Dietary glycomacropeptide supports growth and reduces the concentrations of phenylalanine in plasma and brain in a murine model of phenylketonuria

Denise M Ney, Angela K Hull, Sandra C van Calcar, Xiaowen Liu, Mark R Etzel, Denise M Ney, Angela K Hull, Sandra C van Calcar, Xiaowen Liu, Mark R Etzel

Abstract

Phenylketonuria (PKU) is a genetic disorder caused by deficiency of phenylalanine hydroxylase (PAH) that requires life-long adherence to a low-phenylalanine (Phe) diet. Glycomacropeptide (GMP) is uniquely suited to the nutritional management of PKU, because pure GMP contains no Phe. Our aim was to assess how ingestion of diets containing GMP support growth and affect the concentrations of amino acids in plasma and brains of mice with a deficiency of PAH, the Pah(enu2) mouse (PKU mouse). Experiments were conducted in 4- to 6-wk-old wild-type (WT) (C57Bl/6) and PKU mice fed diets containing 20% protein from casein, amino acids, or GMP supplemented with limiting indispensable amino acids (IAA). PKU mice fed the GMP diet showed gains in body weight, feed efficiency, and a protein efficiency ratio that did not differ from the amino acid diet. The concentrations of isoleucine and threonine in plasma showed a significant 2- to 3-fold increase for WT and PKU mice fed GMP compared with casein or amino acid diets, respectively. PKU mice fed the GMP diet had decreased concentrations of Phe in plasma (11% decrease) and in 5 regions of the brain (20% decrease) compared with the amino acid diet. The concentration of Phe in the brain was inversely correlated with the concentrations of isoleucine, threonine, and valine in plasma (R2 = 0.74; P < 0.0001), suggesting competitive inhibition of Phe transport into the brain. In summary, PKU mice fed GMP showed comparable growth and reduced concentrations of Phe in plasma and the brain compared with an amino acid diet. These data support the use of GMP supplemented with IAA as an alternative source of dietary protein for individuals with PKU.

Source: PubMed

3
Subscribe