Essentials in saline pharmacology for nasal or respiratory hygiene in times of COVID-19

Suzy Huijghebaert, Levi Hoste, Guido Vanham, Suzy Huijghebaert, Levi Hoste, Guido Vanham

Abstract

Purpose: Nasal irrigation or nebulizing aerosol of isotonic or hypertonic saline is a traditional method for respiratory or nasal care. A recent small study in outpatients with COVID-19 without acute respiratory distress syndrome suggests substantial symptom resolution. We therefore analyzed pharmacological/pharmacodynamic effects of isotonic or hypertonic saline, relevant to SARS-CoV-2 infection and respiratory care.

Methods: Mixed search method.

Results: Due to its wetting properties, saline achieves an improved spreading of alveolar lining fluid and has been shown to reduce bio-aerosols and viral load. Saline provides moisture to respiratory epithelia and gels mucus, promotes ciliary beating, and improves mucociliary clearance. Coronaviruses and SARS-CoV-2 damage ciliated epithelium in the nose and airways. Saline inhibits SARS-CoV-2 replication in Vero cells; possible interactions involve the viral ACE2-entry mechanism (chloride-dependent ACE2 configuration), furin and 3CLpro (inhibition by NaCl), and the sodium channel ENaC. Saline shifts myeloperoxidase activity in epithelial or phagocytic cells to produce hypochlorous acid. Clinically, nasal or respiratory airway care with saline reduces symptoms of seasonal coronaviruses and other common cold viruses. Its use as aerosol reduces hospitalization rates for bronchiolitis in children. Preliminary data suggest symptom reduction in symptomatic COVID-19 patients if saline is initiated within 48 h of symptom onset.

Conclusions: Saline interacts at various levels relevant to nasal or respiratory hygiene (nasal irrigation, gargling or aerosol). If used from the onset of common cold symptoms, it may represent a useful add-on to first-line interventions for COVID-19. Formal evaluation in mild COVID-19 is desirable as to establish efficacy and optimal treatment regimens.

Keywords: Acute respiratory distress syndrome; COVID-19; Mucociliary clearance; SARS-CoV-2; Saline; Sodium chloride.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Proposed mechanisms of saline relevant to nasal or respiratory hygiene during COVID-19. Bio-aerosol refers to micro-droplets, spontaneously produced during exhalation, such as during speaking, singing, and coughing; aerosol refers to nebulizing and inhaling saline for inhalation in the respiratory airways, while saline rinse refers to nasal spraying/oral gargling of saline. ALF, alveolar lining fluid; isotonic, 0.9% NaCl (or 9 g/L); and hypertonic, varying concentrations above 0.9% NaCl (2%-7%, often 3%). ACE2 angiotensin-converting enzyme 2; MCC mucociliary clearance

References

    1. HNO-Ärzte im Netz (2020) Herausgegeben vom Deutschen Berufsverband der Hals-Nasen-Ohrenärzte e.V.) Tipps zur richtigen Nasenpflege [Tipps for adequate nasal care]. . Accessed 19 June 2020
    1. Lungenartze im Netz (Lung doctors in the Net) (2020) Einfaches Inhalieren kann Tröpfcheninfektion effektiv eindämmern. [Simple inhalation can limit efficiently droplet infection] . Accessed 19 June 2020
    1. Praxisvita (das Portal für Gesundheit & Medizin) (2020) Inhalieren bei Corona: Wie wirksam ist das Hausmittel? [Inhalation during Corona; How effective is this home remedy?] . Accessed 19 June 2020
    1. Leichter Atmen bei Lungen- und bronchialerkrankungen (2020) Corona: Pflege der Atemwege vermindert Infektionsrisiko [Corona: Care of the airways reduces the risk of infection]. [24.03.2020] . Accessed 19 June 2020
    1. PARI-Blog (2020) Treatment and nebuliser therapy for COVID-19 in hospital. Interview with the Prof. Dr Kamin, Medical Director of the Hamm Lutheran Hospital. . Accessed in English 27 July 2020. - Firstly accessed in German: Accessed 19 June 2020
    1. (2020) Coronavirus: Was Senioren & ihre Betreuer wissen müssen. [Coronavirus: What seniors and care givers need to know] . Accessed 14 July 2020
    1. ETH Zurich (2020) Mit Atemwegspflege das Infektionsrisiko senken. [With airway care decrease the risk of infection.] . Accessed 14 July 2020
    1. Bronchiectasis Toolbox (2020) Hydration and humidification. . Accessed 13 July 2020
    1. Kramer A, Eggers M, Hübner N-O et al (2020) Empfehlung der DGKH. Viruzides Gurgeln und viruzider Nasenspray [Virucidal gargling and virucidal Nose sprays]. Deutsche Gesellschaft für Krankenhaushygiene e.V., 01.12.2020. Accessed 9 January 2021.
    1. Sciensano (2020) Consensus over het rationeel en correct gebruik van mondmaskers tijdens de COVID-19-pandemie [Consensus on the rational and correct use of mouth masks during the COVID-19 pandemic]. . Accessed 13 July 2020
    1. Sciensano (2020) Procedure voor huisartsen in geval van een mogelijk geval van COVID-19. Versie 08 juli 2020. [Procedure for doctors in the event of a possible case of COVID-19]. . Accessed 13 July 2020
    1. APB (2020) Aerosoltoestellen [Aerosol devices]. Information Update 20 March 2020. . Accessed 19 June 2020
    1. World Health Organization (2020) Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Scientific Brief, 29 March 2020. . Accessed June 19, 2020.
    1. Pfeifer M, Ewig S, Voshaar T, et al. Position paper for the state-of-the-art application of respiratory support in patients with COVID-19. Respiration. 2020;99:521–541. doi: 10.1159/000509104.
    1. Kimura KS, Freeman MH, Wessinger BC et al (2020) Interim analysis of an open-label randomized controlled trial evaluating nasal irrigations in non-hospitalized patients with COVID-19. Int Forum Allergy Rhinol Sep 11 [Epub ahead of print]. 10.1002/alr.22703
    1. Identifier: NCT04347538. Impact of nasal saline irrigations on viral load in patients with COVID-19.
    1. Santos FKG, Barros Neto EL, Moura TMCPA, et al. Molecular behavior of ionic and nonionic surfactants in saline medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009;333:156–162. doi: 10.1016/j.colsurfa.2008.09.040.
    1. Staszak K, WieczorekD MK. Effect of sodium chloride on the surface and wetting properties of aqueous solutions of cocamidopropyl betaine. J Surfact Deterg. 2015;18:321–328. doi: 10.1007/s11743-014-1644-8.
    1. Avery ME, Mead J (1959) Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Di Child 97(5_Part_I):517–5523. 10.1001/archpedi.1959.02070010519001
    1. Ghadiali SN, Gaver DP (2008) Biomechanics of liquid-epithelium interactions in pulmonary airways. Respir Physiol Neurobiol 163(1-3):232-243. 10.1016/j.resp.2008.04.008
    1. Huang J, Hume AJ, Abo KM et al (2020) SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. bioRxiv [Preprint]:175695. 10.1101/2020.06.30.175695
    1. Takano H. Pulmonary surfactant itself must be a strong defender against SARS-CoV-2. Medical Hypotheses. 2020;144:110020. doi: 10.1016/j.mehy.2020.110020.
    1. Edwards DA, Man JC, Brand P, et al. Inhaling to mitigate exhaled bioaerosols. Proc Natl Acad Sci USA. 2004;101(50):17383–17388. doi: 10.1073/pnas.0408159101.
    1. Edwards DA, Fiegel J, DeHaan W, et al. Novel inhalants for control and protection against airborne infections. Resp Drug Delivery. 2006;1:41–48.
    1. Edwards D, Hickey A, Batycky R, et al. A new natural defense against airborne pathogens. QRB Discovery. 2020;1:e5. doi: 10.1017/qrd.2020.9.
    1. Fiegel J, Clarke R, Edwards DA. Airborne infectious disease and the suppression of pulmonary bioaerosols. Drug Discov Today. 2006;11(1-2):51–57. doi: 10.1016/S1359-6446(05)03687-1.
    1. Simonds A, Hanak A, Chatwin M, et al. Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections. Health Technol Assess. 2010;14:131–172. doi: 10.3310/hta14460-02.
    1. Hendley JO, Gwaltney JM. Viral titers in nasal lining fluid compared to viral titers in nasal washes during experimental rhinovirus infection. J Clin Virol. 2004;30(4):326–328. doi: 10.1016/j.jcv.2004.02.011.
    1. Ramalingam S, Graham C, Dove J, et al. A pilot, open labelled randomised controlled trial of hypertonic saline nasal irrigation and gargling for the common cold. Sci Rep. 2019;9:1015. doi: 10.1038/s41598-018-37703.
    1. Watanabe W, Thomas M, Clarke R, et al. Why inhaling salt water changes what we exhale. J Colloid Interface Sci. 2007;307:71–78. doi: 10.1016/j.jcis.2006.11.017.
    1. Patel A, Longmore N, Mohanan A, Ghosh S. Salt and pH-induced attractive interactions on the rheology of food protein-stabilized nanoemulsions. CS Omega. 2019;4(7):11791–11800. doi: 10.1021/acsomega.8b03360.
    1. Wang Q, Li W, Hu N, et al. Ion concentration effect (Na+ and Cl-) on lipid vesicle formation. Colloids Surf B Biointerfaces. 2017;155:287–293. doi: 10.1016/j.colsurfb.2017.04.030.
    1. Liu S, Novoselac A. Transport of airborne particles from an unobstructed cough jet. Aerosol Sci Technol. 2014;48(11):1183–1194. doi: 10.1080/02786826.2014.968655.
    1. Heyder J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc. 2004;1:315–320. doi: 10.1513/pats.200409-046TA.
    1. Rengasamy S, Zhuang Z, Niezgoda G, et al. A comparison of total inward leakage measured using sodium chloride (NaCl) and corn oil aerosol methods for air-purifying respirators. J Occup Environ Hyg. 2018;15(8):616–627. doi: 10.1080/15459624.2018.1479064.
    1. Negm N. Solubilization characteristics of paraffin oil in different types of surfactants. Egyptian J Chem. 2008;51(1):21–29.
    1. Baimes C (2020) Alberta researcher wins award for salt-coated mask innovation. The Canadian Press, CBC. . Accessed 10 January 2021
    1. Vejerano EP, Marr LC. Physicochemical characteristics of evaporating respiratory fluid droplets. J R Soc Interface. 2018;15:20170939. doi: 10.1098/rsif.2017.0939.
    1. Yang W, Elankumaran S, Marr LC. Relationship between humidity and Influenza A viability in droplets and implications for influenza’s seasonality. PLoS ONE. 2012;7(10):e46789. doi: 10.1371/journal.pone.0046789.
    1. Wolf G, Koidl B, Pelzmann B. [Zur Regeneration des Zilienschlages humaner Flimmerzellen] Regeneration of the ciliary beat of human ciliated cells. Laryngorhinootologie. 1991;70(10):552–555. doi: 10.1055/s-2007-998095.
    1. Daviskas E, Anderson SD, Gonda I, et al. Inhalation of hypertonic saline aerosol enhances mucociliary clearance in asthmatic and healthy subjects. Eur Respir J. 1996;9(4):725–732. doi: 10.1183/09031936.96.09040725.
    1. Fu Y, Tong J, Meng F, et al. Ciliostasis of airway epithelial cells facilitates Influenza A virus infection. Vet Res. 2018;49(1):65. doi: 10.1186/s13567-018-0568-0.
    1. Keojampa BK, Nguyen MH, Ryan MW. Effects of buffered saline solution on nasal mucociliary clearance and nasal airway patency. Otolaryngol Head Neck Surg. 2004;131(5):679–682. doi: 10.1016/j.otohns.2004.05.026.
    1. Sood N, Bennett WD, Zeman K, et al. Increasing concentration of inhaled saline with or without amiloride: effect on mucociliary clearance in normal subjects. Am J Respir Crit Care Med. 2003;167(2):158–163. doi: 10.1164/rccm.200204-293OC.
    1. Kim C-H, Song MH, Ahn YE, et al. Effect of hypo-, iso- and hypertonic saline irrigation on secretory mucins and morphology of cultured human nasal epithelial cells. Acta Oto-Laryngologica. 2005;125:1296–1300. doi: 10.1080/00016480510012381.
    1. Sumaily I, Alarifi I, Alsuwaidan R, et al. Impact of nasal irrigation with iodized table salt solution on mucociliary clearance: proof-of-concept randomized control trial. Am J Rhinol Allergy. 2020;34(2):276–279. doi: 10.1177/1945892419892172.
    1. Min YG, Lee KS, Yun JB, et al. Hypertonic saline decreases ciliary movement in human nasal epithelium in vitro. Otolaryngol Head Neck Surg. 2001;124(3):313–316. doi: 10.1067/mhn.2001.113145.
    1. Bencova A, Vidan J, Rozborilova E, Kocan I. The impact of hypertonic saline inhalation on mucociliary clearance and nasal nitric oxide. J Physiol Pharmacol. 2012;63(3):309–313.
    1. Talbot AR, Herr TM, Parsons DS. Mucociliary clearance and buffered hypertonic saline solution. Laryngoscope. 1997;107(4):500–503. doi: 10.1097/00005537-199704000-00013.
    1. Bennett WD, Wu J, Fuller F, et al. Duration of action of hypertonic saline on mucociliary clearance in the normal lung. J Appl Physiol. 2015;118(12):1483–1490. doi: 10.1152/japplphysiol.00404.2014.
    1. Middleton PG, Pollard KA, Wheatley JR. Hypertonic saline alters ion transport across the human airway epithelium. Eur Resp J. 2001;17:195–199. doi: 10.1183/09031936.01.17201950.
    1. Jiao J, Yang J, Li J, et al. Hypertonic saline and seawater solutions damage sinonasal epithelial cell air-liquid interface cultures. Int Forum Allergy Rhinol. 2020;10(1):59–68. doi: 10.1002/alr.22459.
    1. Miwa M, Matsunaga M, Nakajima N, et al. Hypertonic saline alters electrical barrier of the airway epithelium. Otolaryngol Head Neck Surg. 2007;136(1):62–66. doi: 10.1016/j.otohns.2006.08.013.
    1. Hauptman G, Ryan MW. The effect of saline solutions on nasal patency and mucociliary clearance in rhinosinusitis patients. Otolaryngol Head Neck Surg. 2007;137(5):815–821. doi: 10.1016/j.otohns.2007.07.034.
    1. Balmes JR, Fine JM, Christian D, et al. Acidity potentiates bronchoconstriction induced by hypoosmolar aerosols. Am Rev Respir Dis. 1988;138(1):35–39. doi: 10.1164/ajrccm/138.1.35.
    1. Makker HK, Holgate ST. The contribution of neurogenic reflexes to hypertonic saline-induced bronchoconstriction in asthma. J Allergy Clin Immunol. 1993;92:82–88. doi: 10.1016/0091-6749(93)90041-d.
    1. Taube C, Holz O, Mücke M, et al. Airway response to inhaled hypertonic saline in patients with moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;164:1810–1815. doi: 10.1164/ajrccm.164.10.2104024.
    1. Lowry RH, Wood AM, Higenbottam TW. Effects of pH and osmolarity on aerosol-induced cough in normal volunteers. Clin Sci (Lond) 1988;74(4):373–376. doi: 10.1042/cs0740373.
    1. Mandelberg A, Amirav I. Hypertonic saline or high volume normal saline for viral bronchiolitis: mechanisms and rationale. Paed Pulmonol. 2010;45:36–40. doi: 10.1002/ppul.21185.
    1. Bartoszewski R, Matalon S, Collawn JF. Ion channels of the lung and their role in disease pathogenesis. Am J Physiol Lung Cell Mol Physiol. 2017;313(5):L859–L872. doi: 10.1152/ajplung.00285.2017.
    1. Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med. 2010;2363(23):2233–2247. doi: 10.1056/NEJMra0910061.
    1. Bustamante-Marin XM, Ostrowski LE. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol. 2017;9(4):a028241. doi: 10.1101/cshperspect.a028241.
    1. Hollenhorst MI, Richter K, Fronius M (2011) Ion transport by pulmonary epithelia. J Biomed Biotechnol Article ID 174306, 16pages. 10.1155/2011/174306
    1. Iwan IH, Dziembowska I, Słonina DA. Airways surface liquid and ion Transport - The mechanism maintained patency. Biom J Scie Techn Res. 2019;14(3):1–7. doi: 10.26717/BJSTR.2019.14.002543.
    1. Pinto JM, Jeswani S (2010) Rhinitis in the geriatric population. Allergy Asthma Clin Immunol 6(1):10. 10.1186/1710-1492-6-10
    1. Lillehoj EP, Kato K, Lu W, Kim KC. Cellular and molecular biology of airway mucins. Int Rev Cell Mol Biol. 2013;303:139–202. doi: 10.1016/B978-0-12-407697-6.00004-0.
    1. Lieleg O, Vladescu I, Ribbeck K. Characterization of particle translocation through mucin hydrogels. Biophys J. 2010;98:1782–1789. doi: 10.1016/j.bpj.2010.01.012.
    1. McCullagh CM, Jamieson AM, Blackwell J, Gupta R. Viscoelastic properties of human tracheobronchial mucin in aqueous solution. Biopolymers. 1995;35(2):149–159. doi: 10.1002/bip.360350203.
    1. Button B, Goodell HP, Atieh E, et al. Roles of mucus adhesion and cohesion in cough clearance. PNAS. 2018;115(49):12501–12506. doi: 10.1073/pnas.1811787115.
    1. Wills PJ, Hall RL, Wm C, Cole PJ. Sodium chloride increases the ciliary transportability of cystic fibrosis and bronchiectasis sputum on the mucus-depleted bovine trachea. J Clin Inv. 1997;99(1):9–13. doi: 10.1172/JCI119138.
    1. Lin L, Chen Z, Cao Y, Sun G. Normal saline solution nasal-pharyngeal irrigation improves chronic cough associated with allergic rhinitis. Am J Rhinol Allergy. 2017;31(2):96–104. doi: 10.2500/ajra.2017.31.4418.
    1. Elkins MR, Bye PT. Mechanisms and applications of hypertonic saline. J R Soc Med. 2011;104(Suppl 1):S2–S5. doi: 10.1258/jrsm.2011.s11101.
    1. Goralski JL, Wu D, Thelin WR, et al. The in vitro effect of nebulised hypertonic saline on human bronchial epithelium. Eur Respir J. 2018;51(5):1702652. doi: 10.1183/13993003.02652-2017.
    1. Boon M, Jorissen M, Jaspers M, et al. The influence of nebulized drugs on nasal ciliary activity. J Aerosol Med Pulm Drug Deliv. 2016;29(4):378–385. doi: 10.1089/jamp.2015.1229.
    1. Rusznak C, Devalia JL, Lozewicz S, Davies RJ. The assessment of nasal mucociliary clearance and the effect of drugs. Respir Med. 1994;88(2):89–101. doi: 10.1016/0954-6111(94)90020-5.
    1. Workman AD, Cohen NA. The effect of drugs and other compounds on the ciliary beat frequency of human respiratory epithelium. Am J Rhinol Allergy. 2014;28(6):454–464. doi: 10.2500/ajra.2014.28.4092.
    1. Rivera JA (1962) Cilia, ciliated epithelium, and ciliary activity. International Series of Monographs and Applied Biology. 1st edn. Pergamon Press ltd, Oxfor-London-NewYork-Paris pp.50-58. ISBN 978008009623
    1. Paul P, Johnson P, Ramaswamy P et al (2013) The effect of ageing on nasal mucociliary clearance in women: a pilot study. Pulmonol Article ID 598589:5 pages. 10.1155/2013/598589
    1. Purushothaman PK, Priyangha E, Vaidhyswaran R (2020) Effects of prolonged use of facemask on healthcare workers in tertiary care hospital during COVID-19 pandemic. Indian J Otolaryngol Head Neck Surg:1–7. 10.1007/s12070-020-02124-0
    1. White DE, Bartley J, Nates RJ. Model demonstrates functional purpose of the nasal cycle. BioMed Eng OnLine. 2015;14:38. doi: 10.1186/s12938-015-0034-4.
    1. Tarran R, Trout L, Donaldson SH, Boucher RC. Soluble mediators, not cilia, determine airway surface liquid volume in normal and cystic fibrosis superficial airway epithelia. J Gen Physiol. 2006;127(5):591–604. doi: 10.1085/jgp.200509468.
    1. Hildenbrand T, Weber RK, Brehmer D. Rhinitis sicca, dry nose and atrophic rhinitis: a review of the literature. Eur Arch Otorhinolaryngol. 2011;268(1):17–26. doi: 10.1007/s00405-010-1391-z.
    1. Harvey PR, Tarran R, Garoff S, Myerburg MM. Measurement of the airway surface liquid volume with simple light refraction microscopy. Am J Respir Cell Mol Biol. 2011;45(3):592–599. doi: 10.1165/rcmb.2010-0484OC.
    1. Tanner K, Roy N, Merrill RM, et al. Nebulized isotonic saline versus water following a laryngeal desiccation challenge in classically trained sopranos. J Speech Language Hearing Res. 2010;53(6):1555–1566. doi: 10.1044/1092-4388(2010/09-0249.
    1. Personal communications by pneumologists, dentists and paediatricians wearing daily well-fitting professional masks, July-October 2020
    1. Slapak I, Skoupa J, Strnad P, Hornik P. Efficacy of isotonic nasal wash (seawater) in the treatment and prevention of rhinitis in children. Arch Otolaryngol Head Neck Surg. 2008;134:67–74. doi: 10.1001/archoto.2007.19.
    1. Newster (2020) Eco-sustainable technology for the processing of healthcare waste (HCW), on-site or in centralized treatment centers. Coronaviruses: SARS, MERS and Covid19. 28/02/2020
    1. Machado RRG, Glaser T, Araujo DB et al (2020) Hypertonic saline solution inhibits SARS-CoV-2 in vitro assay. bioRxiv 2020.08.04:235549. 10.1101/2020.08.04.235549
    1. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052.
    1. Hou Y, Zhao J, Martin W et al (2020) New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med 18:art.No.216. 10.1186/s12916-020-01673-z
    1. Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26:681–687. doi: 10.1038/s41591-020-0868-6.
    1. Rushworth CA, Guy JL, Turner AJ. Residues affecting the chloride regulation and substrate selectivity of the angiotensin-converting enzymes (ACE and ACE2) identified by site-directed mutagenesis. FEBS J. 2008;275(23):6033–6042. doi: 10.1111/j.1742-4658.2008.06733.
    1. Guy JL, Jackson RM, Acharya KR, et al. Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence. Biochemistry. 2003;42(45):13185–13192. doi: 10.1021/bi035268s.
    1. Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. doi: 10.1186/1743-422X-2-69.
    1. Chitranshi N, Gupta VK, Rajput R, et al. Evolving geographic diversity in SARS-CoV2 and in silico analysis of replicating enzyme 3CLpro targeting repurposed drug candidates. J Transl Med. 2020;18(1):278. doi: 10.1186/s12967-020-02448-z.
    1. Graziano V, McGrath WJ, DeGruccio AM, et al. Enzymatic activity of the SARS coronavirus main proteinase dimer. FEBS letters. 2006;580(11):2577–2583. doi: 10.1016/j.febslet.2006.04.004.
    1. Ferreira JC, Rabeh WM (2020) Biochemical and Biophysical characterization of the main protease, 3-chymotrypsin-like protease (3CLpro), from the novel coronavirus disease 19(COVID-19). Research Square. New York University Abu Dhabi, pp 1-17.
    1. Chang HP, Chou CY, Chang GG. Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride. Biophys J. 2007;92(4):1374–1383. doi: 10.1529/biophysj.106.091736.
    1. Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, et al. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int J Biol Macromol. 2020;164:1693–1703. doi: 10.1016/j.ijbiomac.2020.07.235.
    1. Grum-Tokars V, Ratia K, Begaye A, et al. Evaluating the 3C-like protease activity of SARS-Coronavirus: recommendations for standardized assays for drug discovery. Virus Res. 2008;133(1):63–73. doi: 10.1016/j.virusres.2007.02.015.
    1. Shi J, Song J. The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. The FEBS Journal. 2006;273(5):1035–1045. doi: 10.1111/j.1742-4658.2006.05130.x.
    1. Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3(9):e202000786. doi: 10.26508/lsa.202000786.
    1. Shang J, Wan Y, Luo C, et al. Cell entry mechanisms of SARS-CoV-2. PNAS. 2020;117(21):11727–11734. doi: 10.1073/pnas.2003138117.
    1. Hasan A, Paray BA, Hussain A et al (2020) A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn:1–9. 10.1080/07391102.2020.1754293
    1. Izidoro MA, Gouvea IE, Santos JA, et al. Lindberg I, Juliano L (2009) A study of human furin specificity using synthetic peptides derived from natural substrates, and effects of potassium ions. Arch Biochem Biophys. 2009;487(2):105–114. doi: 10.1016/j.abb.2009.05.013.
    1. Zhou T, Tsybovsky Y, Olia AS et al (2020) A pH-dependent switch mediates conformational masking of SARS-CoV-2 spike. bioRxiv [Preprint] 2020.07.04.187989 10.1101/2020.07.04.187989
    1. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. doi: 10.1038/s41467-020-15562-9.
    1. Smyrlaki I, Ekman M, Lentini A, et al. Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nat Commun. 2020;11:4812. doi: 10.1038/s41467-020-18611-5.
    1. Fischer H, Widdicombe JH. Mechanisms of acid and base secretion by the airway epithelium. J Membr Biol. 2006;211(3):139–150. doi: 10.1007/s00232-006-0861-0.
    1. Reddi BA. Why is saline so acidic (and does it really matter?) Int J Med Sci. 2013;10(6):747–750. doi: 10.7150/ijms.5868.
    1. Enuka Y, Hanukoglu I, Edelheit O, et al. Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways. Histochem Cell Biol. 2012;137(3):339–353. doi: 10.1007/s00418-011-0904-1.
    1. Anand P, Puranik A, Aravamudan M et al (2020) SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. eLife 9:e58603. 10.7554/eLife.58603
    1. Jaimes JA, Millet JK, Whittaker GR (2020) Proteolytic cleavage of the SARS-CoV-2 spike protein and the role of the novel S1/S2 site. iScience 23:101212. 10.1016/j.isci.2020.101212
    1. Ji HL, Zhao R, Matalon S, Matthay MA. Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility. Physiol Rev. 2020;100(3):1065–1075. doi: 10.1152/physrev.00013.2020.
    1. Kleyman TR, Carattino MD, Hughey RP. ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J Biol Chem. 2009;284(31):20447–20451. doi: 10.1074/jbc.R800083200.
    1. Szabó GT, Kiss A, Csanádi Z, Czuriga D (2020) Hypothetical dysfunction of the epithelial sodium channel may justify neurohumoral blockade in coronavirus disease 2019. ESC Heart Fail 17. 10.1002/ehf2.13078
    1. Noda M, Hiyama TY. The Nax Channel: What it is and what it does. The Neuroscientist. 2015;21(4):399–412. doi: 10.1177/1073858414541009.
    1. Marunaka Y, Marunaka R, Sun H et al (2016) Na+ homeostasis by epithelial Na+ channel (ENaC) and Nax channel (Nax): cooperation of ENaC and Nax. ATM 4(Suppl 1):S11. 10.21037/atm.2016.10.42
    1. Blé FX, Cannet C, Collingwood S, et al. ENaC-mediated effects assessed by MRI in a rat model of hypertonic saline-induced lung hydration. Br J Pharmacol. 2010;160(4):1008–1015. doi: 10.1111/j.1476-5381.2010.00747.x.
    1. Ramalingam S, Cai B, Wong J, et al. Antiviral innate immune response in non-myeloid cells is augmented by chloride ions via an increase in intracellular hypochlorous acid levels. Sci Rep. 2018;8:13630. doi: 10.1038/s41598-018-31936-y.
    1. Zhang N, Francis KP, Prakash A, Ansaldi D. Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. Nat Med. 2013;19(4):500–505. doi: 10.1038/nm.3110.
    1. Suzuki K, Yamada M, Akashi K, Fujikura T. Similarity of kinetics of three types of myeloperoxidase from human leukocytes and four types from HL-60. Arch Biochem Biophysics. 1986;245(1):167–173. doi: 10.1016/0003-9861(86)90201-8.
    1. Wang G, Nauseef WM. Salt, chloride, bleach, and innate host defense. J Leukocyte Biol. 2015;98(2):163–172. doi: 10.1189/jlb.4RU0315-109R.
    1. Chandler JD, Day BJ. Thiocyanate: a potentially useful therapeutic agent with host defense and antioxidant properties. Biochem Pharmacol. 2012;84(11):1381–1387. doi: 10.1016/j.bcp.2012.07.029.
    1. Nadesalingam A, Chen JHK, Farahvash A, Khan MA. Hypertonic saline suppresses NADPH oxidase-dependent neutrophil extracellular trap formation and promotes apoptosis. Front Immunol. 2018;9:359. doi: 10.3389/fimmu.2018.00359.
    1. Delgado-Enciso I, Paz-Garcia J, Barajas-Saucedo CE, Mokay-Ramírez KA Meza-Robles C, Lopez-Flores R (2020) Patient-reported health outcomes after treatment of COVID-19 with nebulized and/or intravenous neutral electrolyzed saline combined with usual medical care versus usual medical care alone: a randomized, open-label, controlled trial. Res Sq [Preprint] 10:-68403. 10.21203/-68403/v1
    1. WHO (2020) Saline.
    1. WHO (2020) Can rinsing your nose regularly with saline solution prevent Covid-19?
    1. Salmon Ceron D, Bartier S, Hautefort C, et al. APHP COVID-19 research collaboration. Self-reported loss of smell without nasal obstruction to identify COVID-19. The multicenter Coranosmia cohort study. J Infect. 2020;81(4):614–620. doi: 10.1016/j.jinf.2020.07.005.
    1. Voshaar T. COVID-19 Therapie aus Sicht eines Aerosol-Experten. - Artzeportal 28 Juli 2020. Accessed 10 January 2021
    1. Jayaweera M, Perera H, Gunawardana B, Manatunge J. Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environ Res. 2020;188:109819. doi: 10.1016/j.envres.2020.109819.
    1. WHO (2020) Transmission of SARS-CoV-2: implications for infection prevention precautions. Accessed 10 January 2021
    1. Ueki H, Furusawa Y, Iwatsuki-Horimoto K, et al. Effectiveness of face masks in preventing airborne transmission of SARS-CoV-2. mSphere. 2020;5(5):e00637–e00620. doi: 10.1128/mSphere.00637-20.
    1. Ehre C. SARS-CoV-2 infection of airway cells. N Engl J Med. 2020;383:969. doi: 10.1056/NEJMicm2023328.
    1. Zhu N, Wang W, Liu Z, et al. Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nat Commun. 2020;11:3910. doi: 10.1038/s41467-020-17796-z.
    1. Robinot R, Hubert M, Dias de Mehlo G et al (2020) SARS-CoV-2 infection damages airway motile cilia and impairs mucociliary clearance. bioRxiv. 10.1101/2020.10.06.328369
    1. Baker AN, Richards SJ, Guy CS, et al. The SARS-COV-2 spike protein binds sialic acids and enables rapid detection in a lateral flow point of care diagnostic device. ACS Cent Sci. 2020;6(11):2046–2052. doi: 10.1021/acscentsci.0c00855.
    1. Hou YJ, Okuda K, Edwards CE, et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell. 2020;182(2):429–46.e14. doi: 10.1016/j.cell.2020.05.042.
    1. Burke W. The ionic composition of nasal fluid and its function. Health. 2014;06(08):720–728. doi: 10.4236/health.2014.68093.
    1. Grandjean Lapierre S, Phelippeau M, Hakimi C, et al. Cystic fibrosis respiratory tract salt concentration: an exploratory cohort study. Medicine. 2017;96(47):e8423. doi: 10.1097/MD.0000000000008423.
    1. Kozlova I, Vanthanouvong V, Johannesson M, Roomans GM (2006) Composition of airway surface liquid determined by X-ray microanalysis. Ups J Med Sci 111(1):137-153. 10.3109/2000-1967-016
    1. Matsui H, Grubb BR, Tarran R, et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell. 1998;95(7):1005–1015. doi: 10.1016/s0092-8674(00)81724-9.
    1. Wheatley CM, Cassuto NA, Foxx-Lupo WT, et al. Variability in measures of exhaled breath Na+, influence of pulmonary blood flow and salivary Na+ Clin Med Insights Circ Respir Pulm Med. 2010;4:25–34. doi: 10.4137/ccrpm.s4718.
    1. Song Y, Thiagarajah J, Verkman AS. Sodium and chloride concentrations, pH, and depth of airway surface liquid in distal airways. J Gen Physiol. 2003;122(5):511–519. doi: 10.1085/jgp.200308866.
    1. Hao W, Ma B, Li Z et al (2020) Binding of the SARS-CoV-2 spike protein to glycans. bioRxiv. 10.1101/2020.05.17.100537
    1. Bastier PL, Lechot A, Bordenave L, et al. Nasal irrigation: from empiricism to evidence-based medicine. A review. Eur Ann Otorhinolaryngol Head Neck Dis. 2015;132(5):281–285. doi: 10.1016/j.anorl.2015.08.001.
    1. Nimsakul S, Ruxrungtham S, Chusakul S, et al. Does heating up saline for nasal irrigation improve mucociliary function in chronic rhinosinusitis? Am J Rhinol Allergy. 2018;32(2):106–111. doi: 10.1177/1945892418762872.
    1. Niedner R. Cytotoxicity and sensitization of povidone-iodine and other frequently used anti-infective agents. Dermatology. 1997;195(Suppl2):89–92. doi: 10.1159/000246038.
    1. Gudmundsdottir Á, Scheving R, Lindberg F, Stefansson B (2020) Inactivation of SARS-CoV-2 and HCoV-229E in vitro by ColdZyme® a medical device mouth spray against the common cold. J Med Virol. 10.1002/
    1. Kido H. Influenza virus pathogenicity regulated by host cellular proteases, cytokines and metabolites, and its therapeutic options. Proc Jpn Acad Ser B Phys Biol Sci. 2015;91(8):351–368. doi: 10.2183/pjab.91.351.
    1. Liu JJ, Chan GC, Hecht AS, et al. Nasal saline irrigation has no effect on normal olfaction: a prospective randomized trial. Int Forum Allergy Rhinol. 2014;4(1):39–42. doi: 10.1002/alr.21235.
    1. Piromchai P, Puvatanond C, Kirtsreesakul V, et al. Effectiveness of nasal irrigation devices: a Thai multicentre survey. PeerJ. 2019;27(7):e7000. doi: 10.7717/peerj.7000.
    1. Navarra J, Ruiz-Ceamanos A, Moreno JJ et al (2002) Acute nasal dryness in COVID-19. medRxiv 2020.11.18.20233874 [Preprint]. 10.1101/2020.11.18.20233874

Source: PubMed

3
Subscribe