Amino Acid Medical Foods Provide a High Dietary Acid Load and Increase Urinary Excretion of Renal Net Acid, Calcium, and Magnesium Compared with Glycomacropeptide Medical Foods in Phenylketonuria

Bridget M Stroup, Emily A Sawin, Sangita G Murali, Neil Binkley, Karen E Hansen, Denise M Ney, Bridget M Stroup, Emily A Sawin, Sangita G Murali, Neil Binkley, Karen E Hansen, Denise M Ney

Abstract

Background. Skeletal fragility is a complication of phenylketonuria (PKU). A diet containing amino acids compared with glycomacropeptide reduces bone size and strength in mice. Objective. We tested the hypothesis that amino acid medical foods (AA-MF) provide a high dietary acid load, subsequently increasing urinary excretion of renal net acid, calcium, and magnesium, compared to glycomacropeptide medical foods (GMP-MF). Design. In a crossover design, 8 participants with PKU (16-35 y) provided food records and 24-hr urine samples after consuming a low-Phe diet in combination with AA-MF and GMP-MF for 1-3 wks. We calculated potential renal acid load (PRAL) of AA-MF and GMP-MF and determined bone mineral density (BMD) measurements using dual X-ray absorptiometry. Results. AA-MF provided 1.5-2.5-fold higher PRAL and resulted in 3-fold greater renal net acid excretion compared to GMP-MF (p = 0.002). Dietary protein, calcium, and magnesium intake were similar. GMP-MF significantly reduced urinary excretion of calcium by 40% (p = 0.012) and magnesium by 30% (p = 0.029). Two participants had low BMD-for-age and trabecular bone scores, indicating microarchitectural degradation. Urinary calcium with AA-MF negatively correlated with L1-L4 BMD. Conclusion. Compared to GMP-MF, AA-MF increase dietary acid load, subsequently increasing urinary calcium and magnesium excretion, and likely contributing to skeletal fragility in PKU. The trial was registered at clinicaltrials.gov as NCT01428258.

Figures

Figure 1
Figure 1
Potential renal acid load was calculated for 10 different AA-MF and 3 different GMP-MF, based on mineral and amino acid analysis, n = 2-3 per medical food. AA-MF, amino acid medical foods; GMP-MF, glycomacropeptide medical foods; PRAL, potential renal acid load; PE, protein equivalent.
Figure 2
Figure 2
Renal net acid excretion (a), urinary calcium excretion (b), urinary magnesium excretion (c), and urinary sulfate excretion (d), based on 24-hr urine collections in participants with PKU who consumed AA-MF or GMP-MF, n = 8. Values are means ± SE. The dashed lines (b, c, d) represent the reference range for urinary calcium excretion (100–300 mg/d), magnesium excretion (12–293 mg/d), and urinary sulfate excretion (0–30 mEq/d). Results indicate significant increases in renal net acid excretion (p = 0.002), urinary calcium (p = 0.012), magnesium (p = 0.029), and sulfate (p = 0.0008) excretion with AA-MF compared to GMP-MF. AA-MF, amino acid medical foods; GMP-MF, glycomacropeptide medical foods.
Figure 3
Figure 3
Renal net acid excretion (a), urinary calcium excretion (b), urinary magnesium excretion (c), and urinary sulfate excretion (d), based on 24-hr urine collections in participants with PKU who consumed AA-MF or GMP-MF, n = 8. Statistical significance reflects significant treatment effects, as shown in Figure 2. Results show increases among all 8 participants in urinary excretion of renal net acid, calcium, and sulfate and in 7 of 8 participants in urinary excretion of magnesium with AA-MF compared to GMP-MF. AA-MF, amino acid medical foods; GMP-MF, glycomacropeptide medical foods.
Figure 4
Figure 4
Urinary calcium and renal net acid excretion were positively correlated (r = 0.57, p = 0.03) with AA-MF and GMP-MF, n = 14 from 7 participants. One participant was omitted, due to use of a therapeutic dose of calcium to treat low BMD-for-age. AA-MF, amino acid medical foods; BMD, bone mineral density; GMP-MF, glycomacropeptide medical foods; RNAE, renal net acid excretion.

References

    1. Flydal M. I., Martinez A. Phenylalanine hydroxylase: function, structure, and regulation. IUBMB Life. 2013;65(4):341–349. doi: 10.1002/iub.1150.
    1. Vockley J., Andersson H. C., Antshel K. M., et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genetics in Medicine. 2014;16(2):188–200.
    1. Singh R. H., Rohr F., Frazier D., et al. Recommendations for the nutrition management of phenylalanine hydroxylase deficiency. Genetics in Medicine. 2014;16(2):121–131. doi: 10.1038/gim.2013.179.
    1. Hansen K. E., Ney D. A systematic review of bone mineral density and fractures in phenylketonuria. Journal of Inherited Metabolic Disease. 2014;37(6):875–880. doi: 10.1007/s10545-014-9735-2.
    1. Demirdas S., Coakley K. E., Bisschop P. H., et al. Bone health in phenylketonuria: a systematic review and meta-analysis. Orphanet Journal of Rare Diseases. 2015;10:p. 17.
    1. Choukair D., Kneppo C., Feneberg R., et al. Analysis of the functional muscle-bone unit of the forearm in patients with phenylketonuria by peripheral quantitative computed tomography. Journal of Inherited Metabolic Disease. 2017;40(2):219–226.
    1. De Groot M. J., Hoeksma M., van Rijn M., Slart R. H. J. A., Van Spronsen F. J. Relationships between lumbar bone mineral density and biochemical parameters in phenylketonuria patients. Molecular Genetics and Metabolism. 2012;105(4):566–570. doi: 10.1016/j.ymgme.2012.01.006.
    1. Solverson P., Murali S. G., Brinkman A. S., et al. Glycomacropeptide, a low-phenylalanine protein isolated from cheese whey, supports growth and attenuates metabolic stress in the murine model of phenylketonuria. American Journal of Physiology—Endocrinology and Metabolism. 2012;302(7):E885–E895. doi: 10.1152/ajpendo.00647.2011.
    1. Solverson P., Murali S. G., Litscher S. J., Blank R. D., Ney D. M. Low bone strength is a manifestation of phenylketonuria in mice and is attenuated by a glycomacropeptide diet. PLoS ONE. 2012;7(9) doi: 10.1371/journal.pone.0045165.e45165
    1. Ney D. M., Sawin E. A., Murali S. G., et al. The high dietary acid load provided by an amino acid diet increases renal net acid and calcium excretion and reduces femoral cross sectional area in wild type and phenylketonuria Pahenu2 mice. Journal of Inherited Metabolic Disease for Consistency. 2014;37(S60, Supplment 1):p. P-062.
    1. Manz F., Schmidt H., Scharer K., et al. Acid-base status in dietary treatment of phenylketonuria. Pediatric Research. 1977;11(10, part 2):1084–1087.
    1. Hennermann J. B., Roloff S., Gellermann J., et al. Chronic kidney disease in adolescent and adult patients with phenylketonuria. Journal of Inherited Metabolic Disease. 2013;36(5):747–756. doi: 10.1007/s10545-012-9548-0.
    1. Lemann J., Jr., Bushinsky D. A., Hamm L. L. Bone buffering of acid and base in humans. The American Journal of Physiology—Renal Physiology. 2003;285(5):F811–F832. doi: 10.1152/ajprenal.00115.2003.
    1. Moseley K. F., Weaver C. M., Appel L., Sebastian A., Sellmeyer D. E. Potassium citrate supplementation results in sustained improvement in calcium balance in older men and women. Journal of Bone and Mineral Research. 2013;28(3):497–504. doi: 10.1002/jbmr.1764.
    1. Jehle S., Hulter H. N., Krapf R. Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. Journal of Clinical Endocrinology and Metabolism. 2013;98(1):207–217. doi: 10.1210/jc.2012-3099.
    1. Fenton T. R., Tough S. C., Lyon A. W., et al. Causal assessment of dietary acid load and bone disease: a systematic review meta-analysis applying Hill's epidemiologic criteria for causality. Nutrition Journal. 2011;10:p. 41.
    1. Ney D. M., Stroup B. M., Clayton M. K., et al. Glycomacropeptide for nutritional management of phenylketonuria: a randomized, controlled, crossover trial. American Journal of Clinical Nutrition. 2016;104(2):334–345. doi: 10.3945/ajcn.116.135293.
    1. Zwart S. R., Davis-Street J. E., Paddon-Jones D., Ferrando A. A., Wolfe R. R., Smith S. M. Amino acid supplementation alters bone metabolism during simulated weightlessness. Journal of Applied Physiology. 2005;99(1):134–140. doi: 10.1152/japplphysiol.01406.2004.
    1. Remer T., Manz F. Potential renal acid load of foods and its influence on urine pH. Journal of the American Dietetic Association. 1995;95(7):791–797. doi: 10.1016/S0002-8223(95)00219-7.
    1. Chan J. C. The rapid determination of urinary titratable acid and ammonium and evaluation of freezing as a method of preservation. Clinical Biochemistry. 1972;5(2):94–98. doi: 10.1016/S0009-9120(72)80014-6.
    1. Lin S. L., Chan J. C. M. Urinary bicarbonate: a titrimetric method for determination. Clinical Biochemistry. 1973;6(3):207–210. doi: 10.1016/S0009-9120(73)80028-1.
    1. Stroup B. M., Held P. K., Williams P., et al. Clinical relevance of the discrepancy in phenylalanine concentrations analyzed using tandem mass spectrometry compared with ion-exchange chromatography in phenylketonuria. Molecular Genetics and Metabolism Reports. 2016;6:21–26. doi: 10.1016/j.ymgmr.2016.01.001.
    1. Silva B. C., Leslie W. D., Resch H., et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. Journal of Bone and Mineral Research. 2014;29(3):518–530. doi: 10.1002/jbmr.2176.
    1. Kokkonen H., Söderström I., Rocklöv J., Hallmans G., Lejon K., Dahlqvist S. R. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis and Rheumatism. 2010;62(2):383–391. doi: 10.1002/art.27186.
    1. MUHC. PAHdb Phenylalanine Hydroxylase Locus Knowledgebase. Mutation Search, August 2009,
    1. BIOPKU. PAHvdb: Phenylalanine Hydroxylase Gene Locus-Specific Database. November 2016, .
    1. Studenski S., Peters K., Alley D., et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. Journals of Gerontology A: Biological Sciences and Medical Sciences. 2014;69(5):547–558. doi: 10.1093/gerona/glu010.
    1. ISCD. 2015—ISCD Official Positions—Adult. Official Positions 2016, June 2015,
    1. McCloskey E. V., Odén A., Harvey N. C., et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. Journal of Bone and Mineral Research. 2016;31(5):940–948. doi: 10.1002/jbmr.2734.
    1. Calvo M. S., Moshfegh A. J., Tucker K. L. Assessing the health impact of phosphorus in the food supply: issues and considerations. Advances in Nutrition. 2014;5(1):104–113. doi: 10.3945/an.113.004861.
    1. Dobrowolski S. F., Lyons-Weiler J., Spridik K., Vockley J., Skvorak K., Biery A. DNA methylation in the pathophysiology of hyperphenylalaninemia in the PAHenu2 mouse model of phenylketonuria. Molecular Genetics and Metabolism. 2016;119(1-2):1–7. doi: 10.1016/j.ymgme.2016.01.001.
    1. Waikar S. S., Sabbisetti V. S., Bonventre J. V. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney International. 2010;78(5):486–494. doi: 10.1038/ki.2010.165.
    1. Ralib A. M., Pickering J. W., Shaw G. M., et al. Test characteristics of urinary biomarkers depend on quantitation method in acute kidney injury. Journal of the American Society of Nephrology. 2012;23(2):322–333. doi: 10.1681/ASN.2011040325.
    1. John R L. M., Jhang J., Fink D. Henry's Clinical Diagnosis and Management by Laboratory Methods. 152. Philadelphia, Pa, USA: W.B. Saunders; 2007. Post-analysis: medical decision making; pp. 68–69.
    1. Sawin E. A., De Wolfe T. J., Aktas B., et al. Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice. American Journal of Physiology—Gastrointestinal and Liver Physiology. 2015;309(7):G590–G601. doi: 10.1152/ajpgi.00211.2015.
    1. Ohlsson C., Sjögren K. Effects of the gut microbiota on bone mass. Trends in Endocrinology and Metabolism. 2015;26(2):69–74. doi: 10.1016/j.tem.2014.11.004.
    1. Dawson-Hughes B., Harris S. S., Palermo N. J., Castaneda-Sceppa C., Rasmussen H. M., Dallal G. E. Treatment with potassium bicarbonate lowers calcium excretion and bone resorption in older men and women. Journal of Clinical Endocrinology and Metabolism. 2009;94(1):96–102. doi: 10.1210/jc.2008-1662.
    1. Coakley K. E., Douglas T. D., Goodman M., Ramakrishnan U., Dobrowolski S. F., Singh R. H. Modeling correlates of low bone mineral density in patients with phenylalanine hydroxylase deficiency. Journal of Inherited Metabolic Disease. 2016;39(3):363–372. doi: 10.1007/s10545-015-9910-0.
    1. Holloway L., Moynihan S., Abrams S. A., Kent K., Hsu A. R., Friedlander A. L. Effects of oligofructose-enriched inulin on intestinal absorption of calcium and magnesium and bone turnover markers in postmenopausal women. British Journal of Nutrition. 2007;97(2):365–372. doi: 10.1017/S000711450733674X.

Source: PubMed

3
Subscribe