A first-in-human phase 1 and pharmacological study of TAS-119, a novel selective Aurora A kinase inhibitor in patients with advanced solid tumours

Debbie G J Robbrecht, Juanita Lopez, Emiliano Calvo, Xiaomin He, Hirai Hiroshi, Nital Soni, Natalie Cook, Afshin Dowlati, Angelica Fasolo, Victor Moreno, Ferry A L M Eskens, Johann S de Bono, Debbie G J Robbrecht, Juanita Lopez, Emiliano Calvo, Xiaomin He, Hirai Hiroshi, Nital Soni, Natalie Cook, Afshin Dowlati, Angelica Fasolo, Victor Moreno, Ferry A L M Eskens, Johann S de Bono

Abstract

Background: This is a first-in-human study with TAS-119, an Aurora A kinase (AurA) inhibitor.

Methods: Patients with advanced, refractory, solid tumours were enrolled into 5 dose escalation cohorts (70-300 mg BID, 4 days on/3 days off, 3 out of 4 weeks or 4 out of 4 weeks). The expansion part consisted of patients with small-cell lung cancer, HER2-negative breast cancer, MYC-amplified/β-catenin-mutated (MT) tumours or other (basket cohort).

Results: In the escalation part (n = 34 patients), dose-limiting toxicities were one grade 3 nausea, two grade 2 and one grade 3 ocular toxicity and a combination of fatigue, ocular toxicity and nausea in one patient (all grade 2) at dose levels of 150, 200, 250 and 300 mg, respectively. Most frequent treatment-related adverse events were fatigue (32%), diarrhoea (24%) and ocular toxicity (24%). Toxicity grade ≥3 in ≥10% of patients were diarrhoea (15%) and increased lipase (12%). The maximum tolerated dose was 250 mg BID. Due to one additional grade 1 ocular toxicity, the RP2D was set at 200 mg BID (4 days on/3 days off, 3 out of 4 weeks), which was further explored in the expansion part (n = 40 patients). Target inhibition in paired skin biopsies was shown.

Conclusions: TAS-119 has a favourable and remarkably distinct safety profile from other AurA inhibitors.

Clinical trial registration: NCT02448589.

Conflict of interest statement

D.G.J.R.: travel expenses: Sanofi; consulting/advisory role: Bayer, Cantargia, Servier, Faron Pharmaceuticals, Merck Sharp & Dohme. J.L.: consulting/advisory role: Basilea, Genmab; research grant funding: Basilea, Genmab, Roche. E.C.: consulting/advisory role: Novartis, Nanobiotix, Janssen-Cilag, PsiOxus Therapeutics, Seattle Genetics, EUSA Pharma, Abbvie, Celgene, AstraZeneca, Guidepoint Global, Roche/Genentech, GLG, Pfizer, Servier, Amcure; leadership: START; Speakers’ Bureau: Novartis, travel/accommodation expenses: Roche/Genentech; relationship investigational therapeutics in oncological sciences, stock and other ownership interests: START, Oncoart Associated, International Cancer Consultants; honorario: HM Hospitales; research funding: AstraZeneca, Novartis, BeiGene, START. X.H.: employer: Taiho Oncology, Inc. H.H.: employer: Taiho Pharmaceutical Co.; stock holder; Otsuka Holdings Co., LTD; patents/royalties/other intellectual property: Taiho Pharmaceutical Co. N.S.: employer: Taiho Oncology, Inc. N.C.: consulting/advisory role: Tarveda Therapeutics, Epigene Therapeutics. A.D. declares no potential conflicts of interest. A.F.: travel/accommodation expenses: Amgen, Roche. V.M.: employer: START; consulting/advisory role: Merck; research funding: Abbvie, ACEA Biosciences, Adaptimmune, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Celgene, Eisai, e-Therapeutics, GlaxoSmithKline, Menarini, Nanobiotix, Novartis, Pfizer, PharmaMar, PsiOxus Therapeutics, Puma Biotechnology, Regeneron, RigonTEC, Roche, Sanfoi, Sierra Oncolog, Synthon, Taiho Pharmaceutical, Takeda, Tesaro, Transgene, Bristol-Myers Squibb, Merck, BeiGene, Janssen; expert testimony: Medscape, Nanobiotix, Bayer; travel/accommodation expenses: Sanofi, Regeneron. F.A.L.M.E.: consulting/advisory role: Merck Serono, Roche, Eisai, Ipsen; travel expenses: Pfizer. J.S.d.B.: consulting/advisory role: AstraZeneca, Sanofi, Genentech/Roche, Astellas, Bayer Pharma, Merck Sharp & Dohme, Merck Serono, Boehringer Ingelheim, Sierra Oncology, Menarini Silicon Biosystems, Pfizer, Celgene, Taiho Pharmaceutical, Daiichi Sankyo, Janssen Oncology, Genmab, GlaxoSmithKline, Orion Pharma GmbH, Eisai, BioXCel Therapeutics; travel/accommodation expenses: AstraZeneca, Astellas Pharma, GlaxoSmithKline, Orion Pharma GmbH, Sanofi, Genmab, Taiho Pharmaceutical, Qiagen, Vertex; patents/royalties/other intellectual property on Abiraterone Rewards to Inventors, PARP inhibitors and DNA repair defects, targeting of IL23 in prostate cancer, CHK1 inhibitor; honoraria: AstraZeneca, Sanofi, Astellas Pharma, Pfizer, Genentech/Roche, Janssen, Menarini Silicon Biosystems, Daiichi Sankyo, Sierra Oncology, BioExcel; research funding: AstraZeneca, Genentech, Sanofi, Taiho Pharmaceutical, Daiichi Sankyo, Merck Serono, Astex Pharmaceuticals, Merck Sharp & Dohme, Orion Pharma GmbH, GlaxoSmithKline, CellCentric, Celgene, Sierra Oncology, Bayer, MedImmune, Medivation.

Figures

Fig. 1. Mean (±SD) plasma concentration versus…
Fig. 1. Mean (±SD) plasma concentration versus time curves (linear scales) for TAS-119.
a Cycle 1 day 1. b Cycle 1 day 4. c Cycle 1 day 18. A total of 34 patients were evaluable for PK data. In 2 patients, parameters from one pre-dose sample and one day 4 sample, respectively, were unavailable. Parameters collected on a non-predefined day (2 patients) or collected from patients with dose omissions (2 patients) or dose reductions (1 patient) were excluded.
Fig. 2. Scatterplots of TAS-119 parameters (…
Fig. 2. Scatterplots of TAS-119 parameters (Cmax and AUC0 − last) versus dose on cycle 1 day 1.
aCmax versus dose in cycle 1 day 1. b AUC0-last versus dose in cycle 1 day 1. AUC0 − last = area under the plasma concentration–time curve from time 0 to the time point of last observable concentration, Cmax = maximum observed plasma concentration, PK pharmacokinetics. Note: Each symbol represents individual PK parameters. The regression curve was provided by the linear model. The shaded area indicates 90% confidence band.
Fig. 3. Mean pHH3-positive rates in paired…
Fig. 3. Mean pHH3-positive rates in paired skin samples.
Data based on 55 paired skin samples taken prior to TAS-119 administration and after receiving TAS-119 administered on day 4 of cycle 1. The p value is based on paired t test.

References

    1. Pérez Fidalgo J, Roda D, Roselló S, Rodríguez-Braun E, Cervantes A. Aurora kinase inhibitors: a new class of drugs targeting the regulatory mitotic system. Clin. Transl. Oncol. 2009;11:787–798. doi: 10.1007/s12094-009-0447-2.
    1. Tang A, Gao K, Chu L, Zhang R, Yang J, Zheng J. Aurora kinases: novel therapy targets in cancers. Oncotarget. 2017;8:23937–23954. doi: 10.18632/oncotarget.14893.
    1. Cowley D, Rivera-Pérez J, Schliekelman M, Joseph He Y, Oliver T, Lu L, et al. Aurora-A kinase is essential for bipolar spindle formation and early development. Mol. Cell Biol. 2009;29:1059–1071. doi: 10.1128/MCB.01062-08.
    1. Bischoff J, Anderson L, Zhu Y, Ng L, Souza B, Schryver B, et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 1998;17:3052–3065. doi: 10.1093/emboj/17.11.3052.
    1. Ogawa E, Takenaka K, Katakura H, Adachi M, Otake Y, Toda Y, et al. Perimembrane Aurora-A expression is a significant prognostic factor in correlation with proliferative activity in non-small-cell lung cancer (NSCLC) Ann. Surg. Oncol. 2008;15:547–554. doi: 10.1245/s10434-007-9653-8.
    1. Sen S, Zhou H, White R. A putative serine/threonine kinase encoding gene BTAK on chromosome 20q13 is amplified and overexpressed in human breast cancer cell lines. Oncogene. 1997;14:2195–2200. doi: 10.1038/sj.onc.1201065.
    1. Anand S, Penrhyn-Lowe S, Venkitaraman A. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell. 2003;3:51–62. doi: 10.1016/S1535-6108(02)00235-0.
    1. McGrogan B, Gilmartin B, Carney D, McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta. 2008;1785:96–132.
    1. Damodaran A, Vaufrey L, Gavard O, Prigent C. Aurora A kinase is a priority pharmaceutical target for the treatment of cancers. Trends Pharmacol. Sci. 2017;38:697–700. doi: 10.1016/j.tips.2017.05.003.
    1. Borisa A, Bhatt H. A comprehensive review on Aurora kinase: Small molecule inhibitors and clinical trial studies. Eur. J. Med. Chem. 2017;10:1–19. doi: 10.1016/j.ejmech.2017.08.045.
    1. Tayyar Y, Jubair L, Fallaha S, McMillan N. Critical risk-benefit assessment of the novel anti-cancer aurora a kinase inhibitor alisertib (MLN8237): a comprehensive review of the clinical data. Crit. Rev. Oncol. Hematol. 2017;119:59–65. doi: 10.1016/j.critrevonc.2017.09.006.
    1. Kollareddy M, Zheleva D, Dzubak P, Brahmkshatriya P, Lepsik M, Hajduch M. Aurora kinase inhibitors: progress towards the clinic. Investig New Drugs. 2012;30:2411–2432. doi: 10.1007/s10637-012-9798-6.
    1. Nakatsuru Y, Hashimoto A, Sootome H, Ito K, Sakuragi M, Miura A, et al. TAS-119 a selective inhibitor of Aurora A kinase, potentiates taxane therapy in breast and lung cancer models. Eur. J. Cancer. 2014;50:127–128. doi: 10.1016/S0959-8049(14)70524-6.
    1. O’Connor O, Özcan M, Jacobsen E, Roncero J, Trotman J, Demeter J, et al. Randomized phase III study of Alisertib or investigator’s choice (selected single agent) in patients with relapsed or refractory peripheral T-cell lymphoma. J. Clin. Oncol. 2019;37:613–623. doi: 10.1200/JCO.18.00899.
    1. Manfredi M, Ecsedy J, Chakravarty A, Silverman L, Zhang M, Hoar K, et al. Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of Aurora A kinase using novel in vivo pharmacodynamic assays. Clin. Cancer Res. 2011;17:7614–1724. doi: 10.1158/1078-0432.CCR-11-1536.
    1. Hook K, Garza S, Lira M, Ching K, Lee N, Cao J, et al. An integrated genomic approach to identify predictive biomarkers of response to the aurora kinase inhibitor PF-03814735. Mol. Cancer Ther. 2012;11:710–719. doi: 10.1158/1535-7163.MCT-11-0184.
    1. Nemunaitis J, Blend C, Bien-Willner G, Degele M, Roth A, Hayes S, et al. Relationships of clinical response to relevant molecular signal during phase I testing of Aurora kinase A inhibitor: retrospective assessment. Integr. Mol. Med. 2015;2:331–337. doi: 10.15761/IMM.1000162.
    1. Sootome H, Fujita N, Miura A, Suzuki T, Fukushima H, Mizuarai S, et al. Genomic predictors of therapeutic sensitivity to TAS-119, a selective inhibitor of Aurora-A kinase. Eur. J. Cancer. 2014;50:142–143. doi: 10.1016/S0959-8049(14)70559-3.
    1. Eisenhauer E, Therasse P, Bogaerts J, Schwartz L, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur. J. Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Nowell C, Radtke F. Corneal epithelial stem cells and their niche at a glance. J. Cell Sci. 2017;130:1021–1025.
    1. Wan X, Long Z, Yan M, Xu J, Xia L-P, Liu L, et al. Inhibition of Aurora-A suppresses epithelial-mesenchymal transition and invasion by downregulating MAPK in nasopharyngeal carcinoma cells. Carcinogenesis. 2008;29:1930–1937. doi: 10.1093/carcin/bgn176.
    1. Chu Q, Bouganim N, Fortier C, Zaknoen S, Stille J, Kremer J, et al. A phase I/II study of aurora kinase A inhibitor, LY3295668 erbumine (AK-01): Safety as monotherapy in patients with locally advanced or metastatic solid tumors. Cancer Res. 2019;79:CT083.
    1. Lee K, Jin H, Ye S, Park B, Kim S. Recombinant human bone morphogenetic protein-2 inhibits gastric cancer cell proliferation by inactivating Wnt signaling pathway via c-Myc with aurora kinases. Oncotarget. 2016;7:73473–73485. doi: 10.18632/oncotarget.11969.

Source: PubMed

3
Subscribe