Cerebrovascular responses to incremental exercise during hypobaric hypoxia: effect of oxygenation on maximal performance

Andrew W Subudhi, Matthew C Lorenz, Charles S Fulco, Robert C Roach, Andrew W Subudhi, Matthew C Lorenz, Charles S Fulco, Robert C Roach

Abstract

We sought to describe cerebrovascular responses to incremental exercise and test the hypothesis that changes in cerebral oxygenation influence maximal performance. Eleven men cycled in three conditions: 1) sea level (SL); 2) acute hypoxia [AH; hypobaric chamber, inspired Po(2) (Pi(O(2))) 86 Torr]; and 3) chronic hypoxia [CH; 4,300 m, Pi(O(2)) 86 Torr]. At maximal work rate (W(max)), fraction of inspired oxygen (Fi(O(2))) was surreptitiously increased to 0.60, while subjects were encouraged to continue pedaling. Changes in cerebral (frontal lobe) (C(OX)) and muscle (vastus lateralis) oxygenation (M(OX)) (near infrared spectroscopy), middle cerebral artery blood flow velocity (MCA V(mean); transcranial Doppler), and end-tidal Pco(2) (Pet(CO(2))) were analyzed across %W(max) (significance at P < 0.05). At SL, Pet(CO(2)), MCA V(mean), and C(OX) fell as work rate rose from 75 to 100% W(max). During AH, Pet(CO(2)) and MCA V(mean) declined from 50 to 100% W(max), while C(OX) fell from rest. With CH, Pet(CO(2)) and C(OX) dropped throughout exercise, while MCA V(mean) fell only from 75 to 100% W(max). M(OX) fell from rest to 75% W(max) at SL and AH and throughout exercise in CH. The magnitude of fall in C(OX), but not M(OX), was different between conditions (CH > AH > SL). Fi(O(2)) 0.60 at W(max) did not prolong exercise at SL, yet allowed subjects to continue for 96 +/- 61 s in AH and 162 +/- 90 s in CH. During Fi(O(2)) 0.60, C(OX) rose and M(OX) remained constant as work rate increased. Thus cerebral hypoxia appeared to impose a limit to maximal exercise during hypobaric hypoxia (Pi(O(2)) 86 Torr), since its reversal was associated with improved performance.

Source: PubMed

3
Subscribe