal fiber tracts: a combined DTI and MTR study on impulsive choices in healthy young adults. Cereb. Cortex 23, 1695–1702. 10.1093/cercor/bhs163
    1. Perera T., George M. S., Grammer G., Janicak P. G., Pascual-Leone A., Wirecki T. S. (2016). The clinical TMS society consensus review and treatment recommendations for TMS therapy for major depressive disorder. Brain Stimul. 3, 336–346. 10.1016/j.brs.2016.03.010
    1. Peters J., Büchel C. (2011). The neural mechanisms of inter-temporal decision-making: understanding variability. Trends Cogn. Sci. 15, 227–239. 10.1016/j.tics.2011.03.002
    1. Peterson A., Thome J., Frewen P., Lanius R. A. (2014). Resting-state neuroimaging studies: a new way of identifying differences and similarities among the anxiety disorders? Can. J. Psychiatry 59, 294–300.
    1. Polanía R., Paulus W., Nitsche M. A. (2012). Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum. Brain Mapp. 33, 2499–2508. 10.1002/hbm.21380
    1. Pu W., Li L., Zhang H., Ouyang X., Liu H., Zhao J., et al. . (2012). Morphological and functional abnormalities of salience network in the early-stage of paranoid schizophrenia. Schizophr. Res. 141, 15–21. 10.1016/j.schres.2012.07.017
    1. Pujol N., Penadés R., Rametti G., Catalán R., Vidal-Piñeiro D., Palacios E., et al. . (2013). Inferior frontal and insular cortical thinning is related to dysfunctional brain activation/deactivation during working memory task in schizophrenic patients. Psychiatry Res. 214, 94–9101. 10.1016/j.pscychresns.2013.06.008
    1. Qiu Y., Lv X., Su H., Jiang G., Tian J., Zhuo F., et al. . (2013). Reduced regional homogeneity in bilateral frontostriatal system relates to higher impulsivity behavior in codeine-containing cough syrups dependent individuals. PLoS One 8:e78738. 10.1371/journal.pone.0078738
    1. Quan M., Lee S. H., Kubicki M., Kikinis Z., Rathi Y., Seidman L. J., et al. . (2013). White matter tract abnormalities between rostral middle frontal gyrus, inferior frontal gyrus and striatum in first-episode schizophrenia. Schizophr. Res. 145, 1–10. 10.1016/j.schres.2012.11.028
    1. Rachid F. (2016). Neurostimulation techniques in the treatment of nicotine dependence: a review. Am. J. Addict. 25, 436–451. 10.1111/ajad.12405
    1. Raichle M. E. (2015). The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447. 10.1146/annurev-neuro-071013-014030
    1. Rauch S. L., Dougherty D. D., Malone D., Rezai A., Friehs G., Fischman A. J., et al. . (2006a). A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J. Neurosurg. 104, 558–565. 10.3171/jns.2006.104.4.558
    1. Rauch S. L., Shin L. M., Phelps E. A. (2006b). Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research-past, present and future. Biol. Psychiatry 60, 376–382. 10.1016/j.biopsych.2006.06.004
    1. Rothemund Y., Buchwald C., Georgiewa P., Bohner G., Bauknecht H.-C., Ballmaier M., et al. . (2011). Compulsivity predicts fronto striatal activation in severely anorectic individuals. Neuroscience 197, 242–250. 10.1016/j.neuroscience.2011.09.016
    1. Rush A. J., Trivedi M. H., Wisniewski S. R., Nierenberg A. A., Stewart J. W., Warden D., et al. . (2006). Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatry 163, 1905–1917. 10.1176/ajp.2006.163.11.1905
    1. Sale M. V., Mattingley J. B., Zalesky A., Cocchi L. (2015). Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation. Neurosci. Biobehav. Rev. 57, 187–198. 10.1016/j.neubiorev.2015.09.010
    1. Salomons T. V., Dunlop K., Kennedy S. H., Flint A., Geraci J., Giacobbe P., et al. . (2014). Resting-state cortico-thalamic-striatal connectivity predicts response to dorsomedial prefrontal rTMS in major depressive disorder. Neuropsychopharmacology 39, 488–498. 10.1038/npp.2013.222
    1. Sanders N., Smeets P. A., van Elburg A. A., Danner U. N., van Meer F., Hoek H. W., et al. . (2015). Altered food-cue processing in chronically ill and recovered women with anorexia nervosa. Front. Behav. Neurosci. 9:46. 10.3389/fnbeh.2015.00046
    1. Schäfer A., Vaitl D., Schienle A. (2010). Regional grey matter volume abnormalities in bulimia nervosa and binge-eating disorder. Neuroimage 50, 639–643. 10.1016/j.neuroimage.2009.12.063
    1. Schienle A., Schäfer A., Hermann A., Vaitl D. (2009). Binge-eating disorder: reward sensitivity and brain activation to images of food. Biol. Psychiatry 65, 654–661. 10.1016/j.biopsych.2008.09.028
    1. Schiller C. E., Minkel J., Smoski M. J., Dichter G. S. (2013). Remitted major depression is characterized by reduced prefrontal cortex reactivity to reward loss. J. Affect. Disord. 151, 756–762. 10.1016/j.jad.2013.06.016
    1. Schlaepfer T. E., Bewernick B. H., Kayser S., Hurlemann R., Coenen V. A. (2014). Deep brain stimulation of the human reward system for major depression–rationale, outcomes and outlook. Neuropsychopharmacology 39, 1303–1314. 10.1038/npp.2014.28
    1. Schultz W., Tremblay L., Hollerman J. R. (2003). Changes in behavior-related neuronal activity in the striatum during learning. Trends Neurosci. 26, 321–328. 10.1016/S0166-2236(03)00122-x
    1. Seeley W. W., Menon V., Schatzberg A. F., Keller J., Glover G. H., Kenna H., et al. . (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356. 10.1523/JNEUROSCI.5587-06.2007
    1. Shepherd G. M. G. (2013). Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 14, 278–291. 10.1038/nrn3469
    1. Shott M. E., Pryor T. L., Yang T. T., Frank G. K. (2016). Greater insula white matter fiber connectivity in women recovered from anorexia nervosa. Neuropsychopharmacology 41, 498–507. 10.1038/npp.2015.172
    1. Skunde M., Walther S., Simon J. J., Wu M., Bendszus M., Herzog W., et al. . (2016). Neural signature of behavioural inhibition in women with bulimia nervosa. J. Psychiatry Neurosci. 41, E69–E78. 10.1503/jpn.150335
    1. Smoski M. J., Rittenberg A., Dichter G. S. (2011). Major depressive disorder is characterized by greater reward network activation to monetary than pleasant image rewards. Psychiatry Res. 194, 263–270. 10.1016/j.pscychresns.2011.06.012
    1. Sommer I. E. C., Diederen K. M. J., Blom J. D., Willems A., Kushan L., Slotema K., et al. . (2008). Auditory verbal hallucinations predominantly activate the right inferior frontal area. Brain 131, 3169–3177. 10.1093/brain/awn251
    1. Stefurak T., Mikulis D., Mayberg H., Lang A. E., Hevenor S., Pahapill P., et al. . (2003). Deep brain stimulation for Parkinson’s disease dissociates mood and motor circuits: a functional MRI case study. Mov. Disord. 18, 1508–1516. 10.1002/mds.10593
    1. Stoy M., Schlagenhauf F., Sterzer P., Bermpohl F., Hägele C., Suchotzki K., et al. . (2011). Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram. J. Psychopharmacol. 26, 677–688. 10.1177/0269881111416686
    1. Strafella A. P., Paus T., Barrett J., Dagher A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci. 21:RC157.
    1. Strafella A. P., Paus T., Fraraccio M., Dagher A. (2003). Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 126, 2609–2615. 10.1093/brain/awg268
    1. Sun J., Chen Q., Zhang Q., Li Y., Li H., Wei D., et al. . (2016). Training your brain to be more creative: brain functional and structural changes induced by divergent thinking training. Hum. Brain Mapp. 37, 3375–3387. 10.1002/hbm.23246
    1. Tomasi D., Volkow N. D. (2013). Striatocortical pathway dysfunction in addiction and obesity: differences and similarities. Crit. Rev. Biochem. Mol. Biol. 48, 1–19. 10.3109/10409238.2012.735642
    1. Tortella G., Casati R., Aparicio L. V., Mantovani A., Senço N., D’Urso G., et al. . (2015). Transcranial direct current stimulation in psychiatric disorders. World J. Psychiatry 5, 88–8102. 10.5498/wjp.v5.i1.88
    1. Trevizol A. P., Shiozawa P., Cook I. A., Sato I. A., Kaku C. B., Guimarães F. B., et al. . (2016). Transcranial magnetic stimulation for obsessive-compulsive disorder: an updated systematic review and meta-analysis. J. ECT 32, 262–266. 10.1097/yct.0000000000000335
    1. Uddin L. Q. (2017). Salience Network of the Human Brain. San Diego: Academic Press; Available online at: , 34.
    1. Vaghi M. M., Vértes P. E., Kitzbichler M. G., Apergis-Schoute A. M., van der Flier F. E., Fineberg N. A., et al. . (2016). Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: evidence from resting-state functional connectivity. Biol. Psychiatry [Epub ahead of print]. 10.1016/j.biopsych.2016.08.009
    1. Val-Laillet D., Aarts E., Weber B., Ferrari M., Quaresima V., Stoeckel L. E., et al. . (2015). Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 8, 1–31. 10.1016/j.nicl.2015.03.016
    1. Van den Eynde F., Suda M., Broadbent H., Guillaume S., Van den Eynde M., Steiger H., et al. . (2012). Structural magnetic resonance imaging in eating disorders: a systematic review of voxel-based morphometry studies. Eur. Eat. Disord. Rev. 20, 94–105. 10.1002/erv.1163
    1. Veit R., Singh V., Sitaram R., Caria A., Rauss K., Birbaumer N. (2012). Using real-time fmri to learn voluntary regulation of the anterior insula in the presence of threat-related stimuli. Soc. Cogn. Affect. Neurosci. 7, 623–634. 10.1093/scan/nsr061
    1. Vollstädt-Klein S., Wichert S., Rabinstein J., Buhler M., Klein O., Ende O., et al. . (2010). Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum. Addiction 105, 1741–1749. 10.1111/j.1360-0443.2010.03022.x
    1. Voss U., Holzmann R., Hobson A., Paulus W., Koppehele-Gossel J., Klimke A., et al. . (2014). Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat. Neurosci. 17, 810–812. 10.1038/nn.3719
    1. Walsh E., Carl H., Eisenlohr-Moul T., Minkel J., Crowther A., Moore T., et al. . (2016). Attenuation of frontostriatal connectivity during reward processing predicts response to psychotherapy in major depressive disorder. Neuropsychopharmacology [Epub ahead of print]. 10.1038/npp.2016.179
    1. Wang C., Ji F., Hong Z., Poh J. S., Krishnan R., Lee J., et al. . (2016). Disrupted salience network functional connectivity and white-matter microstructure in persons at risk for psychosis: findings from the LYRIKS study. Psychol. Med. 46, 2771–2783. 10.1017/s0033291716001410
    1. Wang X., Zhang W., Sun Y., Hu M., Chen A. (2016). Aberrant intra-salience network dynamic functional connectivity impairs large-scale network interactions in schizophrenia. Neuropsychologia 93, 262–270. 10.1016/j.neuropsychologia.2016.11.003
    1. Webb C. A., Dillon D. G., Pechtel P., Goer F. K., Murray L., Huys Q. J., et al. . (2016). Neural correlates of three promising endophenotypes of depression: evidence from the EMBARC study. Neuropsychopharmacology 41, 454–463. 10.1038/npp.2015.165
    1. Webb C. A., Weber M., Mundy E. A., Killgore W. D. (2014). Reduced gray matter volume in the anterior cingulate, orbitofrontal cortex and thalamus as a function of mild depressive symptoms: a voxel-based morphometric analysis. Psychol. Med. 44, 2833–2843. 10.1017/s0033291714000348
    1. Weber M. J., Messing S. B., Rao H., Detre J. A., Thompson-Schill S. L. (2014). Prefrontal transcranial direct current stimulation alters activation and connectivity in cortical and subcortical reward systems: a tDCS-fMRI study. Hum. Brain Mapp. 35, 3673–3686. 10.1002/hbm.22429
    1. White S. F., Costanzo M. E., Blair J. R., Roy M. J. (2014). PTSD symptom severity is associated with increased recruitment of top-down attentional control in a trauma-exposed sample. Neuroimage Clin. 7, 19–27. 10.1016/j.nicl.2014.11.012
    1. White T. P., Joseph V., Francis S. T., Liddle P. F. (2010). Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia. Schizophr. Res. 123, 105–115. 10.1016/j.schres.2010.07.020
    1. Whiteford H. A., Degenhardt L., Rehm J., Baxter A. J., Ferrari A. J., Erskine H. E., et al. . (2013). Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 382, 1575–1586. 10.1016/S0140-6736(13)61611-6
    1. Whiteford H. A., Ferrari A. J., Degenhardt L., Feigin V., Vos T. (2015). The global burden of mental, neurological and substance use disorders: an analysis from the Global Burden of Disease Study 2010. PLoS One 2:e0116820. 10.1371/journal.pone.0116820
    1. Wierenga C. E., Ely A., Bischoff-Grethe A., Bailer U. F., Simmons A. N., Kaye W. H. (2014). Are extremes of consumption in eating disorders related to an altered balance between reward and inhibition? Front. Behav. Neurosci. 8:410. 10.3389/fnbeh.2014.00410
    1. Williams N. R., Okun M. S. (2013). Deep brain stimulation (DBS) at the interface of neurology and psychiatry. J. Clin. Invest. 123, 4546–4556. 10.1172/JCI68341
    1. Yarkoni T., Poldrack R. A., Nichols T. E., Van Essen D. C., Wager T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670. 10.1038/nmeth.1635
    1. Yeh Y. W., Ho P. S., Kuo S. C., Chen C. Y., Liang C. S., Yen C. H., et al. . (2015). Disproportionate reduction of serotonin transporter may predict the response and adherence to antidepressants in patients with major depressive disorder: a positron emission tomography study with 4–[18F]-ADAM. Int. J. Neuropsychopharmacol. 7:pyu120. 10.1093/ijnp/pyu120
    1. Yeo B. T. T., Krienen F. M., Sepulcre J., Sabuncu M. R., Lashkari D., Hollinshead M., et al. . (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165. 10.1152/jn.00338.2011
    1. Yin Y., Jin C., Hu X., Duan L., Li Z., Song M., et al. . (2011). Altered resting-state functional connectivity of thalamus in earthquake-induced posttraumatic stress disorder: a functional magnetic resonance imaging study. Brain Res. 1411, 98–107. 10.1016/j.brainres.2011.07.016
    1. Yuan K., Yu D., Bi Y., Li Y., Guan Y., Liu J., et al. . (2016). The implication of frontostriatal circuits in young smokers: a resting-state study. Hum. Brain Mapp. 37, 2013–2026. 10.1002/hbm.23153
    1. Zhao Y. J., Du M. Y., Huang X. Q., Lui S., Chen Z. Q., Liu J., et al. . (2014). Brain grey matter abnormalities in medication-free patients with major depressive disorder: a meta- analysis. Psychol. Med. 44, 2927–2937. 10.1017/S0033291714000518
    1. Zuo C., Ma Y., Sun B., Peng S., Zhang H., Eidelberg D., et al. . (2013). Metabolic imaging of bilateral anterior capsulotomy in refractory obsessive compulsive disorder: an FDG PET study. J. Cereb. Blood Flow Metab. 33, 880–887. 10.1038/jcbfm.2013.23

Source: PubMed

3
Subscribe