Different epidemiological profiles in patients with Zika and dengue infection in Tapachula, Chiapas in Mexico (2016-2018): an observational, prospective cohort study

Pablo F Belaunzarán-Zamudio, Héctor Armando Rincón León, Sandra Caballero Sosa, Emilia Ruiz, José Gabriel Nájera Cancino, Paul Rodriguez de La Rosa, María de Lourdes Guerrero Almeida, John H Powers 3rd, John H Beigel, Sally Hunsberger, Karina Trujillo, Pilar Ramos, Fernando J Arteaga-Cabello, Alexander López-Roblero, Raydel Valdés-Salgado, Hugo Arroyo-Figueroa, Eli Becerril, Guillermo Ruiz-Palacios, Mexican Emerging Infectious Diseases Clinical Research Network (La Red), Justino Regalado Pineda, Héctor Armando Rincón-León, Karla R Navarro-Fuentes, Sandra Caballero-Sosa, Francisco Camas-Durán, Zoyla Priego-Smith, Emilia Ruiz, José Gabriel Nájera-Cancino, Paul Rodriguez De la Rosa, Jesús Sepúlveda-Delgado, Alfredo Vera Maloof, Karina Trujillo, Alexander López-Roblero, Raydel Valdés-Salgado, Yolanda Bertucci, Isabel Trejos, Luis Diego Villalobos, Pablo F Belaunzarán-Zamudio, Pilar Ramos, Fernando J Arteaga-Cabello, Lourdes Guerrero, Guillermo Ruiz-Palacios, Paola Del Carmen Guerra Blas, Luis Mendoza-Garcés, Samira Toledo Roy, Hugo Arroyo-Figueroa, Peter Quidgley, Laura Macedo, Eli Becerril, Abelardo Montenegro Liendo, John H Powers, John H Beigel, Sally Hunsberger, Pablo F Belaunzarán-Zamudio, Héctor Armando Rincón León, Sandra Caballero Sosa, Emilia Ruiz, José Gabriel Nájera Cancino, Paul Rodriguez de La Rosa, María de Lourdes Guerrero Almeida, John H Powers 3rd, John H Beigel, Sally Hunsberger, Karina Trujillo, Pilar Ramos, Fernando J Arteaga-Cabello, Alexander López-Roblero, Raydel Valdés-Salgado, Hugo Arroyo-Figueroa, Eli Becerril, Guillermo Ruiz-Palacios, Mexican Emerging Infectious Diseases Clinical Research Network (La Red), Justino Regalado Pineda, Héctor Armando Rincón-León, Karla R Navarro-Fuentes, Sandra Caballero-Sosa, Francisco Camas-Durán, Zoyla Priego-Smith, Emilia Ruiz, José Gabriel Nájera-Cancino, Paul Rodriguez De la Rosa, Jesús Sepúlveda-Delgado, Alfredo Vera Maloof, Karina Trujillo, Alexander López-Roblero, Raydel Valdés-Salgado, Yolanda Bertucci, Isabel Trejos, Luis Diego Villalobos, Pablo F Belaunzarán-Zamudio, Pilar Ramos, Fernando J Arteaga-Cabello, Lourdes Guerrero, Guillermo Ruiz-Palacios, Paola Del Carmen Guerra Blas, Luis Mendoza-Garcés, Samira Toledo Roy, Hugo Arroyo-Figueroa, Peter Quidgley, Laura Macedo, Eli Becerril, Abelardo Montenegro Liendo, John H Powers, John H Beigel, Sally Hunsberger

Abstract

Background: The introduction of Zika and chikungunya to dengue hyperendemic regions increased interest in better understanding characteristics of these infections. We conducted a cohort study in Mexico to evaluate the natural history of Zika infection. We describe here the frequency of Zika, chikungunya and dengue virus infections immediately after Zika introduction in Mexico, and baseline characteristics of participants for each type of infection.

Methods: Prospective, observational cohort evaluating the natural history of Zika virus infection in the Mexico-Guatemala border area. Patients with fever, rash or both, meeting the modified criteria of PAHO for probable Zika cases were enrolled (June 2016-July 2018) and followed-up for 6 months. We collected data on sociodemographic, environmental exposure, clinical and laboratory characteristics. Diagnosis was established based on viral RNA identification in serum and urine samples using RT-PCR for Zika, chikungunya, and dengue. We describe the baseline sociodemographic and environmental exposure characteristics of participants according to diagnosis, and the frequency of these infections over a two-year period immediately after Zika introduction in Mexico.

Results: We enrolled 427 participants. Most patients (n = 307, 65.7%) had an acute illness episode with no identified pathogen (UIE), 37 (8%) Zika, 82 (17.6%) dengue, and 1 (0.2%) chikungunya. In 2016 Zika predominated, declined in 2017 and disappeared in 2018; while dengue increased after 2017. Patients with dengue were more likely to be men, younger, and with lower education than those with Zika and UIE. They also reported closer contact with water sources, and with other people diagnosed with dengue. Participants with Zika reported sexual exposure more frequently than people with dengue and UIE. Zika was more likely to be identified in urine while dengue was more likely found in blood in the first seven days of symptoms; but PCR results for both were similar at day 7-14 after symptom onset.

Conclusions: During the first 2 years of Zika introduction to this dengue hyper-endemic region, frequency of Zika peaked and fell over a two-year period; while dengue progressively increased with a predominance in 2018. Different epidemiologic patterns between Zika, dengue and UIE were observed. Trial registration Clinical.Trials.gov (NCT02831699).

Keywords: Chikungunya; Dengue; Emerging diseases; Mexico; Outbreak; Zika.

Conflict of interest statement

Pablo-Belaunzarán Zamudio is an Associate Editor of BMC Infectious Diseases. The other authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Map 1
Map 1
Location of A the State of Chiapas, Mexico in B the border with Guatemala, where C the city of Tapachula is located. Participants were enrolled in 4 participating health care centers and lived in the urban area of Tapachula and 14 rural municipalities in its periphery (C). The red dots in maps C and D indicate the neigborhood or communities of residence of participants. The numbers in black in map C indicate the quantity of participants living in the community enrolled in the study. Each red dot in map E represent an individual participant distributed in the communities around the city of Tapachula. Map developed by Taller de Analisis Espacial (http://taearquitectos.com.mx/) using OpenStreetMap ( https://www.openstreetmap.org/#map=5/38.007/-95.844) and QGIS 3.2 (https://qgis.org/en/site/about/index.html) themed with own data. QGIS is a free and open-source General Public License (GNU) Geografic Information System (GIS). OpenStreetMap (OSM) is a free Open Database Licence (ODbl) editable map of the world
Fig. 1
Fig. 1
Screening and enrollment of patients with symptoms compatible with Zika infection in Tapachula, Chiapas (cohort Zik01. Mexico, 2016–2018). Description: Flow diagram showing screening and enrollment of study population 1 There were 40 (8.6%) participants on whom we did not have enough samples to rule out any of these infections (absence of Zika, chikungunya and dengue in available samples but missing data for at least two time points)
Fig. 2
Fig. 2
Proportion of urine and serum samples that tested positive for dengue and Zika viral RNA at baseline (day 0–7 of symptom onset), and follow-up visits at day 3 (days 8–10 of symptoms onset) and 7 (days 7–14 of symptoms onset) after enrollment in (cohort Zik01. Mexico, 2016–2018). Description: Bars figure showing the proportion of patients that tested positive for Zika and dengue at visits on day 0, 3 and 7 after enrollment in the cohort. All samples were tested for dengue and Zika viral RNA at days 14, 28 and 180 days after enrollment but none tested positive. There were no patients with dual infection
Fig. 3
Fig. 3
Distribution over time of confirmed cases of Zika, dengue and chikungunya infections, and undefined illness episodes of patients enrolled in the Zik01 cohort between June 2016 and July 2018 in the city of Tapachula, Chiapas in Mexico. Description: Epidemic curves over the 2-year period of enrollment by definitive diagnosis

References

    1. Thézé J, Li T, du Plessis L, Bouquet J, Kraemer MUG, Somasekar S, et al. Genomic epidemiology reconstructs the introduction and spread of Zika virus in Central America and Mexico. Cell Host Microbe. 2018;23(6):855–64.e7. doi: 10.1016/j.chom.2018.04.017.
    1. Ramos-Castañeda J, Barreto dos Santos F, Martínez-Vega R, Galvão de Araujo JM, Joint G, Sarti E. Dengue in Latin America: systematic review of molecular epidemiological trends. PLoS Negl Trop Dis. 2017;11(1):0005224. doi: 10.1371/journal.pntd.0005224.
    1. Galindo-Fraga A, Ochoa-Hein E, Sifuentes-Osornio J, Ruiz-Palacios GM. Zika Virus: another epidemic on our doorstep. Rev Invest Clin. 2015;67(6):329–332.
    1. Santiago GA, Muñoz-Jordan JL. A49 phylogenetic evaluation of the Zika virus emergence in the Americas: 2015–2016. Virus Evol. 2018;4(1):10–48.
    1. Passos SRL, Borges Dos Santos MA, Cerbino-Neto J, et al. Detection of Zika Virus in April 2013 patient samples, Rio de Janeiro Brazil. Emerg Infect Dis. 2017;23(12):2120–2121. doi: 10.3201/eid2312.171375.
    1. Chancey C, Grinev A, Volkova E, Rios M. The global ecology and epidemiology of West Nile virus. Biomed Res Int. 2015;2015:376230. doi: 10.1155/2015/376230.
    1. Aguilar PV, Estrada-Franco JG, Navarro-Lopez R, Ferro C, Haddow AD, Weaver SC. Endemic Venezuelan equine encephalitis in the Americas: hidden under the dengue umbrella. Future Virol. 2011;6(6):721–740. doi: 10.2217/fvl.11.50.
    1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990–993. doi: 10.1038/nature06536.
    1. Amaya-Larios IY, Rojas-Russell M, López-Cervantes M, et al. Seroprevalence of dengue in school children in Mexico ages 6–17 years, 2016. Trans R Soc Trop Med Hyg. 2018;112(5):223–229. doi: 10.1093/trstmh/try046.
    1. Panamerican Health Organization. Zika Resources: Case Definitions [internet]. Washington, D.C: Regional Office for the Americas of the World Health Organization; 2016. .
    1. Aguilar-Navarro SG, Mimenza-Alvarado AJ, Palacios-García AA, Samudio-Cruz A, Gutiérrez-Gutiérrez LA, Ávila-Funes JA. Validez y confiabilidad del MoCA (Montreal Cognitive Assessment) para el tamizaje del deterioro cognoscitivo en México. Rev Colomb Psiquiat. 2017. E-pub ahead of time. 2017.
    1. Üstün TB, Chatterji S, Kostanjsek N, et al. Developing the World Health Organization disability assessment schedule 2.0. Bull World Health Organ. 2010;88(11):815–823. doi: 10.2471/BLT.09.067231.
    1. CDC. Guidance for US Laboratories Testing for Zika Virus Infection. 2017 .
    1. Gouel-Cheron A, Lumbard K, Hunsberger S, Arteaga-Cabello FJ, Beigel J, Belaunzarán-Zamudio PF, et al. Serial real-time RT-PCR and serology measurements substantially improve Zika and Dengue virus infection classification in a co-circulation area. Antiviral Res. 2019;172:104638. doi: 10.1016/j.antiviral.2019.104638.
    1. Lanciotti RS, Kosoy OL, Laven JJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008;14:1232–1239. doi: 10.3201/eid1408.080287.
    1. Waggoner JJ, Abeynayake J, Sahoo MK, et al. Development of an internally controlled real-time reverse transcriptase PCR assay for pan-Dengue virus detection and comparison of four molecular Dengue virus detection assays. J Clin Microbiol. 2013;51:2172–2181. doi: 10.1128/JCM.00548-13.
    1. Carletti F, Bordi L, Chiappini R, et al. Rapid detection and quantification of Chikungunya virus by a one-step reverse transcription polymerase chain reaction real-time assay. Am J Trop Med Hyg. 2007;77(3):521–524. doi: 10.4269/ajtmh.2007.77.521.
    1. Ravichandran S, Hahn M, Belaunzarán-Zamudio PF, Ramos-Castañeda J, Nájera-Cancino G, Caballero-Sosa S, et al. Differential human antibody repertoires following Zika infection and the implications for serodiagnostics and disease outcome. Nat Commun. 2019;10(1):1943. doi: 10.1038/s41467-019-09914-3.
    1. Braga JU, Bressan C, Dalvi APR, et al. Accuracy of Zika virus disease case definition during simultaneous Dengue and Chikungunya epidemics. PLoS ONE. 2017;12(6):0179725. doi: 10.1371/journal.pone.0179725.
    1. Guerbois M, Fernandez-Salas I, Azar SR, et al. Outbreak of Zika virus infection, Chiapas State, Mexico, 2015, and first confirmed transmission by Aedes aegypti mosquitoes in the Americas. J Infect Dis. 2016;214(9):1349–1356. doi: 10.1093/infdis/jiw302.
    1. Azeredo EL, Dos Santos FB, Barbosa LS, et al. Clinical and laboratory profile of Zika and Dengue infected patients: lessons learned from the co-circulation of Dengue, Zika and Chikungunya in Brazil. PLoS Curr. 2018;10: 10.1371/currents.outbreaks.0bf6aeb4d30824de63c4d5d745b217f5.
    1. Silva MMO, Tauro LB, Kikuti M, Anjos RO, Santos VC, Gonçalves TSF, Paploski IAD, Moreira PSS, Nascimento LCJ, Campos GS, Ko AI, Weaver SC, Reis MG, Kitron U, Ribeiro GS. Concomitant transmission of Dengue, Chikungunya, and Zika viruses in Brazil: clinical and epidemiological findings from surveillance for acute febrile illness. Clin Infect Dis. 2019;69(8):1353–1359. doi: 10.1093/cid/ciy1083.
    1. Carrillo-Hernández MY, Ruiz-Saenz J, Villamizar LJ, Gómez-Rangel SY, Martínez-Gutierrez M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect Dis. 2018;18(1):61. doi: 10.1186/s12879-018-2976-1.
    1. Rodriguez-Barraquer I, Costa F, Nascimento EJM, Nery NJ, Castanha PMS, Sacramento GA, et al. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science. 2019;363(6427):607–610. doi: 10.1126/science.aav6618.
    1. Waggoner JJ, Gresh L, Vargas MJ, Ballesteros G, Tellez Y, Soda KJ, et al. Viremia and clinical presentation in Nicaraguan patients infected with zika virus, chikungunya virus, and dengue virus. Clin Infect Dis. 2016;63(12):1584–1590. doi: 10.1093/cid/ciw589.
    1. Brooks T, Roy-Burman A, Tuholske C, et al. Real-time evolution of zika virus disease outbreak, Roatán. Honduras Emerg Infect Dis. 2017;23(8):1360–1363. doi: 10.3201/eid2308.161944.
    1. Ali S, Gugliemini O, Harber S, et al. Environmental and social change drive the explosive emergence of zika virus in the Americas. PLoS Negl Trop Dis. 2017;11(2):0005135. doi: 10.1371/journal.pntd.0005135.
    1. Falcón-Lezama JA, Santos-Luna R, Román-Pérez S, et al. Analysis of spatial mobility in subjects from a Dengue endemic urban locality in Morelos State, Mexico. PLoS ONE. 2017;12(2):0172313. doi: 10.1371/journal.pone.0172313.
    1. Rosenberg ES, Doyle K, Munoz-Jordan JL, Klein L, Adams L, Lozier M, et al. Prevalence and incidence of Zika virus infection among household contacts of patients with Zika virus disease, puerto rico, 2016–2017. J Infect Dis. 2019;220(6):932–939. doi: 10.1093/infdis/jiy689.
    1. World Health Organization. Dengue: guidelines for diagnosis, treatment, prevention and control [Internet]. Switzerland: WHO Press; 2009 [cited 2020 Feb 03]. 146 p. .
    1. Sharp TM, Fischer M, Muñoz-Jordán JL, Paz-Bailey G, Staples JE, Gregory CJ, et al. Dengue and Zika virus diagnostic testing for patients with a clinically compatible illness and risk for infection with both viruses. MMWR Recomm Rep. 2019;68(1):1–10. doi: 10.15585/mmwr.rr6801a1.
    1. Paiva MHS, Guedes DRD, Leal WS, Ayres CFJ. Sensitivity of RT-PCR method in samples shown to be positive for Zika virus by RT-qPCR in vector competence studies. Genet Mol Biol. 2017;40(3):597–599. doi: 10.1590/1678-4685-gmb-2016-0312.
    1. Ruiz-Palacios GM, Guerrero L, Galindo-Fraga A, et al. La Red: The formation of an emerging infection diseases clinical research network in Mexico. Poster presented at: Society for Clinical Trials 34th Annual Meeting; 2013; Boston.

Source: PubMed

3
Subscribe