Infant Skin Bacterial Communities Vary by Skin Site and Infant Age across Populations in Mexico and the United States

Melissa B Manus, Sahana Kuthyar, Ana Gabriela Perroni-Marañón, Alejandra Núñez-de la Mora, Katherine R Amato, Melissa B Manus, Sahana Kuthyar, Ana Gabriela Perroni-Marañón, Alejandra Núñez-de la Mora, Katherine R Amato

Abstract

Daily practices put humans in close contact with the surrounding environment, and differences in these practices have an impact on human physiology, development, and health. There is mounting evidence that the microbiome represents an interface that mediates interactions between the human body and the environment. In particular, the skin microbiome serves as the primary interface with the external environment and aids in host immune function by contributing as the first line of defense against pathogens. Despite these important connections, we have only a basic understanding of how the skin microbiome is first established, or which environmental factors contribute to its development. To this end, this study compared the skin bacterial communities of infants (n = 47) living in four populations in Mexico and the United States that span the socioeconomic gradient, where we predicted that variation in physical and social environments would shape the infant skin microbiome. Results of 16S rRNA bacterial gene sequencing on 119 samples (armpit, hand, and forehead) showed that infant skin bacterial diversity and composition are shaped by population-level factors, including those related to socioeconomic status and household composition, and vary by skin site and infant age. Differences in infant-environment interactions, including with other people, appear to vary across the populations, likely influencing infant microbial exposures and, in turn, the composition of infant skin bacterial communities. These findings suggest that variation in microbial exposures stemming from the local environment in infancy can impact the establishment of the skin microbiome across body sites, with implications for developmental and health outcomes.IMPORTANCE This study contributes to the sparse literature on the infant skin microbiome in general, and the virtually nonexistent literature on the infant skin microbiome in a field setting. While microbiome research often addresses patterns at a national scale, this study addresses the influence of population-level factors, such as maternal socioeconomic status and contact with caregivers, on infant skin bacterial communities. This approach strengthens our understanding of how local variables influence the infant skin microbiome, and paves the way for additional studies to combine biological sample collection with questionnaires to adequately capture how specific behaviors dictate infant microbial exposures. Work in this realm has implications for infant care and health, as well as for investigating how the microbial communities of different body sites develop over time, with applications to specific health outcomes associated with the skin microbiome (e.g., immune system development or atopic dermatitis).

Keywords: human microbiome; infancy; microbial ecology; skin microbiome.

Copyright © 2020 Manus et al.

Figures

FIG 1
FIG 1
NMDS plots displaying samples by population: weighted UniFrac distances (left) and unweighted UniFrac distances (right).
FIG 2
FIG 2
NMDS plots displaying samples by body site: weighted UniFrac distances (left) and unweighted UniFrac distances (right) (AP = armpit, FH = forehead, HA = hand).
FIG 3
FIG 3
Heatmap of algorithm-based classifier results by body site. Accuracy of classification was 80% for armpit samples, 60% for hand samples, and 14% for forehead samples.
FIG 4
FIG 4
Differences in bacterial diversity across the populations vary by body site (ANOVA on Faith’s PD). Clockwise from top left: all skin samples combined; forehead samples; armpit samples; hand samples (* = P < 0.05, ** = P < 0.01, *** = P < 0.001).

References

    1. Robinson CJ, Young VB. 2010. Antibiotic administration alters the community structure of the gastrointestinal microbiota. Gut Microbes 1:279–284. doi:10.4161/gmic.1.4.12614.
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. doi:10.1038/nature12820.
    1. Grieneisen LE, Livermore J, Alberts S, Tung J, Archie EA. 2017. Group living and male dispersal predict the core gut microbiome in wild baboons. Integr Comp Biol 57:770–785. doi:10.1093/icb/icx046.
    1. Amato KR, Van Belle S, Di Fiore A, Estrada A, Stumpf R, White B, Nelson KE, Knight R, Leigh SR. 2017. Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate. Microb Ecol 74:250–258. doi:10.1007/s00248-017-0938-6.
    1. Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H. 2016. Social behavior shapes the chimpanzee pan-microbiome. Sci Adv 2:e1500997. doi:10.1126/sciadv.1500997.
    1. Terrapon N, Henrissat B. 2014. How do gut microbes break down dietary fiber? Trends Biochem Sci 39:156–158. doi:10.1016/j.tibs.2014.02.005.
    1. Flint HJ. 2012. The impact of nutrition on the human microbiome. Nutr Rev 70:S10–S13. doi:10.1111/j.1753-4887.2012.00499.x.
    1. Capone KA, Dowd SE, Stamatas GN, Nikolovski J. 2011. Diversity of the human skin microbiome early in life. J Invest Dermatol 131:2026–2032. doi:10.1038/jid.2011.168.
    1. Hooper LV, MacPherson AJ. 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10:159–169. doi:10.1038/nri2710.
    1. Foster JA, McVey Neufeld KA. 2013. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312. doi:10.1016/j.tins.2013.01.005.
    1. Baviera G, Leoni MC, Capra L, Cipriani F, Longo G, Maiello N, Ricci G, Galli E. 2014. Microbiota in healthy skin and in atopic eczema. Biomed Res Int 2014:436921–436926. doi:10.1155/2014/436921.
    1. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, Spencer S, Hall JA, Dzutsev A, Kong H, Campbell DJ, Trinchieri G, Segre JA, Belkaid Y. 2012. Compartmentalized control of skin immunity by resident commensals. Science 337:1115–1119. doi:10.1126/science.1225152.
    1. Vaughn AR, Notay M, Clark AK, Sivamani RK. 2017. Skin-gut axis: the relationship between intestinal bacteria and skin health. WJD 6:52–58. doi:10.5314/wjd.v6.i4.52.
    1. Salem I, Ramser A, Isham N, Ghannoum MA. 2018. The gut microbiome as a major regulator of the gut-skin axis. Front Microbiol 9:1459. doi:10.3389/fmicb.2018.01459.
    1. O'Neill CA, Monteleone G, McLaughlin JT, Paus R. 2016. The gut-skin axis in health and disease: a paradigm with therapeutic implications. Bioessays 38:1167–1176. doi:10.1002/bies.201600008.
    1. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975. doi:10.1073/pnas.1002601107.
    1. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA, NISC Comparative Sequencing Program. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192. doi:10.1126/science.1171700.
    1. Charbonneau MR, O'Donnell D, Blanton LV, Totten SM, Davis JCC, Barratt MJ, Cheng J, Guruge J, Talcott M, Bain JR, Muehlbauer MJ, Ilkayeva O, Wu C, Struckmeyer T, Barile D, Mangani C, Jorgensen J, Fan Y-m, Maleta K, Dewey KG, Ashorn P, Newgard CB, Lebrilla C, Mills DA, Gordon JI. 2016. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164:859–871. doi:10.1016/j.cell.2016.01.024.
    1. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. 2015. The infant microbiome development: Mom matters. Trends Mol Med 21:109–117. doi:10.1016/j.molmed.2014.12.002.
    1. Karkman A, Lehtimäki J, Ruokolainen L. 2017. The ecology of human microbiota: dynamics and diversity in health and disease. Ann N Y Acad Sci 1399:78–92. doi:10.1111/nyas.13326.
    1. Torrazza RM, Neu J. 2011. The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol 31:S29–S34. doi:10.1038/jp.2010.172.
    1. Dowd JB, Renson A. 2018. “Under the skin” and into the gut: social epidemiology of the microbiome. Curr Epidemiol Rep 5:432–441. doi:10.1007/s40471-018-0167-7.
    1. Tung J, Barreiro LB, Burns MB, Grenier JC, Lynch J, Grieneisen LE, Altmann J, Alberts SC, Blekhman R, Archie EA. 2015. Social networks predict gut microbiome composition in wild baboons. Elife 4:e05224. doi:10.7554/eLife.05224.
    1. Archie EA, Tung J. 2015. Social behavior and the microbiome. Curr Opin Behav Sci 6:28–34. doi:10.1016/j.cobeha.2015.07.008.
    1. Lombardo MP. 2008. Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav Ecol Sociobiol 62:479–497. doi:10.1007/s00265-007-0428-9.
    1. Perofsky AC, Lewis RJ, Abondano LA, Di Fiore A, Meyers LA. 2017. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc R Soc B 284:20172274. doi:10.1098/rspb.2017.2274.
    1. Archie EA, Theis KR. 2011. Animal behaviour meets microbial ecology. Anim Behav 82:425–436. doi:10.1016/j.anbehav.2011.05.029.
    1. Meadow JF, Bateman AC, Herkert KM, O'Connor TK, Green JL. 2013. Significant changes in the skin microbiome mediated by the sport of roller derby. PeerJ 1:e53. doi:10.7717/peerj.53.
    1. Ross AA, Doxey AC, Neufeld JD. 2017. The skin microbiome of cohabiting couples. mSystems 2:e00043-17. doi:10.1128/mSystems.00043-17.
    1. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Gregory Caporaso J, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knight R. 2013. Cohabiting family members share microbiota with one another and with their dogs. Elife 2:e00458. doi:10.7554/eLife.00458.
    1. Dunn RR, Fierer N, Henley JB, Leff JW, Menninger HL. 2013. Home life: factors structuring the bacterial diversity found within and between homes. PLoS One 8:e64133. doi:10.1371/journal.pone.0064133.
    1. Flores GE, Bates ST, Knights D, Lauber CL, Stombaugh J, Knight R, Fierer N. 2011. Microbial biogeography of public restroom surfaces. PLoS One 6:e28132. doi:10.1371/journal.pone.0028132.
    1. Urban J, Fergus DJ, Savage AM, Ehlers M, Menninger HL, Dunn RR, Horvath JE. 2016. The effect of habitual and experimental antiperspirant and deodorant product use on the armpit microbiome. PeerJ 4:e1605. doi:10.7717/peerj.1605.
    1. Yu JJ, Manus MB, Mueller O, Windsor SC, Horvath JE, Nunn CL. 2018. Antibacterial soap use impacts skin microbial communities in rural Madagascar. PLoS One 13:e0199899. doi:10.1371/journal.pone.0199899.
    1. Prescott SL, Larcombe DL, Logan AC, West C, Burks W, Caraballo L, Levin M, Etten E, Van Horwitz P, Kozyrskyj A, Campbell DE. 2017. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J 10:29. doi:10.1186/s40413-017-0160-5.
    1. Thompson AL, Monteagudo-Mera A, Cadenas MB, Lampl ML, Azcarate-Peril MA. 2015. Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front Cell Infect Microbiol 5:3. doi:10.3389/fcimb.2015.00003.
    1. Meehan CL, Lackey KA, Hagen EH, Williams JE, Roulette J, Helfrecht C, McGuire MA, McGuire MK. 2018. Social networks, cooperative breeding, and the human milk microbiome. Am J Hum Biol 30:e23131. doi:10.1002/ajhb.23131.
    1. Lane AA, McGuire MK, McGuire MA, Williams JE, Lackey KA, Hagen EH, Kaul A, Gindola D, Gebeyehu D, Flores KE, Foster JA, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Kvist LJ, Otoo GE, Rodríguez JM, Ruiz L, Pareja RG, Bode L, Price WJ, Meehan CL. 2019. Household composition and the infant fecal microbiome: the INSPIRE study. Am J Phys Anthropol 169:526–514. doi:10.1002/ajpa.23843.
    1. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, Armanini F, Truong DT, Manara S, Zolfo M, Beghini F, Bertorelli R, De Sanctis V, Bariletti I, Canto R, Clementi R, Cologna M, Crifò T, Cusumano G, Gottardi S, Innamorati C, Masè C, Postai D, Savoi D, Duranti S, Lugli GA, Mancabelli L, Turroni F, Ferrario C, Milani C, Mangifesta M, Anzalone R, Viappiani A, Yassour M, Vlamakis H, Xavier R, Collado CM, Koren O, Tateo S, Soffiati M, Pedrotti A, Ventura M, Huttenhower C, Bork P, Segata N. 2018. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:133–145. doi:10.1016/j.chom.2018.06.005.
    1. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Sears MR, Becker AB, Scott JA, Kozyrskyj AL. 2013. Infant gut microbiota and the hygiene hypothesis of allergic disease: impact of household pets and siblings on microbiota composition and diversity. Allergy Asthma Clin Immunol 9:15. doi:10.1186/1710-1492-9-15.
    1. Hasegawa K, Linnemann RW, Mansbach JM, Ajami NJ, Espinola JA, Fiechtner LG, Petrosino JF, Camargo CA. 2017. Household siblings and nasal and fecal microbiota in infants. Pediatr Int 59:473–481. doi:10.1111/ped.13168.
    1. Laursen MF, Laursen RP, Larnkjær A, Mølgaard C, Michaelsen KF, Frøkiær H, Bahl MI, Licht TR. 2017. Faecalibacterium gut colonization is accelerated by presence of older siblings. mSphere 2:e00448-17. doi:10.1128/mSphere.00448-17.
    1. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–227. doi:10.1038/nature11053.
    1. Nikolovski J, Stamatas GN, Kollias N, Wiegand BC. 2008. Barrier function and water-holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Invest Dermatol 128:1728–1736. doi:10.1038/sj.jid.5701239.
    1. Hoeger PH, Enzmann CC. 2002. Skin physiology of the neonate and young infant: a prospective study of functional skin parameters during early infancy. Pediatr Dermatol 19:256–262. doi:10.1046/j.1525-1470.2002.00082.x.
    1. Lou J, Gu H, Wang H, An Q, Xu J. 2016. Complete genome sequence of Massilia sp. WG5, an efficient phenanthrene-degrading bacterium from soil. J Biotechnol 218:49–50. doi:10.1016/j.jbiotec.2015.11.026.
    1. De Clerck E, Gevers D, Sergeant K, Rodríguez-Díaz M, Herman L, Logan NA, Van Beeumen J, De Vos P. 2004. Genomic and phenotypic comparison of Bacillus fumarioli isolates from geothermal Antarctic soil and gelatine. Res Microbiol 155:483–490. doi:10.1016/j.resmic.2004.02.007.
    1. Onwosi CO, Odibo FJC. 2012. Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol 28:937–942. doi:10.1007/s11274-011-0891-3.
    1. Rinkinen ML, Koort JMK, Ouwehand AC, Westermarck E, Björkroth KJ. 2004. Streptococcus alactolyticus is the dominating culturable lactic acid bacterium species in canine jejunum and feces of four fistulated dogs. FEMS Microbiol Lett 230:35–39. doi:10.1016/S0378-1097(03)00851-6.
    1. Farrow JAE, Kruze J, Phillips BA, Bramley AJ, Collins MD. 1984. Taxonomic studies on Streptococcus bovis and Streptococcus equinus: description of Streptococcus alactolyticus sp. nov. and Streptococcus saccharolyticus sp. nov. Syst Appl Microbiol 5:467–482. doi:10.1016/S0723-2020(84)80004-1.
    1. Chanprame S, Todd JJ, Widholm JM. 1996. Prevention of pink-pigmented methylotrophic bacteria (Methylobacterium mesophilicum) contamination of plant tissue cultures. Plant Cell Rep 16:222–225. doi:10.1007/s002990050211.
    1. Leung MHY, Wilkins D, Lee PKH. 2015. Insights into the pan-microbiome: skin microbial communities of Chinese individuals differ from other racial groups. Sci Rep 5:11845. doi:10.1038/srep11845.
    1. Blaser MJ, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Estrada I, Gao Z, Clemente JC, Costello EK, Knight R. 2013. Distinct cutaneous bacterial assemblages in a sampling of South American Amerindians and US residents. ISME J 7:85–95. doi:10.1038/ismej.2012.81.
    1. Fettweis JM, Paul Brooks J, Serrano MG, Sheth NU, Girerd PH, Edwards DJ, Strauss JF, Jefferson KK, Buck GA. 2014. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiol 160:2272–2282. doi:10.1099/mic.0.081034-0.
    1. Gaulke CA, Sharpton TJ. 2018. The influence of ethnicity and geography on human gut microbiome composition. Nat Med 24:1495–1496. doi:10.1038/s41591-018-0210-8.
    1. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, Magris M, Hidalgo G, Contreras M, Noya-Alarcón Ó, Lander O, McDonald J, Cox M, Walter J, Oh PL, Ruiz JF, Rodriguez S, Shen N, Song SJ, Metcalf J, Knight R, Dantas G, Dominguez-Bello MG. 2015. The microbiome of uncontacted Amerindians. Sci Adv 1:e1500183. doi:10.1126/sciadv.1500183.
    1. Manus MB, Yu JJ, Park LP, Mueller O, Windsor SC, Horvath JE, Nunn CL. 2017. Environmental influences on the skin microbiome of humans and cattle in rural Madagascar. Evol Med Public Health 2017:144–153. doi:10.1093/emph/eox013.
    1. Song J, Oh H-M, Lee J-S, Woo S-B, Cho J-C. 2009. Inhella inkyongensis gen. nov., sp. nov., a new freshwater bacterium in the order Burkholderiales. J Microbiol Biotechnol 19:5–10.
    1. Zhang K, Tang Y, Zhang L, Dai J, Wang Y, Luo X, Liu M, Luo G, Fang C. 2009. Parasegetibacter luojiensis gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from a forest soil. Int J Syst Evol Microbiol 59:3058–3062. doi:10.1099/ijs.0.008763-0.
    1. Nguyen TM, Kim J. 2017. Limnobacter humi sp. nov., a thiosulfate-oxidizing, heterotrophic bacterium isolated from humus soil, and emended description of the genus Limnobacter Spring et al. 2001. J Microbiol 55:508–513. doi:10.1007/s12275-017-6645-7.
    1. Kubota M, Hagiwara N, Shirakawa T. 2012. Disinfection of seeds of cucurbit crops infested with Acidovorax citrulli with dry heat treatment. J Phytopathology 160:364–368. doi:10.1111/j.1439-0434.2012.01913.x.
    1. Pál C, Papp B, Lercher MJ. 2005. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37 :1372–1375. doi:10.1038/ng1686.
    1. Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, Segata N, Bork P. 2018. Selective maternal seeding and environment shape the human gut microbiome. Genome Res 28:561–568. doi:10.1101/gr.233940.117.
    1. Brito IL, Gurry T, Zhao S, Huang K, Young SK, Shea TP, Naisilisili W, Jenkins AP, Jupiter SD, Gevers D, Alm EJ. 2019. Transmission of human-associated microbiota along family and social networks. Nat Microbiol 4:964–971. doi:10.1038/s41564-019-0409-6.
    1. Perez GIP, Gao Z, Jourdain R, Ramirez J, Gany F, Clavaud C, Demaude J, Breton L, Blaser MJ. 2016. Body site is a more determinant factor than human population diversity in the healthy skin microbiome. PLoS One 11:e0151990. doi:10.1371/journal.pone.0151990.
    1. Zhu T, Liu X, Kong FQ, Duan YY, Yee AL, Kim M, Galzote C, Gilbert JA, Quan ZX. 2019. Age and mothers: potent influences of children’s skin microbiota. J Invest Dermatol 139:2497–2505. doi:10.1016/j.jid.2019.05.018.
    1. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 2009. Bacterial community variation in human body habitats across space and time. Science 326:1694–1697. doi:10.1126/science.1177486.
    1. Council SE, Savage AM, Urban JM, Ehlers ME, Pate Skene JH, Platt ML, Dunn RR, Horvath JE. 2016. Diversity and evolution of the primate skin microbiome. Proc R Soc B 283:20152586. doi:10.1098/rspb.2015.2586.
    1. Callewaert C, Lambert J, de Wiele TV. 2017. Towards a bacterial treatment for armpit malodour. Exp Dermatol 26:388–391. doi:10.1111/exd.13259.
    1. Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, Collman RG, Bushman FD, Li H. 2012. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28:2106–2113. doi:10.1093/bioinformatics/bts342.
    1. Grice EA, Segre JA. 2011. The skin microbiome. Nat Rev Microbiol 9:244–253. doi:10.1038/nrmicro2537.
    1. Li M, Budding AE, van der Lugt-Degen M, Du-Thumm L, Vandeven M, Fan A. 2019. The influence of age, gender and race/ethnicity on the composition of the human axillary microbiome. Int J Cosmet Sci 41:371–377. doi:10.1111/ics.12549.
    1. Shaffer M, Lozupone C. 2018. Prevalence and source of fecal and oral bacteria on infant, child, and adult hands. mSystems 3:e00192-17. doi:10.1128/mSystems.00192-17.
    1. Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS. 2019. Contamination in low microbial biomass microbiome tudies: issues and recommendations. Trends Microbiol 27:105–117. doi:10.1016/j.tim.2018.11.003.
    1. Gohli J, Bøifot KO, Moen LV, Pastuszek P, Skogan G, Udekwu KI, Dybwad M. 2019. The subway microbiome: seasonal dynamics and direct comparison of air and surface bacterial communities. Microbiome 7:160. doi:10.1186/s40168-019-0772-9.
    1. Herd P, Palloni A, Rey F, Dowd JB. 2018. Social and population health science approaches to understand the human microbiome. Nat Hum Behav 2:808–815. doi:10.1038/s41562-018-0452-y.
    1. Findley K, Grice EA. 2014. The skin microbiome: a focus on pathogens and their association with skin disease. PLoS Pathog 10:e1004436. doi:10.1371/journal.ppat.1004436.
    1. Kuzawa CW. 2013. How can we overcome the biological inertia of past deprivation? Anthropological perspectives on the developmental origins of adult health In Landale N, McHale S, Booth A (ed), Families and child health. National symposium on family issues. Springer, New York, NY.
    1. Leung MHY, Wilkins D, Li EKT, Kong FKF, Lee PKH. 2014. Indoor-air microbiome in an urban subway network: diversity and dynamics. Appl Environ Microbiol 80:6760–6770. doi:10.1128/AEM.02244-14.
    1. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A, Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova E, Vázquez-Baeza Y, González A, Morton JT, Mirarab S, Xu ZZ, Jiang L, Haroon MF, Kanbar J, Zhu Q, Song SJ, Kosciolek T, Bokulich NA, Lefler J, Brislawn CJ, Humphrey G, Owens SM, Hampton-Marcell J, Berg-Lyons D, McKenzie V, Fierer N, Fuhrman JA, Clauset A, Stevens RL, Shade A, Pollard KS, Goodwin KD, Jansson JK, Gilbert JA, Knight R, Agosto Rivera JL, Al-Moosawi L, Alverdy J, Amato KR, Andras J, Angenent LT, Antonopoulos DA, Apprill A, Armitage D, Ballantine K, Bárta J, Baum JK, Berry A, The Earth Microbiome Project Consortium, et al. 2017. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457–463. doi:10.1038/nature24621.
    1. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R. 2016. Improved bacterial 16S rRNA Gene (V4 and V4-5) and fungal internal transcribed pacer mamrker gene primers for microbial community surveys. mSystems 1:e00009-15. doi:10.1128/mSystems.00009-15.
    1. Mallott EK, Amato KR. 2018. The microbial reproductive ecology of white-faced capuchins (Cebus capucinus). Am J Primatol 80:e22896. doi:10.1002/ajp.22896.
    1. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Bin Kang K, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, et al. . 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. doi:10.1038/s41587-019-0209-9.
    1. R Core Team. 2014. R: a language and environment for statistical computing. The R Project for Statistical Computing, Vienna, Austria: .
    1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. doi:10.1186/gb-2011-12-6-r60.

Source: PubMed

3
Subscribe