Mathematical modeling of HIV-1 transmission risk from condomless anal intercourse in HIV-infected MSM by the type of initial ART

Juan Berenguer, Javier Parrondo, Raphael J Landovitz, Juan Berenguer, Javier Parrondo, Raphael J Landovitz

Abstract

Background: Initiation of antiretroviral therapy (ART) for HIV infection using regimens that include integrase strand transfer inhibitors (INSTIs) is associated with a faster decline in HIV-1 RNA than what is observed with regimens that are anchored by other ART drug classes. We compared the impact of ART regimens that include dolutegravir (DTG), raltegravir (RAL), efavirenz (EFV), or darunavir/ritonavir (DRV/r), in treatment naïve men who have sex with men (MSM) on the probability of HIV-1 sexual transmission events (HIV-TE).

Setting: Mathematical model.

Methods: We used discrete event simulation modeling to estimate HIV-TE during the first 8 weeks after initiation of ART. HIV-1 RNA decay in men was modeled from the databases of three clinical trials: Single (DTG vs. EFV), Spring-2 (DTG vs. RAL) and Flamingo (DTG vs. DRV/r).

Results: All regimens substantially reduced the number of HIV-TE compared to no treatment. DTG led to fewer HIV-TE than its comparator in each of the three trials: 22.72% fewer transmissions than EFV; 0.52% fewer transmissions than RAL; and 38.67% fewer transmissions than DRV/r. The number of patients needed to treat with DTG to prevent one transmission event instead of comparator was 48 vs EFV, 2,194 vs RAL, and 31 vs DRV/r.

Conclusion: Unsurprisingly, this mathematical model showed that all regimens reduced HIV-TE compared to no treatment. The results also suggest that that initial use of INSTIs, by virtue of their superior viral decay kinetics, have the potential to reduce HIV-1 horizontal transmission following initiation of ART in naïve MSM.

Trial registration: ClinicalTrials.gov NCT03183154.

Conflict of interest statement

J. Berenguer has received research grants from AbbVie, Gilead Sciences, Merck, and ViiV; as well as honoraria for speaking or advisory board participation from AbbVie, Gilead Sciences, Janssen, Merck, and ViiV. J. Parrondo has received consultancy fees from Biogen, BMS, Lilly, Pfizer, PierrreFabre, Roche, Servier, Takeda and ViiV. R.J. Landovitz has received honoraria for speaking or advisory board participation from Gilead Sciences, Merck Sharpe & Dohme, and Roche. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Key input and output variables…
Fig 1. Key input and output variables in the model.
Abbreviations: DES, discrete simulation events.
Fig 2. Comparison between DTG and comparators…
Fig 2. Comparison between DTG and comparators (EFV in Single, RAL in Spring-2, and DRV/r in Flamingo) in the relative reduction of new simulated sexually transmitted infections in comparison to no treatment for the full 0 to week 8 period.
Base case scenario: probability of transmission according to the mean value of the β0 parameter in the Wilson equation. Sensitivity analysis 1: probability of transmission according to the lower 95% confidence interval value of the β0 parameter in the Wilson equation. Sensitivity analysis 2: probability of transmission according to the upper 95% confidence interval value of the β0 parameter in the Wilson equation. Abbreviations: DTG, dolutegravir; RAL, raltegravir; DRVr, darunavir/ritonavir.

References

    1. Centers for Disease Control and Prevention. HIV Surveillance Report, 2015; vol. 27. . Published November 2016. Accessed July 14, 20172016.
    1. Singh S, Song R, Johnson AS, McCray E, Hall HI. HIV Incidence, HIV Prevalence, and Undiagnosed HIV Infections in Men Who Have Sex With Men, United States. Ann Intern Med. 2018. Epub 2018/03/20. 10.7326/M17-2082 .
    1. Beyrer C, Baral SD, van Griensven F, Goodreau SM, Chariyalertsak S, Wirtz AL, et al. Global epidemiology of HIV infection in men who have sex with men. Lancet. 2012;380(9839):367–77. Epub 2012/07/24. 10.1016/S0140-6736(12)60821-6
    1. Beyrer C, Sullivan P, Sanchez J, Baral SD, Collins C, Wirtz AL, et al. The increase in global HIV epidemics in MSM. AIDS. 2013;27(17):2665–78. Epub 2013/07/12. 10.1097/01.aids.0000432449.30239.fe .
    1. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493–505. Epub 2011/07/20. 10.1056/NEJMoa1105243
    1. Rodger AJ, Cambiano V, Bruun T, Vernazza P, Collins S, van Lunzen J, et al. Sexual Activity Without Condoms and Risk of HIV Transmission in Serodifferent Couples When the HIV-Positive Partner Is Using Suppressive Antiretroviral Therapy. JAMA. 2016;316(2):171–81. Epub 2016/07/13. 10.1001/jama.2016.5148 .
    1. Bavinton B, Grinsztejn B, Phanuphak N, Jin F, Zablotska I, Prestage G, et al. HIV treatment prevents HIV transmission in male serodiscordant couples in Australia, Thailand and Brazil. Abstract # TUAC0506LB. 9th IAS Conference on HIV Science (IAS 2017); 23–26 July 2017; Paris, France2017.
    1. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med. 2010;363(27):2587–99. Epub 2010/11/26. 10.1056/NEJMoa1011205
    1. McCormack S, Dunn DT, Desai M, Dolling DI, Gafos M, Gilson R, et al. Pre-exposure prophylaxis to prevent the acquisition of HIV-1 infection (PROUD): effectiveness results from the pilot phase of a pragmatic open-label randomised trial. Lancet. 2016;387(10013):53–60. Epub 2015/09/14. 10.1016/S0140-6736(15)00056-2
    1. Molina JM, Capitant C, Spire B, Pialoux G, Cotte L, Charreau I, et al. On-Demand Preexposure Prophylaxis in Men at High Risk for HIV-1 Infection. N Engl J Med. 2015;373(23):2237–46. Epub 2015/12/02. 10.1056/NEJMoa1506273 .
    1. Mirochnick M, E. D, Shapiro DE, Morrison L, Frenkel L, Chakhtoura N, et al., editors. Randomized trial of raltegravir-ART vs efavirenz-ART when initiated during pregnancy. Abstract number: 39. Conference on Retroviruses and Opportunistic Infections (CROI); 2019; Seattle, Washington.
    1. Kintu K, Malaba T, Nakibuka J, Papamichael C, Colbers A, Seden K, et al., editors. RCT of dolutegravir vs efavirenz-based therapy initiated in late pregnancy: Dolphin-2. Abstract number: 40. Conference on Retroviruses and Opportunistic Infections (CROI); 2019; Seattle, Washington.
    1. Walmsley SL, Antela A, Clumeck N, Duiculescu D, Eberhard A, Gutierrez F, et al. Dolutegravir plus abacavir-lamivudine for the treatment of HIV-1 infection. N Engl J Med. 2013;369(19):1807–18. Epub 2013/11/08. 10.1056/NEJMoa1215541 .
    1. Raffi F, Jaeger H, Quiros-Roldan E, Albrecht H, Belonosova E, Gatell JM, et al. Once-daily dolutegravir versus twice-daily raltegravir in antiretroviral-naive adults with HIV-1 infection (SPRING-2 study): 96 week results from a randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2013;13(11):927–35. Epub 2013/10/01. 10.1016/S1473-3099(13)70257-3 .
    1. Clotet B, Feinberg J, van Lunzen J, Khuong-Josses MA, Antinori A, Dumitru I, et al. Once-daily dolutegravir versus darunavir plus ritonavir in antiretroviral-naive adults with HIV-1 infection (FLAMINGO): 48 week results from the randomised open-label phase 3b study. Lancet. 2014;383(9936):2222–31. Epub 2014/04/05. 10.1016/S0140-6736(14)60084-2 .
    1. Rodger AJ, Lampe FC, Grulich AE, Fisher M, Friedland G, Phanuphak N, et al. Transmission risk behaviour at enrolment in participants in the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial. HIV Med. 2015;16 Suppl 1:64–76. Epub 2015/02/26. 10.1111/hiv.12235
    1. Royston P, Altman D. Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling. Applied Statistics. 1994;43(3):429–67.
    1. Committee UKCHCW. Predicting virological decay in patients starting combination antiretroviral therapy. AIDS. 2016;30(11):1817–27. Epub 2016/04/29. 10.1097/QAD.0000000000001125
    1. Wilson DP, Law MG, Grulich AE, Cooper DA, Kaldor JM. Relation between HIV viral load and infectiousness: a model-based analysis. The Lancet. 2008;372(9635):314–20. 10.1016/s0140-6736(08)61115-0
    1. Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C, Wabwire-Mangen F, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N Engl J Med. 2000;342(13):921–9. 10.1056/NEJM200003303421303 .
    1. Patel P, Borkowf CB, Brooks JT, Lasry A, Lansky A, Mermin J. Estimating per-act HIV transmission risk: a systematic review. AIDS. 2014;28(10):1509–19. Epub 2014/05/09. 10.1097/QAD.0000000000000298 .
    1. Mendes D, Alves C, Batel-Marques F. Number needed to treat (NNT) in clinical literature: an appraisal. BMC Med. 2017;15(1):112 Epub 2017/06/03. 10.1186/s12916-017-0875-8
    1. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Antiretroviral Therapy for the Prevention of HIV-1 Transmission. N Engl J Med. 2016;375(9):830–9. Epub 2016/07/19. 10.1056/NEJMoa1600693
    1. Bavinton BR, Pinto AN, Phanuphak N, Grinsztejn B, Prestage GP, Zablotska-Manos IB, et al. Viral suppression and HIV transmission in serodiscordant male couples: an international, prospective, observational, cohort study. The Lancet HIV. 2018;5(8):e438–e47. 10.1016/S2352-3018(18)30132-2
    1. Rodger A, Cambiano V, Bruun T, Vernazza P, Collins S, Corbelli5 GM, et al. Risk of HIV transmission through condomless sex in MSM couples with suppressive ART: The PARTNER2 Study extended results in gay men. AIDS 2018, 23–27 July 2018, Amsterdam. Late breaker oral abstract WEAX0104LB. 2018.
    1. Díaz-Emparanza I. Selección del número de replicaciones en un estudio de simulación. Estadística española. 1995;37(140):497–509.

Source: PubMed

3
Subscribe