Cosmetic outcome of femtosecond laser-assisted pterygium surgery

Darren Shu Jeng Ting, Yu-Chi Liu, Yi Fang Lee, Angel Jung Se Ji, Tien-En Tan, Hla M Htoon, Jodhbir S Mehta, Darren Shu Jeng Ting, Yu-Chi Liu, Yi Fang Lee, Angel Jung Se Ji, Tien-En Tan, Hla M Htoon, Jodhbir S Mehta

Abstract

Background: To examine the cosmetic outcome of femtosecond laser-assisted pterygium surgery (FLAPS) with conjunctival autograft (CAG) and its potential predictive factors.

Methods: This was a prospective interventional case series (NCT02866968). We included 29 patients (29 eyes) with primary pterygium who underwent FLAPS. Cosmetic outcome was graded by two graders (an ophthalmology resident and an experienced ophthalmologist) using Hirst classification system (1-4 = excellent-poor). Weighted Cohen's kappa analysis was performed to examine the intra- and inter-rater reliability. The relationship between cosmetic outcome and various factors were determined by Spearman's correlation coefficients (r).

Results: The preoperative severity of pterygium (Tan grading system) was mild/atrophic (7%), moderate/intermediate (62%), and severe/fleshy (31%). An ultrathin CAG (mean thickness of 74.5 ± 9.8 μm) was fashioned intraoperatively. An excellent cosmetic outcome of FLAPS (median ± IQR) was observed at 3 months (1.0 ± 1.0) and remained similar at 6 months (1.0 ± 0.0) and 12 months (1.0 ± 0.0) postoperatively. At final follow-up, 27 (93%) patients achieved good-to-excellent cosmetic outcome, with 1 (3%) patient having a poor outcome due to incomplete pterygium removal. Weighted kappa analysis of Hirst grading system showed excellent intra-rater (κ = 0.86-0.95) and inter-rater reliability (κ = 0.84-0.88). There was a weak and borderline significant correlation between good cosmetic outcome and reduced postoperative CAG thickness (r = 0.38, P = 0.06) but not with age, gender, preoperative pterygium severity, or intraoperative CAG thickness.

Conclusions: FLAPS can result in an excellent cosmetic outcome, which may be attributed to the beneficial effect of an ultrathin CAG.

Trial registration: ClinicalTrials.gov , NCT02866968 . Registered in July 2016.

Keywords: Cosmesis; Cosmetic outcome; Femtosecond laser; Pterygium; Pterygium surgery.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Illustrations of the cosmetic outcomes of patients with different grades of pterygium severity (based on Tan grading system) at various postoperative time points, including early (3 months), intermediate (6 months), and late (12 months) follow-up period. Preoperative and postoperative pictures of the ocular surface of the patient with mild pterygium (a-d), moderate pterygium (e-h), and severe pterygium (i-l). Excellent outcomes were achieved in all these three patients
Fig. 2
Fig. 2
Examples of grading of postoperative cosmetic outcome following femtosecond laser-assisted pterygium surgery. a An excellent outcome with a white, normal looking conjunctiva. b A good outcome with mild generalized conjunctival vascular injection. c A fair outcome with localized conjunctival vascular injection at the surgical site only (blue arrow). d A poor outcome with localized conjunctival vascular injection and additional conjunctival changes, including conjunctival scarring, puckering and recurrence. In this case, the poor outcome was related to an incomplete removal of the pterygium (red arrow)

References

    1. Rezvan F, Khabazkhoob M, Hooshmand E, Yekta A, Saatchi M, Hashemi H. Prevalence and risk factors of pterygium: a systematic review and meta-analysis. Surv Ophthalmol. 2018;63(5):719–735. doi: 10.1016/j.survophthal.2018.03.001.
    1. Bradley JC, Yang W, Bradley RH, Reid TW, Schwab IR. The science of pterygia. Br J Ophthalmol. 2010;94(7):815–820. doi: 10.1136/bjo.2008.151852.
    1. Chui J, Coroneo MT, Tat LT, Crouch R, Wakefield D, Di Girolamo N. Ophthalmic pterygium: a stem cell disorder with premalignant features. Am J Pathol. 2011;178(2):817–827. doi: 10.1016/j.ajpath.2010.10.037.
    1. Di Girolamo N, Chui J, Coroneo MT, Wakefield D. Pathogenesis of pterygia: role of cytokines, growth factors, and matrix metalloproteinases. Prog Retin Eye Res. 2004;23(2):195–228. doi: 10.1016/j.preteyeres.2004.02.002.
    1. Janson BJ, Sikder S. Surgical management of pterygium. Ocul Surf. 2014;12(2):112–119. doi: 10.1016/j.jtos.2014.01.001.
    1. Hirst LW. Recurrence and complications after 1,000 surgeries using pterygium extended removal followed by extended conjunctival transplant. Ophthalmology. 2012;119(11):2205–2210. doi: 10.1016/j.ophtha.2012.06.021.
    1. Clearfield E, Muthappan V, Wang X, Kuo IC. Conjunctival autograft for pterygium. Cochrane Database Syst Rev. 2016;2:CD011349.
    1. Liu HY, Chen YF, Chen TC, Yeh PT, Hu FR, Chen WL. Surgical result of pterygium extended removal followed by fibrin glue-assisted amniotic membrane transplantation. J Formos Med Assoc. 2017;116(1):10–17. doi: 10.1016/j.jfma.2015.10.013.
    1. Bamdad S, Kooshki AS, Yasemi M. Surgical outcome of conjunctival rotational autograft-mitomycin C (MMC) versus free conjunctival autograft-MMC for pterygium removal: a randomized clinical trial. Electron Physician. 2017;9(12):5877–5884. doi: 10.19082/5877.
    1. Chen R, Huang G, Liu S, Ma W, Yin X, Zhou S. Limbal conjunctival versus amniotic membrane in the intraoperative application of mitomycin C for recurrent pterygium: a randomized controlled trial. Graefes Arch Clin Exp Ophthalmol. 2017;255(2):375–385. doi: 10.1007/s00417-016-3509-5.
    1. Küçükerdönmez C, Akova YA, Altinörs DD. Comparison of conjunctival autograft with amniotic membrane transplantation for pterygium surgery: surgical and cosmetic outcome. Cornea. 2007;26(4):407–413. doi: 10.1097/ICO.0b013e318033b3d4.
    1. Hirst LW. Recurrent pterygium surgery using pterygium extended removal followed by extended conjunctival transplant: recurrence rate and cosmesis. Ophthalmology. 2009;116(7):1278–1286. doi: 10.1016/j.ophtha.2009.01.044.
    1. Hirst LW. Cosmesis after pterygium extended removal followed by extended conjunctival transplant as assessed by a new, web-based grading system. Ophthalmology. 2011;118(9):1739–1746. doi: 10.1016/j.ophtha.2011.01.045.
    1. Tan DT, Chee SP, Dear KB, Lim AS. Effect of pterygium morphology on pterygium recurrence in a controlled trial comparing conjunctival autografting with bare sclera excision. Arch Ophthalmol. 1997;115(10):1235–1240. doi: 10.1001/archopht.1997.01100160405001.
    1. Liu J, Fu Y, Xu Y, Tseng SC. New grading system to improve the surgical outcome of multirecurrent pterygia. Arch Ophthalmol. 2012;130(1):39–49. doi: 10.1001/archophthalmol.2011.328.
    1. Liu YC, Ji AJS, Tan TE, Fuest M, Mehta JS. Femtosecond laser-assisted preparation of conjunctival autograft for pterygium surgery. Sci Rep. 2020;10(1):2674.
    1. Fuest M, Liu YC, Yam GH, Teo EP, Htoon HM, Coroneo MT, et al. Femtosecond laser-assisted conjunctival autograft preparation for pterygium surgery. Ocul Surf. 2017;15(2):211–217. doi: 10.1016/j.jtos.2016.12.001.
    1. Liu YC, Devarajan K, Tan TE, Ang M, Mehta JS. Optical coherence tomography angiography for evaluation of reperfusion following pterygium surgery. Am J Ophthalmol. 2019;207:151–158. doi: 10.1016/j.ajo.2019.04.003.
    1. Fuest M, Liu YC, Coroneo MT, Mehta JS. Femtosecond laser assisted pterygium surgery. Cornea. 2017;36(7):889–892. doi: 10.1097/ICO.0000000000001230.
    1. Cohen J. Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol Bull. 1968;70(4):213–220. doi: 10.1037/h0026256.
    1. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb) 2012;22(3):276–282. doi: 10.11613/BM.2012.031.
    1. Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg. 2018;126(5):1763–1768. doi: 10.1213/ANE.0000000000002864.
    1. Prabhasawat P, Barton K, Burkett G, Tseng SC. Comparison of conjunctival autografts, amniotic membrane grafts, and primary closure for pterygium excision. Ophthalmology. 1997;104(6):974–985. doi: 10.1016/S0161-6420(97)30197-3.
    1. Zhang X, Li Q, Xiang M, Zou H, Liu B, Zhou H, et al. Bulbar conjunctival thickness measurements with optical coherence tomography in healthy Chinese subjects. Invest Ophthalmol Vis Sci. 2013;54(7):4705–4709. doi: 10.1167/iovs.12-11003.
    1. Ti SE, Chee SP, Dear KB, Tan DT. Analysis of variation in success rates in conjunctival autografting for primary and recurrent pterygium. Br J Ophthalmol. 2000;84(4):385–389. doi: 10.1136/bjo.84.4.385.
    1. Romano V, Cruciani M, Conti L, Fontana L. Fibrin glue versus sutures for conjunctival autografting in primary pterygium surgery. Cochrane Database Syst Rev. 2016;12(12):CD011308.
    1. Kwon SH, Kim HK. Analysis of recurrence patterns following pterygium surgery with conjunctival autografts. Medicine (Baltimore) 2015;94(4):e518. doi: 10.1097/MD.0000000000000518.
    1. Ting DSJ, Liu YC, Patil M, Ji AJS, Fang XL, Tham YC, et al. Proposal and validation of a new grading system for pterygium (SLIT2). Br J Ophthalmol. 2020;bjophthalmol-2020-315831. 10.1136/bjophthalmol-2020-315831.
    1. Jackson S, Harrad RA, Morris M, Rumsey N. The psychosocial benefits of corrective surgery for adults with strabismus. Br J Ophthalmol. 2006;90(7):883–888. doi: 10.1136/bjo.2005.089516.
    1. Ng JY, Ting DSJ, Vaideanu-Collins D, Mudhar HS, Wagner B, Goggin P, et al. Self-tattooing of eyeball with inadvertent corneoscleral perforation: the implication of social media. Eye (Lond) 2019;33(10):1672–1674. doi: 10.1038/s41433-019-0472-5.
    1. Ang M, Mehta JS, Rosman M, Li L, Koh JC, Htoon HM, et al. Visual outcomes comparison of 2 femtosecond laser platforms for laser in situ keratomileusis. J Cataract Refract Surg. 2013;39(11):1647–1652. doi: 10.1016/j.jcrs.2013.04.044.
    1. Bartlett JD, Miller KM. The economics of femtosecond laser-assisted cataract surgery. Curr Opin Ophthalmol. 2016;27(1):76–81. doi: 10.1097/ICU.0000000000000219.
    1. Chamberlain WD. Femtosecond laser-assisted deep anterior lamellar keratoplasty. Curr Opin Ophthalmol. 2019;30(4):256–263. doi: 10.1097/ICU.0000000000000574.

Source: PubMed

3
Subscribe