How to ventilate obese patients in the ICU

Audrey De Jong, Hermann Wrigge, Goran Hedenstierna, Luciano Gattinoni, Davide Chiumello, Jean-Pierre Frat, Lorenzo Ball, Miet Schetz, Peter Pickkers, Samir Jaber, Audrey De Jong, Hermann Wrigge, Goran Hedenstierna, Luciano Gattinoni, Davide Chiumello, Jean-Pierre Frat, Lorenzo Ball, Miet Schetz, Peter Pickkers, Samir Jaber

Abstract

Obesity is an important risk factor for major complications, morbidity and mortality related to intubation procedures and ventilation in the intensive care unit (ICU). The fall in functional residual capacity promotes airway closure and atelectasis formation. This narrative review presents the impact of obesity on the respiratory system and the key points to optimize airway management, noninvasive and invasive mechanical ventilation in ICU patients with obesity. Non-invasive strategies should first optimize body position with reverse Trendelenburg position or sitting position. Noninvasive ventilation (NIV) is considered as the first-line therapy in patients with obesity having a postoperative acute respiratory failure. Positive pressure pre-oxygenation before the intubation procedure is the method of reference. The use of videolaryngoscopy has to be considered by adequately trained intensivists, especially in patients with several risk factors. Regarding mechanical ventilation in patients with and without acute respiratory distress syndrome (ARDS), low tidal volume (6 ml/kg of predicted body weight) and moderate to high positive end-expiratory pressure (PEEP), with careful recruitment maneuver in selected patients, are advised. Prone positioning is a therapeutic choice in severe ARDS patients with obesity. Prophylactic NIV should be considered after extubation to prevent re-intubation. If obesity increases mortality and risk of ICU admission in the overall population, the impact of obesity on ICU mortality is less clear and several confounding factors have to be taken into account regarding the "obesity ICU paradox".

Keywords: ARDS; COVID-19; HFNC; Mechanical ventilation; NIV; Obese; Obesity; Prone position; Prone positioning.

Conflict of interest statement

SJ reports receiving consulting fees from Drager, Medtronic, Fresenius, Baxter, and Fisher & Paykel. HW reports receiving consulting fees from Liberate Medical, MSD, InfectoPharm and Dräger. No potential conflict of interest relevant to this article was reported for the other authors.

Figures

Fig. 1
Fig. 1
Impedance changes due to regional ventilation in a patient with obesity. Thoracic transversal electric impedance tomography images show impedance changes due to regional ventilation summarized for tidal ventilation cycles in a patient with a body mass index of 57 kg/m2. Images were recorded during spontaneous breathing before intubation (a) and about 1 h after extubation (c) in a patient without lung pathology. Note the ventral shift of ventilation during mechanical ventilation with a positive end-expiratory pressure (PEEP) of 5 cmH2O (b), which is likely due to atelectasis formation in dependent lung areas. Obviously, the PEEP level was insufficient to keep the lung open
Fig. 2
Fig. 2
Effect of obesity in main pressures of the respiratory system. The respiratory system includes the lung and the chest wall, and the airway pressure is related to both transpulmonary and transthoracic pressures, which differ in the patient with obesity compared to the patient without obesity. The relative part of pressure due to transthoracic pressure is often higher in the patient with obesity than in the patient without obesity (elevated pleural pressure, which can be estimated by esophageal pressure). The plateau pressure represents the pressure used to distend the chest wall plus lungs. In patients with obesity, elevated plateau pressure may be related to an elevated transthoracic pressure, and not an increase in transpulmonary pressure with lung overdistension. FRC functional residual capacity
Fig. 3
Fig. 3
Prone positioning in patients with obesity. ARDS acute respiratory distress syndrome. PaO2/FiO2 pressure of arterial oxygen to fractional inspired oxygen concentration
Fig. 4
Fig. 4
Main respiratory physiological modifications and suggestions for mechanical ventilation in critically ill patients with obesity. The main respiratory physiological modifications (functional residual capacity decreased, abdominal pressure often increased, pulmonary and chest wall compliance often decreased, cephalic ascension of diaphragm, oxygen consumption and work of breathing increased) lead to shunt via atelectasis and gas exchange impairment. Comorbidities are often associated with obesity: obstructive apnea syndrome and obesity hypoventilation syndrome. Consequences on airway management, potentially difficult, include the preparation of adequate material for difficult intubation as videolaryngoscopes, preoxygenation with noninvasive ventilation in a semi-sitting position, considering adding apneic oxygenation (OPTINIV method), rapid sequence induction and recruitment maneuver following intubation after hemodynamic stabilization. Ventilatory settings include low or limited tidal volume (6–8 ml/kg/PBW or less), moderate to high PEEP (7–20 cmH2O) if hemodynamically well tolerated, recruitment maneuver (if hemodynamically well tolerated, in selected patients), monitoring of esophageal pressure if possible, use of prone positioning in a trained team in case of severe ARDS, without contra-indicating ECMO. After extubation, CPAP or NIV should be considered early, as implementation of positive pressure therapies at home after evaluation. PBW predicted body weight, PEEP positive end-expiratory pressure, ARDS acute respiratory distress syndrome, ECMO extracorporeal membrane oxygenation, CPAP continuous positive airway pressure, NIV noninvasive ventilation, HFNC high-flow nasal cannula oxygen

References

    1. Global BMIMC, Di Angelantonio E, Bhupathiraju ShN, Wormser D, Gao P, Kaptoge S, Berrington de Gonzalez A, Cairns BJ, Huxley R, Jackson ChL, Joshy G, Lewington S, Manson JE, Murphy N, Patel AV, Samet JM, Woodward M, Zheng W, Zhou M, Bansal N, Barricarte A, Carter B, Cerhan JR, Smith GD, Fang X, Franco OH, Green J, Halsey J, Hildebrand JS, Jung KJ, Korda RJ, McLerran DF, Moore SC, O'Keeffe LM, Paige E, Ramond A, Reeves GK, Rolland B, Sacerdote C, Sattar N, Sofianopoulou E, Stevens J, Thun M, Ueshima H, Yang L, Yun YD, Willeit P, Banks E, Beral V, Chen Z, Gapstur SM, Gunter MJ, Hartge P, Jee SH, Lam TH, Peto R, Potter JD, Willett WC, Thompson SG, Danesh J, Hu FB. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388:776–786.
    1. Ward ZJ, Bleich SN, Cradock AL, Barrett JL, Giles CM, Flax C, Long MW, Gortmaker SL. Projected US state-level prevalence of adult obesity and severe obesity. N Engl J Med. 2019;381:2440–2450.
    1. Schetz M, De Jong A, Deane AM, Druml W, Hemelaar P, Pelosi P, Pickkers P, Reintam-Blaser A, Roberts J, Sakr Y, Jaber S. Obesity in the critically ill: a narrative review. Intensive Care Med. 2019;45:757–769.
    1. Bell T, Stokes S, Jenkins PC, Hatcher L, Fecher AM. Prevalence of cardiovascular and respiratory complications following trauma in patients with obesity. Heart Lung J Crit Care. 2017;46:347–350.
    1. Cone JT, Benjamin ER, Alfson DB, Demetriades D. Isolated severe blunt traumatic brain injury: effect of obesity on outcomes. J Neurosurg. 2020;1:1–8. doi: 10.3171/2020.3.JNS193458.
    1. Aoki M, Hagiwara S, Oshima K, Suzuki M, Sakurai A, Tahara Y, Nagao K, Yonemoto N, Yaguchi A, Morimura N. Obesity was associated with worse neurological outcome among Japanese patients with out-of-hospital cardiac arrest. Intensive Care Med. 2018;44:665–666.
    1. Fezeu L, Julia C, Henegar A, Bitu J, Hu FB, Grobbee DE, Kengne AP, Hercberg S, Czernichow S. Obesity is associated with higher risk of intensive care unit admission and death in influenza A (H1N1) patients: a systematic review and meta-analysis. Obes Rev. 2011;12:653–659.
    1. Zhou Y, Yang Q, Chi J, Dong B, Lv W, Shen L, Wang Y. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: a systematic review and meta-analysis. Int J Infect Dis. 2020;99:47–56.
    1. Azoulay E, Fartoukh M, Darmon M, Géri G, Voiriot G, Dupont T, Zafrani L, Girodias L, Labbé V, Dres M, Beurton A, Vieillard-Baron A, Demoule A. Increased mortality in patients with severe SARS-CoV-2 infection admitted within seven days of disease onset. Intensive Care Med. 2020;46:1714–1722.
    1. Rottoli M, Bernante P, Belvedere A, Balsamo F, Garelli S, Giannella M, Cascavilla A, Tedeschi S, Ianniruberto S, Rosselli Del Turco E, Tonetti T, Ranieri VM, Poggioli G, Manzoli L, Pagotto U, Viale P, Bartoletti M. How important is obesity as a risk factor for respiratory failure, intensive care admission and death in hospitalised COVID-19 patients? Results from a single Italian centre. Eur J Endocrinol. 2020;183:389–397.
    1. Lemyze M, Courageux N, Maladobry T, Arumadura C, Pauquet P, Orfi A, Komorowski M, Mallat J, Granier M. Implications of obesity for the management of severe coronavirus disease 2019 pneumonia. Crit Care Med. 2020;48:e761–e767.
    1. Petersen A, Bressem K, Albrecht J, Thie HM, Vahldiek J, Hamm B, Makowski MR, Niehues A, Niehues SM, Adams LC. The role of visceral adiposity in the severity of COVID-19: highlights from a unicenter cross-sectional pilot study in Germany. Metab Clin Exp. 2020;110:154317.
    1. Zhi G, Xin W, Ying W, Guohong X, Shuying L. "Obesity Paradox" in acute respiratory distress syndrome: asystematic review and meta-analysis. PLoS ONE. 2016;11:e0163677.
    1. Dobner J, Kaser S. Body mass index and the risk of infection -from underweight to obesity. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2018;24:24–28.
    1. Green WD, Beck MA. Obesity altered T cell metabolism and the response to infection. Curr Opin Immunol. 2017;46:1–7.
    1. Zhao Y, Li Z, Yang T, Wang M, Xi X. Is body mass index associated with outcomes of mechanically ventilated adult patients in intensive critical units? A systematic review and meta-analysis. PLoS ONE. 2018;13:e0198669.
    1. Jones RL, Nzekwu MM. The effects of body mass index on lung volumes. Chest. 2006;130:827–833.
    1. Nestler C, Simon P, Petroff D, Hammermuller S, Kamrath D, Wolf S, Dietrich A, Camilo LM, Beda A, Carvalho AR, Giannella-Neto A, Reske AW, Wrigge H. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: a randomized controlled clinical trial using electrical impedance tomography. Br J Anaesth. 2017;119:1194–1205.
    1. Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physiol (1985) 2010;108:206–211.
    1. Pelosi P, Croci M, Ravagnan I, Tredici S, Pedoto A, Lissoni A, Gattinoni L. The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia. Anesth Analg. 1998;87:654–660.
    1. Grieco DL, Anzellotti GM, Russo A, Bongiovanni F, Costantini B, D'Indinosante M, Varone F, Cavallaro F, Tortorella L, Polidori L, Romano B, Gallotta V, Dell'Anna AM, Sollazzi L, Scambia G, Conti G, Antonelli M. Airway closure during surgical pneumoperitoneum in obese patients. Anesthesiology. 2019;131:58–73.
    1. Hedenstierna G, Chen L, Brochard L. Airway closure, more harmful than atelectasis in intensive care? Intensive Care Med. 2020 doi: 10.1007/s00134-020-06144-w.
    1. Hedenstierna G, Rothen HU. Respiratory function during anesthesia: effects on gas exchange. Compr Physiol. 2012;2:69–96.
    1. Hedenstierna G, Tokics L, Scaramuzzo G, Rothen HU, Edmark L, Öhrvik J. Oxygenation impairment during anesthesia: influence of age and body weight. Anesthesiology. 2019;131:46–57.
    1. Frat JP, Gissot V, Ragot S, Desachy A, Runge I, Lebert C, Robert R. Impact of obesity in mechanically ventilated patients: a prospective study. Intensive Care Med. 2008;34:1991–1998.
    1. Duarte AG, Justino E, Bigler T, Grady J. Outcomes of morbidly obese patients requiring mechanical ventilation for acute respiratory failure. Crit Care Med. 2007;35:732–737.
    1. Kress JP, Pohlman AS, Alverdy J, Hall JB. The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest. Am J Respir Crit Care Med. 1999;160:883–886.
    1. Lemyze M, Mallat J, Duhamel A, Pepy F, Gasan G, Barrailler S, Vangrunderbeeck N, Tronchon L, Thevenin D. Effects of sitting position and applied positive end-expiratory pressure on respiratory mechanics of critically ill obese patients receiving mechanical ventilation. Crit Care Med. 2013;41:2592–2599.
    1. Perilli V, Sollazzi L, Bozza P, Modesti C, Chierichini A, Tacchino RM, Ranieri R. The effects of the reverse trendelenburg position on respiratory mechanics and blood gases in morbidly obese patients during bariatric surgery. Anesth Analg. 2000;91:1520–1525.
    1. Rochwerg B, Brochard L, Elliott MW, Hess D, Hill NS, Nava S, Navalesi PMOTSC, Antonelli M, Brozek J, Conti G, Ferrer M, Guntupalli K, Jaber S, Keenan S, Mancebo J, Mehta S, Raoof SMOTTF. Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J. 2017;50(2):1602426. doi: 10.1183/13993003.02426-2016.
    1. Jaber S, Lescot T, Futier E, Paugam-Burtz C, Seguin P, Ferrandiere M, Lasocki S, Mimoz O, Hengy B, Sannini A, Pottecher J, Abback PS, Riu B, Belafia F, Constantin JM, Masseret E, Beaussier M, Verzilli D, De Jong A, Chanques G, Brochard L, Molinari N. Effect of noninvasive ventilation on tracheal reintubation among patients with hypoxemic respiratory failure following abdominal surgery: a randomized clinical trial. JAMA. 2016;315:1345–1353.
    1. Jaber S, Delay JM, Chanques G, Sebbane M, Jacquet E, Souche B, Perrigault PF, Eledjam JJ. Outcomes of patients with acute respiratory failure after abdominal surgery treated with noninvasive positive pressure ventilation. Chest. 2005;128:2688–2695.
    1. Stephan F, Berard L, Rezaiguia-Delclaux S, Amaru P. High-flow nasal cannula therapy versus intermittent noninvasive ventilation in obese subjects after cardiothoracic surgery. Respir Care. 2017;62:1193–1202.
    1. Leone M, Einav S, Chiumello D, Constantin JM, De Robertis E, De Abreu MG, Gregoretti C, Jaber S, Maggiore SM, Pelosi P, Sorbello M, Afshari A. Noninvasive respiratory support in the hypoxaemic peri-operative/periprocedural patient: a joint ESA/ESICM guideline. Intensive Care Med. 2020;46:697–713.
    1. Ricard JD, Roca O, Lemiale V, Corley A, Braunlich J, Jones P, Kang BJ, Lellouche F, Nava S, Rittayamai N, Spoletini G, Jaber S, Hernandez G. Use of nasal high flow oxygen during acute respiratory failure. Intensive Care Med. 2020 doi: 10.1007/s00134-020-06228-7.
    1. Pepin JL, Timsit JF, Tamisier R, Borel JC, Levy P, Jaber S. Prevention and care of respiratory failure in obese patients. Lancet Respir Med. 2016;4:407–418.
    1. Frat JP, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, Prat G, Boulain T, Morawiec E, Cottereau A, Devaquet J, Nseir S, Razazi K, Mira JP, Argaud L, Chakarian JC, Ricard JD, Wittebole X, Chevalier S, Herbland A, Fartoukh M, Constantin JM, Tonnelier JM, Pierrot M, Mathonnet A, Beduneau G, Deletage-Metreau C, Richard JC, Brochard L, Robert R. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med. 2015;372:2185–2196.
    1. Lemyze M, Taufour P, Duhamel A, Temime J, Nigeon O, Vangrunderbeeck N, Barrailler S, Gasan G, Pepy F, Thevenin D, Mallat J. Determinants of noninvasive ventilation success or failure in morbidly obese patients in acute respiratory failure. PLoS ONE. 2014;9:e97563.
    1. Futier E, Constantin JM, Pelosi P, Chanques G, Massone A, Petit A, Kwiatkowski F, Bazin JE, Jaber S. Noninvasive ventilation and alveolar recruitment maneuver improve respiratory function during and after intubation of morbidly obese patients: a randomized controlled study. Anesthesiology. 2011;114:1354–1363.
    1. Mokhlesi B, Masa JF, Brozek JL, Gurubhagavatula I, Murphy PB, Piper AJ, Tulaimat A, Afshar M, Balachandran JS, Dweik RA, Grunstein RR, Hart N, Kaw R, Lorenzi-Filho G, Pamidi S, Patel BK, Patil SP, Pépin JL, Soghier I, Tamae Kakazu M, Teodorescu M. Evaluation and management of obesity hypoventilation syndrome. an official American thoracic society clinical practice guideline. Am J Respir Crit Care Med. 2019;200:e6–e24.
    1. Carron M, Safaee Fakhr B, Ieppariello G, Foletto M. Perioperative care of the obese patient. Br J Surg. 2020;107:e39–e55.
    1. Hodgson LE, Murphy PB, Hart N. Respiratory management of the obese patient undergoing surgery. J Thorac Dis. 2015;7:943–952.
    1. De Jong A, Chanques G, Jaber S. Mechanical ventilation in obese ICU patients: from intubation to extubation. Crit Care. 2017;21:63.
    1. Dempsey JA, Veasey SC, Morgan BJ, O'Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90:47–112.
    1. De Jong A, Rolle A, Molinari N, Paugam-Burtz C, Constantin JM, Lefrant JY, Asehnoune K, Jung B, Futier E, Chanques G, Azoulay E, Jaber S. Cardiac arrest and mortality related to intubation procedure in critically ill adult patients: a multicenter cohort study. Crit Care Med. 2018;46:532–539.
    1. De Jong A, Molinari N, Pouzeratte Y, Verzilli D, Chanques G, Jung B, Futier E, Perrigault PF, Colson P, Capdevila X, Jaber S. Difficult intubation in obese patients: incidence, risk factors, and complications in the operating theatre and in intensive care units. Br J Anaesth. 2015;114:297–306.
    1. Hoshijima H, Denawa Y, Tominaga A, Nakamura C, Shiga T, Nagasaka H. Videolaryngoscope versus Macintosh laryngoscope for tracheal intubation in adults with obesity: a systematic review and meta-analysis. J Clin Anesth. 2018;44:69–75.
    1. Semler MW, Janz DR, Russell DW, Casey JD, Lentz RJ, Zouk AN, deBoisblanc BP, Santanilla JI, Khan YA, Joffe AM, Stigler WS, Rice TW. A multicenter, randomized trial of ramped position vs sniffing position during endotracheal intubation of critically ill adults. Chest. 2017;152:712–722.
    1. Gander S, Frascarolo P, Suter M, Spahn DR, Magnusson L. Positive end-expiratory pressure during induction of general anesthesia increases duration of nonhypoxic apnea in morbidly obese patients. Anesth Analg. 2005;100:580–584.
    1. Guitton C, Ehrmann S, Volteau C, Colin G, Maamar A, Jean-Michel V, Mahe PJ, Landais M, Brule N, Bretonnière C, Zambon O, Vourc'h M. Nasal high-flow preoxygenation for endotracheal intubation in the critically ill patient: a randomized clinical trial. Intensive Care Med. 2019;45:447–458.
    1. Casey JD, Janz DR, Russell DW, Vonderhaar DJ, Joffe AM, Dischert KM, Brown RM, Zouk AN, Gulati S, Heideman BE, Lester MG, Toporek AH, Bentov I, Self WH, Rice TW, Semler MW. Bag-mask ventilation during tracheal intubation of critically ill adults. N Engl J Med. 2019;380:811–821.
    1. De Jong A, Casey JD, Myatra SN. Focus on noninvasive respiratory support before and after mechanical ventilation in patients with acute respiratory failure. Intensive Care Med. 2020;46:1460–1463.
    1. Reinius H, Jonsson L, Gustafsson S, Sundbom M, Duvernoy O, Pelosi P, Hedenstierna G, Freden F. Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis: a computerized tomography study. Anesthesiology. 2009;111:979–987.
    1. Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Biehl M, Binnekade JM, Canet J, Fernandez-Bustamante A, Futier E, Gajic O, Hedenstierna G, Hollmann MW, Jaber S, Kozian A, Licker M, Lin WQ, Maslow AD, Memtsoudis SG, Reis Miranda D, Moine P, Ng T, Paparella D, Putensen C, Ranieri M, Scavonetto F, Schilling T, Schmid W, Selmo G, Severgnini P, Sprung J, Sundar S, Talmor D, Treschan T, Unzueta C, Weingarten TN, Wolthuis EK, Wrigge H, Gama de Abreu M, Pelosi P, Schultz MJ. Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology. 2015;123:66–78.
    1. Ball L, Hemmes SNT, Serpa Neto A, Bluth T, Canet J, Hiesmayr M, Hollmann MW, Mills GH, Vidal Melo MF, Putensen C, Schmid W, Severgnini P, Wrigge H, Gama de Abreu M, Schultz MJ, Pelosi P. Intraoperative ventilation settings and their associations with postoperative pulmonary complications in obese patients. Br J Anaesth. 2018;121:899–908.
    1. Tusman G, Groisman I, Fiolo FE, Scandurra A, Arca JM, Krumrick G, Bohm SH, Sipmann FS. Noninvasive monitoring of lung recruitment maneuvers in morbidly obese patients: the role of pulse oximetry and volumetric capnography. Anesth Analg. 2014;118:137–144.
    1. Erlandsson K, Odenstedt H, Lundin S, Stenqvist O. Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery. Acta Anaesthesiol Scand. 2006;50:833–839.
    1. Bluth T, Serpa Neto A, Schultz MJ, Pelosi P, Gama de Abreu M. Effect of intraoperative high positive end-expiratory pressure (PEEP) with recruitment maneuvers vs low peep on postoperative pulmonary complications in obese patients: a randomized clinical trial. JAMA. 2019;321:2292–2305. doi: 10.1001/jama.2019.7505.
    1. Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, Marret E, Beaussier M, Gutton C, Lefrant JY, Allaouchiche B, Verzilli D, Leone M, De Jong A, Bazin JE, Pereira B, Jaber S. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428–437.
    1. Wrigge H, Zinserling J, Neumann P, Muders T, Magnusson A, Putensen C, Hedenstierna G. Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic-acid-induced lung injury: a randomized controlled computed tomography trial. Crit Care. 2005;9:R780–789.
    1. Kacmarek RM, Villar J, Parrilla D, Alba F, Solano R, Liu S, Montiel R, Rico-Feijoo J, Vidal A, Ferrando C, Murcia I, Corpas R, González-Higueras E, Sun Q, Pinedo CE, Pestaña D, Martínez D, Aldecoa C, Añón JM, Soro M, González-Martín JM, Fernández C, Fernández RL, NAVa In Acute respiraTORy failure (NAVIATOR) Network Neurally adjusted ventilatory assist in acute respiratory failure: a randomized controlled trial. Intensive Care Med. 2020 doi: 10.1007/s00134-020-06181-5.
    1. Anzueto A, Frutos-Vivar F, Esteban A, Bensalami N, Marks D, Raymondos K, Apezteguía C, Arabi Y, Hurtado J, González M, Tomicic V, Abroug F, Elizalde J, Cakar N, Pelosi P, Ferguson ND, Ventila G. Influence of body mass index on outcome of the mechanically ventilated patients. Thorax. 2011;66:66–73.
    1. Kalra SS, Siuba M, Panitchote A, Mireles-Cabodevila E, Chatburn RL, Krishnan S, Duggal A (2020) Higher Class of Obesity Is Associated With Delivery of Higher Tidal Volumes in Subjects With ARDS. Respir Care
    1. Grasso S, Terragni P, Birocco A, Urbino R, Del Sorbo L, Filippini C, Mascia L, Pesenti A, Zangrillo A, Gattinoni L, Ranieri VM. ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Intensive Care Med. 2012;38:395–403.
    1. De Jong A, Cossic J, Verzilli D, Monet C, Carr J, Conseil M, Monnin M, Cisse M, Belafia F, Molinari N, Chanques G, Jaber S. Impact of the driving pressure on mortality in obese and non-obese ARDS patients: a retrospective study of 362 cases. Intensive Care Med. 2018;44:1106–1114.
    1. Bein T. Driving pressure in obese ventilated patients: another brick in the (chest) wall. Intensive Care Med. 2018;44:1349–1351.
    1. Chiumello D, Colombo A, Algieri I, Mietto C, Carlesso E, Crimella F, Cressoni M, Quintel M, Gattinoni L. Effect of body mass index in acute respiratory distress syndrome. Br J Anaesth. 2016;116:113–121.
    1. Fumagalli J, Berra L, Zhang C, Pirrone M, Santiago RRS, Gomes S, Magni F, Dos Santos GAB, Bennett D, Torsani V, Fisher D, Morais C, Amato MBP, Kacmarek RM. Transpulmonary pressure describes lung morphology during decremental positive end-expiratory pressure trials in obesity. Crit Care Med. 2017;45:1374–1381.
    1. Florio G, Ferrari M, Bittner EA, De Santis SR, Pirrone M, Fumagalli J, Teggia Droghi M, Mietto C, Pinciroli R, Berg S, Bagchi A, Shelton K, Kuo A, Lai Y, Sonny A, Lai P, Hibbert K, Kwo J, Pino RM, Wiener-Kronish J, Amato MBP, Arora P, Kacmarek RM, Berra L. A lung rescue team improves survival in obesity with acute respiratory distress syndrome. Crit Care. 2020;24:4.
    1. Bime C, Fiero M, Lu Z, Oren E, Berry CE, Parthasarathy S, Garcia JGN. High positive end-expiratory pressure is associated with improved survival in obese patients with acute respiratory distress syndrome. Am J Med. 2017;130:207–213.
    1. Zhang Z, Zheng B, Liu N, Ge H, Hong Y. Mechanical power normalized to predicted body weight as a predictor of mortality in patients with acute respiratory distress syndrome. Intensive Care Med. 2019;45:856–864.
    1. Pensier J, de Jong A, Hajjej Z, Molinari N, Carr J, Belafia F, Chanques G, Futier E, Azoulay E, Jaber S. Effect of lung recruitment maneuver on oxygenation, physiological parameters and mortality in acute respiratory distress syndrome patients: a systematic review and meta-analysis. Intensive Care Med. 2019;45:1691–1702.
    1. Fumagalli J, Santiago RRS, Teggia Droghi M, Zhang C, Fintelmann FJ, Troschel FM, Morais CCA, Amato MBP, Kacmarek RM, Berra L. Lung recruitment in obese patients with acute respiratory distress syndrome. Anesthesiology. 2019;130:791–803.
    1. De Santis Santiago R, Teggia Droghi M, Fumagalli J, Marrazzo F, Florio G, Grassi LG, Gomes S, Morais CCA, Ramos OPS, Bottiroli M, Pinciroli R, Imber DA, Bagchi A, Shelton K, Sonny A, Bittner EA, Amato MBP, Kacmarek RM, Berra L, Lung Rescue Team Investigators High Pleural Pressure Prevents Alveolar Overdistension and Hemodynamic Collapse in ARDS with Class III Obesity. Am J Respir Crit Care Med. 2020 doi: 10.1164/rccm.201909-1687OC.
    1. Guérin C, Beuret P, Constantin JM, Bellani G, Garcia-Olivares P, Roca O, Meertens JH, Maia PA, Becher T, Peterson J, Larsson A, Gurjar M, Hajjej Z, Kovari F, Assiri AH, Mainas E, Hasan MS, Morocho-Tutillo DR, Baboi L, Chrétien JM, François G, Ayzac L, Chen L, Brochard L, Mercat A. A prospective international observational prevalence study on prone positioning of ARDS patients: the APRONET (ARDS Prone Position Network) study. Intensive Care Med. 2018;44:22–37.
    1. De Jong A, Molinari N, Sebbane M, Prades A, Futier E, Jung B, Chanques G, Jaber S. Feasibility and effectiveness of prone position in morbidly obese patients with ARDS: a case–control clinical study. Chest. 2013;143:1554–1561.
    1. Kon ZN, Dahi S, Evans CF, Byrnes KA, Bittle GJ, Wehman B, Rector RP, McCormick BM, Herr DL, Sanchez PG, Pham SM, Griffith BP. Class III obesity is not a contraindication to venovenous extracorporeal membrane oxygenation support. Ann Thorac Surg. 2015;100:1855–1860.
    1. Al-Soufi S, Buscher H, Nguyen ND, Rycus P, Nair P. Lack of association between body weight and mortality in patients on veno-venous extracorporeal membrane oxygenation. Intensive Care Med. 2013;39:1995–2002.
    1. Mahul M, Jung B, Galia F, Molinari N, de Jong A, Coisel Y, Vaschetto R, Matecki S, Chanques G, Brochard L, Jaber S. Spontaneous breathing trial and post-extubation work of breathing in morbidly obese critically ill patients. Crit Care. 2016;20:346.
    1. Fernandez MM, Gonzalez-Castro A, Magret M, Bouza MT, Ibanez M, Garcia C, Balerdi B, Mas A, Arauzo V, Anon JM, Ruiz F, Ferreres J, Tomas R, Alabert M, Tizon AI, Altaba S, Llamas N, Fernandez R. Reconnection to mechanical ventilation for 1 h after a successful spontaneous breathing trial reduces reintubation in critically ill patients: a multicenter randomized controlled trial. Intensive Care Med. 2017;43:1660–1667.
    1. Chanques G, Conseil M, Roger C, Constantin JM, Prades A, Carr J, Muller L, Jung B, Belafia F, Cisse M, Delay JM, de Jong A, Lefrant JY, Futier E, Mercier G, Molinari N, Jaber S. Immediate interruption of sedation compared with usual sedation care in critically ill postoperative patients (SOS-Ventilation): a randomised, parallel-group clinical trial. Lancet Respir Med. 2017;5:795–805.
    1. El-Solh AA, Aquilina A, Pineda L, Dhanvantri V, Grant B, Bouquin P. Noninvasive ventilation for prevention of post-extubation respiratory failure in obese patients. Eur Respir J. 2006;28:588–595.
    1. Neligan PJ, Malhotra G, Fraser M, Williams N, Greenblatt EP, Cereda M, Ochroch EA. Continuous positive airway pressure via the Boussignac system immediately after extubation improves lung function in morbidly obese patients with obstructive sleep apnea undergoing laparoscopic bariatric surgery. Anesthesiology. 2009;110:878–884.
    1. De Jong A, Rollé A, Souche FR, Yengui O, Verzilli D, Chanques G, Nocca D, Futier E, Jaber S. How can I manage anaesthesia in obese patients? Anaesth Crit Care Pain Med. 2020;39(2):229–238. doi: 10.1016/j.accpm.2019.12.009.
    1. Corley A, Bull T, Spooner AJ, Barnett AG, Fraser JF. Direct extubation onto high-flow nasal cannulae post-cardiac surgery versus standard treatment in patients with a BMI >/=30: a randomised controlled trial. Intensive Care Med. 2015;41:887–894.
    1. Hernandez G, Vaquero C, Colinas L, Cuena R, Gonzalez P, Canabal A, Sanchez S, Rodriguez ML, Villasclaras A, Fernandez R. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: a randomized clinical trial. JAMA. 2016;316:1565–1574.
    1. Fernandez R, Subira C, Frutos-Vivar F, Rialp G, Laborda C, Masclans JR, Lesmes A, Panadero L, Hernandez G. High-flow nasal cannula to prevent postextubation respiratory failure in high-risk non-hypercapnic patients: a randomized multicenter trial. Ann Intensive Care. 2017;7:47.
    1. Lewandowski K, Lewandowski M. Intensive care in the obese. Best Pract Res Clin Anaesthesiol. 2011;25:95–108.
    1. Hutagalung R, Marques J, Kobylka K, Zeidan M, Kabisch B, Brunkhorst F, Reinhart K, Sakr Y. The obesity paradox in surgical intensive care unit patients. Intensive Care Med. 2011;37:1793–1799.
    1. Pickkers P, de Keizer N, Dusseljee J, Weerheijm D, van der Hoeven JG, Peek N. Body mass index is associated with hospital mortality in critically ill patients: an observational cohort study. Crit Care Med. 2013;41:1878–1883.
    1. Decruyenaere A, Steen J, Colpaert K, Benoit DD, Decruyenaere J, Vansteelandt S. The obesity paradox in critically ill patients: a causal learning approach to a casual finding. Crit Care. 2020;24:485.

Source: PubMed

3
Subscribe